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ABSTRACT
Bioequivalence (BE) studies are an essential part of the evaluation of generic
drugs. The most common in vivo BE study design is the two-period two-
treatment crossover design. AUC (area under the concentration–time curve)
and Cmax (maximum concentration) are obtained from the observed con-
centration–time profiles for each subject from each treatment under each
sequence. In the BE evaluation of pharmacokinetic crossover studies, the
normality of the univariate response variable, e.g. log(AUC)1 or log(Cmax), is
often assumed in the literature without much evidence. Therefore, we
investigate the distributional assumption of the normality of response
variables, log(AUC) and log(Cmax), by simulating concentration–time pro-
files from two-stage pharmacokinetic models (commonly used in pharma-
cokinetic research) for a wide range of pharmacokinetic parameters and
measurement error structures. Our simulations show that, under reasonable
distributional assumptions on the pharmacokinetic parameters, log(AUC)
has heavy tails and log(Cmax) is skewed. Sensitivity analyses are conducted
to investigate how the distribution of the standardized log(AUC) (or the
standardized log(Cmax)) for a large number of simulated subjects deviates
from normality if distributions of errors in the pharmacokinetic model for
plasma concentrations deviate from normality and if the plasma concentra-
tion can be described by different compartmental models.
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1. Introduction

In a typical pharmacokinetic bioequivalence (BE) study with a single dose administration, one of the
drug products is a reference formulation and the other a test formulation. Each subject is adminis-
tered both formulations in a randomized two-period crossover design (Jones and Kenward, 2003). A
concentration–time profile is determined for each subject given each formulation. Each single
concentration–time profile can be modeled by the pharmacokinetic compartmental model (Gibaldi
and Perrier, 1982). There are many software programs available for estimating the pharmacokinetic
parameters such as the absorption rate and the apparent volume of distribution (Beal et al., 2009).
Then AUC (area under the concentration–time curve), Cmax (maximum concentration), and Tmax
(time to reach Cmax), which are the pharmacokinetic metrics, can be obtained from the fitted
pharmacokinetic model. However, the AUC, Cmax, and Tmax are obtained from the nonparametric
method (Food and Drug Administration, 2001) for BE assessment. Obviously, Tmax is not a
continuous random variable since Tmax has the fixed number of mass points due to a fixed available
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sampling times and further is not evaluated by the equivalence analysis. Because of this common
practice, we in this article discuss the distribution of AUC and Cmax obtained by the nonparametric
method by simulating that distribution when the fundamental data generating mechanism is the
(one-compartment) pharmacokinetics (PK) model.

In practice, the univariate response variables, such as log(AUC) and log(Cmax), are often assumed
to follow a normal distribution without much empirical evidence. In one published investigation of
goodness of fit (Lacey et al., 1997), the number of subjects varied only from 29 to 69 and so the power
of the Shapiro–Wilk test to detect departures from lognormal or normal distributions was not large.

In this article, we investigate the normality assumption of log(AUC) or log(Cmax) using
pharmacokinetic compartmental models typically used to describe concentration profiles over
time under a set of special assumptions for variance and covariance structures. Specifically, we
propose to generate data using the simplest (one and two compartment) pharmacokinetic
models, to clarify which distributions for log(AUC) or log(Cmax) are most plausible. Although
there are many software packages (e.g., NONMEM, Beal et al., 2009) and many programs (e.g.,
SAS/IML program, Russek-Cohen et al., 2005) available for pharmacokinetic simulations, we
write our own Statistical Analysis System (SAS) program to simulate the plasma concentration
profiles for streamlining the derived response variables and incorporating the desired variance–
covariance structures for errors and pharmacokinetic parameters. We systematically investigate
the assumption of the normality of response variables (log(AUC) and log(Cmax)) by simulating a
large number of concentration–time profiles from the two-stage pharmacokinetic models for a
wide range of variability, correlations, and measurement error structures for the pharmacokinetic
parameters. In Stage 1, we simulate the mean plasma concentration–time profile of each subject
from the one-compartment pharmacokinetic model using one particular drug’s pharmacokinetic
parameters (absorption rate, elimination rate, bioavailability, apparent volume of distribution,
etc.) whose values follow the log-normal distribution from subject to subject (as suggested by
Sheiner and Beal, 1981, and Davidian and David, 1995). In Stage 2, the plasma concentration–
time profile of each subject is the result of the mean plasma concentration–time profile of each
subject multiplied by the log-normally distributed residual errors. Then the distributions of log
(AUC) and log(Cmax) from simulated data are examined in three ways. We will compare the
histogram of the standardized response variable (log(AUC) and log(Cmax)) for 100,000 simu-
lated subjects with the standard normal density curve and compare its percentiles with the
standard normal percentile for several combinations of the variability, correlations, and mea-
surement error structures of pharmacokinetic parameters, in order to highlight the most severe
departures from normality. From practical experience, correlation coefficients among pharma-
cokinetic parameters ranging from 0.1 to 0.5 seem reasonable. A coefficient of variation (CV) of
0.2 is considered small for measurement errors and 0.4 is excessively large (cf. the discussion of
a highly variable drug with CV>0.3 for within-subject variations of AUC or Cmax, by Blume and
Midha, 1993; Blume et al., 1995). We model measurement errors within each subject as an
Ornstein–Uhlenbeck process since they form a continuous-time process and it is reasonable to
treat the measurement errors as being stationary over time. In practice, measurement errors are
most commonly assumed to be independent for each subject in pharmacokinetic modeling (see
Chapter 3, Beal et al., 2009). Third, we compare the rejection rates of the Shapiro–Wilk
normality test for the log(AUC) and log(Cmax) variables at 0.05 significance level for small
(40-subject) studies for the above cases. In a very large sample size study, the sampling
distribution will be very close to the true distribution for the response variable and we can
determine what kinds of departure from normality occur. From the rejection rate of Shapiro–
Wilk normality test for the response variable based on the small sample studies, we obtain the
proportion of trials that could reject the null hypothesis of normality. If the rejection rate is
much larger than the nominal significance level, then it is evident that the summary metric is
not normally distributed, although that does not specify the nature of the departure. In addition,
normality testing for a small sample (e.g., 40 subjects) has very low power to reject the null
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hypothesis of normality. Hence the rejection rate – which may be all that one would see in
biopharmaceutical practice – is not a sensitive description of true non-normality. We also
conduct sensitivity analyses to investigate how the sampling distribution of the standardized
log(AUC) (or the standardized log(Cmax)) for a large number of simulated subjects deviates
from normality if eij is distributed as t (a heavy tail distribution) or the mixture of two normal
variables (two subgroups responding differently) or if the concentration–time profiles follow a
two-compartment pharmacokinetic model with normal residual errors eij.

In Section 2, the two-stage one-compartment pharmacokinetic models are described in detail. In
Section 3, we present the simulation scheme for the concentration profiles from a one-compartment
pharmacokinetic model with first-order absorption and first-order elimination for many subjects to
whom are administered a single 1 mg oral dose of Ropinirole for treatment of Parkinson’s disease.
The simulation is motivated by a real example (Kaye and Nicholls, 2000), and the estimated means
for parameters from that reference are used as their true means in the simulation. Subsequently, the
sampling distributions of log(AUC) and log(Cmax) are obtained. In Section 4, we examine the
departure from normality of the histogram of the standardized response variable (log(AUC) and log
(Cmax)) for 100,000 subjects simulated from one of several combinations of the variances and
correlations of pharmacokinetic parameters’ vector and measurement error structures. In Section
5.1, sensitivity analyses illustrate how the distribution of the standardized log(AUC) (or the stan-
dardized log(Cmax)) for a large number of simulated subjects deviates from normality if eij is
distributed as t with 5 to 20 degrees of freedom. In Section 5.2, sensitivity analyses study the validity
of the normality assumptions of log(AUC) and log(Cmax) if there is a subgroup with a slower
absorption process. In Section 5.3, sensitivity analyses study the effect of different pharmacokinetic
compartment models on the validity of the normality assumptions of log(AUC) and log(Cmax)
under different combinations of the pharmacokinetic parameters and the measurement errors. In
Section 6, the distributions of log(AUC) and log(Cmax) are examined for a real case with 39
subjects.

2. Pharmacokinetic models and assumed distribution

Assume that a typical person takes one tablet with dose D orally and the plasma concentration–time
curve obtained after oral administration of one tablet can be described by a one-compartment model
with first-order absorption and elimination.

Let X be the true amount of drug in the body at time t after oral administration of one tablet
with dose D. Let Xa be the true amount of drug at the absorption site at time t after oral
administration of one tablet with dose D. For a drug that enters a body by a first-order absorption
process, and is eliminated by a first-order process, and distributes in the body according to a one-
compartment model, the change in the amount of drug follows the following differential equations
(Gibaldi and Perrier, 1982):

dX
dt

¼ ka � Xa � ke � X: (1)

dXa

dt
¼ �ka � Xa: (2)

where ka is the first-order absorption rate constant and ke is the first-order elimination rate constant
for the drug. Solving differential Equations (1) and (2), we obtain the relationship between the
amount of drug and time:

X ¼ F � D � ka
ðka� keÞ e�ka�t � e�ke�t� �

:

1All logarithms in this article are taken to base e.
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Assuming the apparent volume of distribution of a typical person is Va and bioavailability fraction is
F, we obtain the relationship between the true concentration of drug (μCt) and time (t):

μCt ¼
F � D � ka

Va � ðka� keÞ e�ka�t � e�ke�t� �
:

Let Cij denote the jth measurement of plasma concentration, j=1,. . ., ni, for the ith subject, i=1,. . .,

m, taken at time tij after dosing so that a total of N=
Pm
i¼1

ni plasma concentrations are obtained.

Assume that the relationship between the mean of Cij and tij for a given subject i is a nonlinear
function f(tij, βi), where βi is a (p� 1) vector of pharmacokinetic parameters for the ith subject
which can vary from subject to subject and tij is a nonrandom design constant. We further assume
that the form of f is common to all subjects, while βi differs for each subject i. This may be written
as EðcijjβiÞ ¼ μcij ¼ f ðtij; βiÞ, where f(tij, βi) is often assumed to be a nonlinear function of tij and βi
in the form of a summation of exponential functions. It is common to represent the body as a
system of compartments and to assume that the rates of transfer between compartments follow
first-order or linear kinetics when we characterize the concentration of a drug in the human body
(Gibaldi and Perrier, 1982). For example:

f tij; βi
� � ¼ Fi � D � kai

Va;iðkai � keiÞ e�kai�tij � e�kei�tij� �
: (3)

which is derived from the one-compartment linear pharmacokinetic model for plasma concentration
after a single oral dose, D, where βi=ðkai; kei; Fi=ð1� FiÞ;Va;iÞ0 and kai > kei; 0 � Fi � 1.

Now we can define the following two-stage models:
Stage 1 (between subject variability)
Variation among different subjects is accounted for through the subject-specific regression

parameters (βi). Parameters may differ due to unexplained variation from the natural biological or
physical variability among subjects or the run-to-run variation in assay procedures.

In general, subjects in pharmacokinetic BE studies are chosen from a relatively homogeneous
population of healthy volunteers. Thus, variation among pharmacokinetic parameters across subjects
is often attributable mainly to random variation among subjects rather than to differences in
individual demographic and physiological characteristics that would be more pronounced in a
heterogeneous patient population, e.g., body weight, genetics, and disease status.

In BE studies, it is appropriate to assume that inter-subject variation is due to unexplained noise:

log βi
� � ¼ log γð Þ þ bi: (4)

In Equation (4), log βi
� �

is the vector of logarithms of the components of the vector βi, γ is a positive
vector of population pharmacokinetic parameters, log γð Þis the vector of logarithms of the components
of the vector γ, and the error vector bi is the normal random component of inter-subject variation,
which might be taken to have mean vector zero and covariance matrix �. In practice, the pharmacol-
ogists often assume log βi

� �
to be distributed as a normal random variable (Sheiner and Beal, 1981;

Davidian and David, 1995). This assumption is based on physiological and biological qualitative
properties such as positive skewness of βi (Sheiner and Beal, 1981). On the contrary, there is not
much empirical evidence about this assumption. However, one could anticipate instances where the
population would actually be bimodal, where a small percentage of the population would have a slower
absorption process. This two-subpopulation case corresponds to a two-component mixture of the
multivariate-normal log βi

� �
distribution where two components differ only by log(ka).

Stage 2 (Within subject variability)
Assume that for subject i, the jth concentration follows the following model:

yij ¼ logðCijÞ ¼ gðtij; βiÞ þ eij: (5)
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where eij is a normal random measurement error with EðeijÞ ¼ 0 and VarðeijÞ ¼ σ2, and
gðtij; βiÞ ¼ log f ðtij; βiÞ � σ2=2

� �
. Let yi ¼ ½yi1; :::; yini �0 be the vector of log-transformed concentra-

tions of the ith subject and ei ¼ ½ei1; :::; eini �0 the errors of the i th subject. Let giðβiÞ denote he vector
of functions of the ith subject:

gi ðβiÞ ¼ gðti1; βiÞ gðti2; βiÞ ::: gðtini ; βiÞ½ �0: (6)

So we can summarize the data for the ith subject as yi ¼ giðβiÞ þ ei, where we assume EðeiÞ ¼ 0,
VarðeiÞ ¼ Ri, and Ri is the variance–covariance matrix of log-transformed data within the i th
subject.

Let eij ¼ Xi tij
� �

, where Xi tð Þ; t � 0f g is Ornstein–Uhlenbeck process (Uhlenbeck and Ornstein,
1930) defined by the following stochastic differential equation:

dXi tð Þ ¼ ��Xi tð Þdt þ σdW tð Þ, Xi 0ð Þ~N 0; σ2ð Þ, and t � 0. Here � and σ are unknown para-
meters with � > 0 and σ > 0. W tð Þ is the standard unit Wiener process (Karlin and Taylor,
1975). The solution to the proceeding differential equation is the Ito stochastic inte-

gral Xi tð Þ ¼ exp ��tð ÞXi 0ð Þ þ σ �
t

0
exp �� t � sð Þð ÞdWs.

Then we have ei1 ¼ ui1, ei;jþ1 ¼ e�ðtjþ1�tjÞ� � eij þ ui;jþ1, j ¼ 1; 2; ::;m, where ui1; :::; uim are inde-
pendent distributed normal variables with EðuijÞ ¼ 0, Var ui1ð Þ ¼ σ2, and
VarðuijÞ ¼ σ2 1� exp �2 tjþ1 � tj

� �
�

� �� �
. So Covðeij; eikÞ ¼ σ2 exp �2 tk � tj

� �
�

� �
; k>j. The variance

of log-transformed concentration is computed by σ2 = log(1+CV2), where CV denotes the coefficient
variation from untransformed concentration data.

We assume that bi is independent of all eij. The assumption of normality of bi and eij in Equations
(3) and (4) cannot be justified on a physiological or pharmacological basis and hence some sensitivity
analyses of bioavailability parameters (log(AUC) and log(Cmax)) to these distributions are essential.

3. Simulation scheme

Motivated by a real example, we will simulate the concentration profiles from the model defined by
Equations (3)–(5), a one-compartment pharmacokinetic model with first-order absorption and first-
order elimination, for many subjects to whom are administered a single 1 mg oral dose of Ropinirole
for the treatment of Parkinson’s disease assuming the estimate means are the true value. This drug is
a novel non-ergoline dopamine D2 receptor agonist, whose clinical pharmacokinetics is summarized
(Kaye and Nicholls, 2000). We obtain the estimated means of untransformed pharmacokinetic
parameters (ka, ke, F, and V) from the above reference. Here, ka is the absorption rate, hr−1; ke
the elimination rate, hr−1; F, the bioavailability fraction, 0≤F≤1; and V, the apparent volume of
distribution, liters (L). In the reference, F is reported to be approximately 50%; V at steady state is
approximately 7.2 L/kg after oral administration; Tmax ranges approximately from 0.5 to 4 hours
after dosing, and the elimination half-life is approximately 6 hours after dosing. The average of ke is
about 0.12 hr–1 is obtained from ke ¼ 0:693

t1=2e
, the well-known approximate relationship with elimina-

tion half-life t1=2e (Gibaldi and Perrier, 1982). The average of ka is 1.5 hr–1 obtained by

Tmax ¼ 2:3026
ka�ke log

ka
ke

� �
, an approximate relationship (Gibaldi and Perrier, 1982), among Tmax, the

absorption rate ka, and ke when we assume Tmax to be 4.21 hours. The patients with Parkinson’s
disease usually have body weights in the range 65–75 kg (Kaye and Nicholls, 2000). The average
weight of a patient is assumed 70 kg, and then the average of V is 525 L.

The following detailed steps describe how to simulate the plasma concentration profiles:

(1) The coefficients of variation for person-level untransformed pharmacokinetic parameters
are assumed after considering estimated values (Kaye and Nicholls, 2000) as follows:
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η ¼ E ka; ke; F
1�F ; Va

� �0 ¼ 1:5; 0:12; 1; 525½ �0 and cv

¼ cv ka; cv ke; cv F
1�F ; cv Va

� �0
:

(2) Assume that the log-transformed vector of pharmacokinetic parameters for the ith subject
follow a multivariate normal distribution and write this as the component-wise log of vector
entries: log kai; kei; F

1�F

� �
i; Va;i

� �0
~Nðλ;ΛÞ. For a log-normal (λ,σ2) variable, the CV

squared cv2pk (=variance divided by the square of mean) is eσ
2 � 1 and therefore

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cv2pk

q
. The correlation matrix of these log-transformed pharmacokinetic para-

meters is denoted as Φ, a matrix of 1’s on the diagonal with all off-diagonal entries assumed
equal to a number ρ0. We further assume each parameter on this scale is equally correlated.
Here we need to convert the marginal mean (η½j�;"j 2 f1; 2; 3; 4g) and CV (cvpk[j],
"j 2 f1; 2; 3; 4g) for each untransformed pharmacokinetic parameter obtained from the
reference into the marginal mean (λ½j�;"j 2 f1; 2; 3; 4g) of the log-transformed pharmaco-
kinetic parameter and the variance matrix (Λ) of log-transformed pharmacokinetic para-
meters by the following formulas:

λ½j� ¼ logðη½j�Þ � 0:5 � logð1þ ðcvpk½j�Þ2Þ;"j 2 f1; 2; 3; 4g; M
¼ ðdiag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1þ ðcvpk½j�2ÞÞ

q� �
Þ4�4; and Λ ¼ M �Φ �M

.
(3) Independently generate m subjects’ random vectors of log-transformed pharmacokinetic

parameters, log kai; kei; Fi= 1� Fið Þ;Va;i
� �0

, from the distribution in Step 2. Then convert this

to kai; kei; Fi;Va;i
� �0

. Here i=1, 2,. . ., m.
(4) For a given individual i, simulate concentration profile at time points

t ¼ 0:25; 0:5; 1; 1:5; 2; 3; 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; 24; 28; 32; 36ð Þ0, measured in hours.
Let ni be the number of sampling times. The choice of the sampling schedule is seen in these
kinds of studies and follows the general rule: more frequent samplings just after dosing (e.g.,
sampling every 15 minutes for the first few samples and sampling every half hour for the
next few samples) and less frequent samplings later (e.g., sampling every 2 or 3 hours after
half-life). This flexible sampling schedule allows more information for the rapidly changing
period prior to the half-life.
Let tij be the j th sampling time point after dosing to Subject i and Cij be the concentration at tij,

j=1,2,. . .,ni. Here log Cij
� �

~normal g tij; βi
� �

; σ2ij

	 

, f tij; βi

� � ¼ Fi�D�kai
Va;i�ðkai�keiÞ e�kai�tij � e�kei�tij� �

,

and gðtij; βiÞ ¼ log f ðtij; βiÞ � σ2=2
� �

.

(5) Obtain AUCi by the trapezoidal-rule integration
Pni�1

j¼1
0:5 Cij þ Ci;jþ1

� �
ti;jþ1 � tij
� �

for Subject i

since analytical integration from this complicated nonlinear and stochastic model is not
tractable, and the AUC is calculated this way in practice (Food and Drug Administration, 2001).

(6) Obtain Cmaxi= Max
j

Cij
� �

from all observed values for Subject i as is done in practice (Food

and Drug Administration, 2001).
(7) Obtain the Shapiro–Wilk W test for the goodness of fit of log-normal distribution of AUCi

and Cmaxi, i = 1,2,. . .,m. Small sample sizes such as m = 40 will be investigated and large
sample size of 400,000 will also be investigated for the true distribution arising from
random-effects pharmacokinetic models.

(8) Repeat Steps 2 to 7 for Snum times when m=40. Here Snum is 10,000.
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(9) Calculate rejection rate of goodness of fit of log-normal at 0.05 significance level byPSnum
l¼1

I pvaluel�0:05ð Þ

Snum . The 0.05 significance level is chosen based on the usual type I error rate
of 5% used by the regulatory and industrial statisticians for each small BE study (m = 40).

4. Distributions of log(AUC) and log(Cmax)

4.1. An example of simulated plasma concentration–time profiles

We begin with illustrative simulated plasma concentration profiles generated from one particular set of
parameters in a one-compartment model with CV=0.2, ξ =log(2), ρ0 ¼ 0:5; cvpk ¼ ð0:3; 0:3; 0:3; 0:3Þ0,
and ka;i; ke;i; Fi=ð1� FiÞ;Vi

� �0
= (1.5,0.12,1,525)’. Figure 1 shows concentration–time profiles for a

sample of 20 subjects simulated under model (3)–(5).
Throughout this article, the log(AUC) and log(Cmax) are each standardized through centering at

their sample means and scaling by their sample standard deviations. The density curve of the
standardized log(AUC) (or log(Cmax)) is estimated by the normal kernel density estimation method
with bandwidth which is 0.9 times the minimum of the standard deviation and the interquartile range
divided by 1.34 times the sample size to the negative one-fifth power (Sheather and Jones, 1991).

4.2. Examination of distributions of response variables for 8 scenarios

In this section, we simulate the plasma concentration–time profiles for eight cases defined by
combinations of parameters (ρ0; cvpk; ξ, CV), shown in Table 1. Clearly, it can be seen that ρ0 covers
a practical wide range from 0.1 to 0.5, cvpk from 0.1 to 0.3, � from 0 to –log(0.5), and CV from 0.2 to
0.4. We compare the distributions of the standardized log(AUC) and log(Cmax) for 100,000
simulated subjects to the standard normal distribution. We also obtain the rejection rate of the
normality testing for 2500 trials, each of which has 40 subjects. Note that the normality testing for a
small sample (e.g., 40 subjects) has very low power to reject the null hypothesis of normality.

From Table 1, it can be seen that:
(1) the mean of the standardized log(AUC) differs from 0 by less than 0.1 for all cases; (2) its 75th

percentile is about 0.15 larger than the 75th standard normal quantile for Cases 1 to 4 and about 0.15
smaller for Cases 5 to 8, and (3) its 25th percentile is 0.07 smaller than the 25th standard normal
quantile for Cases 1 to 4 and about 0.08 larger for Cases 5 to 8. The sample percentiles of the

Figure 1. An example of concentration–time profiles from 20 subjects simulated from one-compartment model with CV = 0.2, ξ =
log(2), ρ0 ¼ 0:5; cvpk ¼ ð0:3; 0:3; 0:3; 0:3Þ0and ka;i; ke;i; Fi=ð1� FiÞ; Vi

� �0
= (1.5,0.12,1,525)’.
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standardized log(AUC) for four cases with ρ0 ¼ 0:5are the almost same as those for four cases
with ρ0 ¼ 0:1.

Figure 2 shows that the histogram (300 grouping-intervals) of the standardized log(AUC) has
heavy tails compared to the density of N(0,1) for four cases with ρ0 ¼ 0:5. Figure 2 also shows that
the spread of the distribution is much narrower for cvpk = 0.2 than that for cvpk = 0.3.

The rejection rates of Shapiro–Wilk normality test of log(AUC) at 0.05 significance level are about
5% for Cases 3, 5, 6, 7, and 8. The rejection rates of Shapiro–Wilk normality test of log(AUC) at 0.05
significance level are about 6.5% for Cases 1, 2, and 6.

From Table 1, it can be seen that (1) the mean of the standardized log(Cmax) is less than 0 by
0.15 for Cases 1, 3, 5, and 7; (2) its 75th percentile is about 0.1 larger than the 75th standard normal
quantile for Cases 1 and 3, the same for Cases 5 and 7, and about 0.3 smaller for Cases 2, 4, 6, and 8;
and (3) its 25th percentile is 0.2 to 0.3 larger than the 25th standard normal quantile for Cases 1, 3, 5,
and 7 and about 0.2 smaller for Cases 2, 4, 6, and 8. The sample percentiles of the standardized log
(Cmax) for 4 cases with ρ0 ¼ 0:5are the almost same as those for 4 cases with ρ0 ¼ 0:1.

Figure 3 shows that the histogram (300 grouping-intervals) of the standardized log(Cmax) is
skewed to the right of N(0,1) if � ¼ 0 or to the left if � ¼ � logð0:5Þ for 4 cases with ρ0 ¼ 0:5.
Figure 3 also shows that the spread of the distribution of the standardized log(Cmax) is much
narrower when cvpk=0.2 than that for cvpk=0.3.

All rejection rates of Shapiro–Wilk normality test of log(Cmax) at 0.05 significance level for Cases
1, 3, 5, 6, 7 and 8 are less than 7.5% and for Cases 2 and 4 are greater than 23%.

Examination of distributions of 8 cases above with large samples shows some minor deviations of
log(AUC) from normality. The 25th and 75th percentiles of log(AUC) are slightly different from the
25th and 75th percentiles for the standard normal distribution, respectively. The 50th percentile of
log(AUC) is close to 0. It also shows that log(Cmax) distributes skewed to the right or the left. The
25th, 50th, and 75th percentiles of log(Cmax) are all different from the 25th, 50th, and 75th
percentiles for the standard normal distribution, respectively. But the rejection rate of the
Shapiro–Wilk normality test of log(Cmax) is slightly higher than 5% percent, but less than 7.5%
for all cases. Clearly the Shapiro–Wilk normality test of log(AUC) with small sample sizes for all
cases has very low power to reject the null hypothesis of normality.

5. Sensitivity analyses

Since simulations in Section 4 are based on one-compartment pharmacokinetic models with normal
measurement errors, we explore in our next simulations whether log(AUC) and log(Cmax) approxi-
mately follow normal distributions if data come from the one-compartment pharmacokinetic models
with symmetric measurement errors distributed as t and with a bimodal population corresponding

Table 1. Comparison of the standard normal quantiles and sample quantiles of the standardized log(AUC) and log(Cmax) of simulated
100,000 subjects frommodels (1)–(5) where PK parameterswith η ¼ E ka; ke; F

1�F ; V
� �0 ¼ 1:5; 0:12; 1; 525½ �0, cvpk= 0.2 or

0.3, and ei ¼ ½ei1; :::; eini �0.

Case

log η~Nðλ;^Þ Residual error eij

Quantiles for N(0,1): (25th, 50th, 75th) = (−0.674,0,0.674)

Quantiles of the standardized log(AUC) Quantiles of the standardized log(Cmax)

ρ0 cνpk � CV 25th 50th 75th 25th 50th 75th

1 0.5 0.3 0 0.4 −0.749 0.022 0.780 −0.413 0.152 0.737
2 0.5 0.3 log(2) 0.2 −0.699 0.097 0.856 −0.910 −0.244 0.486
3 0.1 0.3 0 0.4 −0.766 0.009 0.773 −0.490 0.148 0.804
4 0.1 0.3 log(2) 0.2 −0.715 0.075 0.852 −0.973 −0.253 0.539
5 0.5 0.2 0 0.4 −0.590 −0.052 0.478 −0.337 0.136 0.625
6 0.5 0.2 log(2) 0.2 −0.551 0.017 0.576 −0.865 −0.294 0.382
7 0.1 0.2 0 0.4 −0.597 −0.050 0.483 −0.378 0.134 0.673
8 0.1 0.2 log(2) 0.2 −0.560 0.008 0.574 −0.894 −0.294 0.413
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to one subgroup having a slower absorption process or if data come from two-compartment
pharmacokinetic models with normal measurement errors.

5.1. T-distributed measurement errors

We investigate how the distribution of the standardized log(AUC) (or the standardized log(Cmax))
for large samples of simulated subjects deviates from normality if eij is distributed as a t νð Þ with
ν ¼ 5; 10; 15; or 20. We compare the histogram of the empirical standardized log(AUC) (or the
standardized log(Cmax)) with the standard normal density curve.

The cases summarized in Table 2 are now defined in terms of (�,ν, CV). For Cases 1 to 8 in Table 2,
we assume that ei1; :::; eim are independent and identically distributed t-variables for each i by letting
� ¼ 0 and we also vary the ν values from 5 to 20 by 5 and CV values from 0.2 to 0.4 by 0.2 but fix the
pharmacokinetic parameters’ CVs and correlation at cvpk ¼ ð0:3; 0:3; 0:3; 0:3Þ0 and ρ0 ¼ 0:5, respec-
tively. For Cases 9 to 12, ei1; :::; eim are the correlated t-variables for each i by letting � ¼ � logð0:5Þ.

Figure 4 shows that the histogram of the standardized log(AUC) for 100,000 simulated subjects is very
close to the standard normal density curve for all cases except Cases 1 and 9 (ν = 5 and CV = 0.4) in which
the histograms are slightly skewed to the right of the standard normal density curve. The values of ν andCV
don’t affect the sample distribution of standardized log(AUC) much. Table 2 shows that the 25th, 50th, and

Figure 2. Histograms of the standardized log(AUC) for cases in Table 1 compared to N(0,1).
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75th percentiles of log(AUC) are all very close to the 25th, 50th, and 75th percentiles for the standard normal
distribution, respectively. The rejection rate of Shapiro–Wilk normality test at 0.05 significance level for log
(AUC) is about 5% if ν � 10 and greater than 5% if ν=5.

Figure 5 shows that the histogram of the standardized log(Cmax) is skewed to the right
compared to the standard normal density when ν ≥ 5 and CV = 0.4 and the histogram of the
standardized log(Cmax) has a sharper peak and skew to the left compared to the standard normal
density when ν ≥ 5 and CV = 0.2. The sample distribution of standardized log(Cmax) is affected by
values of ν since its sample density curve is more skewed when ν = 5 than that when ν = 20. The
25th, 50th, and 75th percentiles of log(Cmax) are all different from the 25th, 50th, and 75th
percentiles for the standard normal distribution, respectively. The rejection rate of Shapiro–Wilk
normality test at 0.05 significance level for log(Cmax) is about 5% when ν ≥ 10 except Case 3
(8.1%) and above 10% when ν=5.

In conclusion, the distribution of log(AUC) seems approximately normal if the independent and
identical measurement errors are assumed to be t 10ð Þ, i.e. symmetric with moderately heavy tails.
The distribution of log(Cmax) is skewed even if the independent and identical measurement errors
are assumed to follow t distribution.

Figure 3. Histograms of the standardized log(Cmax) for cases in Table 1 compared to N(0,1).
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5.2. Bimodal population: One subgroup with a slower absorption process

We assume in this subsection that the population of subjects consists of two subgroups. One subgroup has a
slower absorption process. To illustrate how the distribution of the standardized log(AUC) (or the
standardized log(Cmax)) for large samples of simulated subjects deviates from normality if there is a
subgroupwith a slower absorption rate,wewill compare the histogramof the standardized log(AUC) (or the
standardized log(Cmax)) with the standard normal density curve. In this subsection we simulate the
pharmacokinetic plasma concentration-time profiles from two subpopulations: 70% of population has
the mean ka = 1.5 hr–1 and the rest of population has the mean ka = 0.2 hr–1 while we still assume that
ei1; :::; eim are independent and identically distributed normal variables for each i by letting � ¼ 0,CV = 0.2,
and the pharmacokinetic parameters’ cv values and correlation at cvpk ¼ ð0:2; 0:2; 0:2; 0:2Þ0 and ρ0 ¼ 0:3.

The left graph in Figure 6 shows that the histogram of the standardized log(AUC) for 100,000
simulated subjects is very close to the standard normal density curve. The right graph in Figure 6
shows the histogram of the standardized log(Cmax) for 100,000 simulated subjects to be bimodal.

5.3. Two-compartment pharmacokinetic models with normal measurement errors

To contrast the results of previous simulations with those of analogous simulations from a two-
compartment pharmacokinetic model, we would ideally consider the two-compartment model for the
same drug Ropinirole for which we simulated the one-compartment model in Section 4. However, the
pharmacokinetic parameters for the two-compartment model of Ropinirole are not available in the
literature. Hence, we have to switch to a different drug, Digoxin, whose pharmacokinetic parameters for
the two-compartment pharmacokinetic model were published (Kramer et al., 1974). The cardiac glyco-
side Digoxin (Kramer et al., 1974) has a low therapeutic index and serious side effects.

In a two-compartment model, Compartment 1 represents the central compartment, compartment
2 the “tissue” or peripheral compartment, Vk the apparent volume of distribution of the kth
compartment, and kjk the first-order rate constant for transfer of drug from the jth to the kth
compartment (k = 0 represents an elimination process). The equation (Kramer et al., 1974)
describing the time course of drug concentration in the central compartment of this model for the
ith subject at time tij after an intravenous bolus injection (dose D) is:

EðCijjβiÞ ¼ μCij
¼ f �ðtij; βiÞ ¼

D
Va;i1 � ðλi � γiÞ

k21i � γi
� �

e�γi�tij � k21i � λið Þe�λi�tij� �
; (7)

Table 2. Comparison of the standard normal quantiles and sample quantiles of the standardized log(AUC) and log(Cmax) of
simulated 100,000 subjects from Models 1 to 5 where PK parameters with ρ0 ¼ 0:5 and

η ¼ E ka; ke; F
1�F ; V

� �0 ¼ 1:5; 0:12; 1; 525½ �0and ei ¼ ½ei1; :::; eini �0 with cvpk ¼ ð0:3; 0:3; 0:3; 0:3Þ0.

Case

Error eij~tðνÞ
Quantiles for N(0,1): (25th, 50th, 75th) = (−0.674,0,0.674)

Standardized log(AUC) Standardized log(Cmax)

� ν CV 25th 50th 75th 25th 50th 75th

1 0 5 0.4 −0.626 0.081 0.774 −0.366 0.353 1.160
2 5 0.2 −0.651 0.025 0.677 −0.768 −0.226 0.343
3 10 0.4 −0.669 0.020 0.694 −0.460 0.197 0.892
4 10 0.2 −0.668 −0.001 0.656 −0.815 −0.298 0.232
5 15 0.4 −0.675 0.013 0.681 −0.491 0.153 0.823
6 15 0.2 −0.672 0.001 0.653 −0.829 −0.317 0.211
7 20 0.4 −0.691 0.003 0.669 −0.506 0.133 0.793
8 20 0.2 −0.670 −0.005 0.648 −0.833 −0.323 0.191
9 log(2) 5 0.4 −0.645 0.070 0.763 −0.514 0.123 0.837
10 5 0.2 −0.622 0.040 0.682 −0.698 −0.171 0.435
11 10 0.4 −0.669 0.015 0.676 −0.565 0.020 0.666
12 10 0.2 −0.630 0.018 0.648 −0.716 −0.212 0.352
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where λi ¼ 0:5 k12i þ k21i þ k10ið Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12i þ k21i þ k10ið Þ2 � 4k21ik10i

q� �
, γi ¼ 0:5 k12i þ k21iþð½

k10iÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12i þ k21i þ k10ið Þ2 � 4k21ik10i

q
�, and βi=ðk12i; k21i; k10i;Vi1Þ0.

Based on Equations (3)–(5), we simulate the concentration profiles in the central compartment of
the two-compartment pharmacokinetic model (6) for an average person assumed to weigh 70 kg,
who administers 1 mg Digoxin by rapid bolus injection.

The following steps provide details of how to simulate the plasma concentration profiles:

(1) Obtain the means of pharmacokinetic parameters ðk12; k21; k10;Va;1Þ0 from (Kramer et al.,
1974). The apparent volume of distribution (V1) is 53.69 L (for an average person weighed
70 kg); k12 is 0.76 hr–1, k21 is 0.12 hr–1, and k10 is 0.29 hr–1.

Figure 4. Histograms of the standardized log(AUC) for cases in Table 2 compared to N(0,1).
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(2) Several sets of coefficients of variation of pharmacokinetic parameters are assumed after
considering estimated values (Kramer et al., 1974):

Let η ¼ E

k12
k21
k10
Va;1

0
BB@

1
CCA ¼

0:76
0:12
0:29
53:69

0
BB@

1
CCA; and cv ¼

cv k12
cv k21
cv k10
cv Va

0
BB@

1
CCA:

(3) Assume that the vector of pharmacokinetic parameters and transformed parameters for
the ith subject follow log-normal distribution, denoted
as k12;i k21;i k10;i Va;1;i

� �0
~ log�normalðλ;ΛÞ. The correlation matrix of these log-

transformed pharmacokinetic parameters is assumed to be Φ without any reference.
Here we need to convert the marginal mean (η½j�; j 2 f1; 2; 3; 4g) and CV (cv[j],
j 2 f1; 2; 3; 4g) for each untransformed pharmacokinetic parameter obtained from the

Figure 5. Histograms of the standardized log(Cmax) for cases in Table 2 compared to N(0,1).
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reference into the marginal mean (λ½j�; j 2 f1; 2; 3; 4g) of each log-transformed phar-
macokinetic parameter and variance matrix (Λ) of log-transformed pharmacokinetic
parameters by the following formulas: λ½j� ¼ logðη½j�Þ � 0:5 � logð1þ ðcvpk½j�Þ2Þ; j 2
f1; 2; 3; 4g; and M ¼ ðdiag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1þ ðcvpk½j�2ÞÞ

q� �
Þ4�4.

Let Φ ¼
1 ρ0 ρ0 ρ0
ρ0 1 ρ0 ρ0
ρ0 ρ0 1 ρ0
ρ0 ρ0 ρ0 1

0
BB@

1
CCA; then Λ ¼ M �Φ �M:

(4) Generate random m subjects’ vector of pharmacokinetic parameters and transformed para-
meter, k12;i; k21;i; k10;i;Va;1;i

� �0
, from distribution in Step 2. Here i=1,2,. . .,m.

(5) For a given individual i, simulate concentration profile (Cij) at time points, hr,
t ¼ 1=30; 1=15; 1=10; 2=15; 1=6; 7=30; 3=10; 11=30; 1=2; 3=4; 1; 2; 3; 4; 6; 8; 16; 24; 48; 72ð Þ0
and ni is the number of sampling time. The choice of sampling schedule follows (Kramer
et al., 1974).
Let tij be the jth sampling time point after dosing to Subject i and Cij be the concentration at
tij, j=1,2,. . .,ni.

(6) Repeat Steps 5 to 9 in Section 3, we can obtain the rejection rate of goodness of fit of log-
normal for AUC, or Cmax at 0.05 significance level

To illustrate how the distribution of the standardized log(AUC) (or the standardized log(Cmax))
deviates from normality if the data is described by a two-compartment model, we examine the
sampling distribution of the standardized log(AUC) (or the standardized log(Cmax)) under different
combinations of pharmacokinetic parameters’ variation and measurement errors. Since there are
more pharmacokinetic parameters that vary from subject to subject in the two-compartment model
than those in the one-compartment model, it is even more restrictive than before to assume that

Figure 6. Comparison of standard normal density and sample histogram of the standardized log(AUC) and log(Cmax) from 100,000
subjects simulated from one-compartment model (1) with CV = 0.2, ξ = 0, and ρ0 ¼ 0:3; cvpk ¼ ð0:2; 0:2; 0:2; 0:2Þ0for a bimodal
population: 70% of population with the mean vector ka;i; ke;i; Fi=ð1� FiÞ; Vi

� �0 ¼ 1:5; 0:12; 1; 525ð Þ0 and 30% of population with

the mean vector ka;i; ke;i; Fi=ð1� FiÞ; Vi
� �0 ¼ 0:2; 0:12; 1; 525ð Þ0.
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their across-subject joint distribution is multivariate lognormal. From Table 3, we can easily see that
the 25th, 50th, and 75th quantiles for log(AUC) (or log(Cmax)) simulated from the two-compart-
ment model are correspondingly similar to the 25th, 50th, and 75th quantiles for log(AUC) (or log
(Cmax)) simulated from the one-compartment model. Hence the sampling distributions of the
standardized log(AUC) for all cases (not shown here) are similar to the cases in Figure 2 of
Section 4.2. The sampling distributions of the standardized log(Cmax) for all cases (not shown
here) are similar to the cases in Figure 3 of Section 4.2. It seems that the sampling distributions of
the standardized response variables for the studied cases here and in Section 4.2 are not affected by
the particular choice of compartment model, but by the distributions of the pharmacokinetic
parameters and distribution of the measurement errors.

6. One real case

We would like to examine the sampling distributions of AUC and Cmax using a real dataset from a
pharmacokinetic study of an orally administered agent. This was a single-dose, randomized, open-
label, two-period, two-sequence, two-treatment, and crossover, comparative bioavailability study of
the generic product to the innovative product. The products were studied using a crossover design
with 40 normal, healthy volunteers being administered a single oral dose under fasting conditions.
There were 39 subjects in the study because one subject withdrew from the study. Plasma concen-
tration sampling times are pre-dose and at 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0,
6.0, 8.0, 10.0, 12.0, 16.0, 24.0, and 36.0 hours post dose.

The null hypothesis of normality of log(AUC) (or log(Cmax)) is not rejected at 0.05 significance
level because P-values from Shapiro–Wilk normality test of log(AUC) and log(Cmax), respectively,
are 0.7103 and 0.0981, larger than 0.05. The histograms of log(AUC) and log(Cmax) are not
presented here due to small number of subjects.

7. Discussion and conclusions

Strictly speaking from statistical theory, AUCi is not a log-normal variable even under the assump-
tion that the plasma concentration (Cij) at each time point (tij) is a log-normal random variable since

AUC ¼ Pni�1

j¼1
0:5 Cij þ Ci;jþ1

� �
ti;jþ1 � tij
� �

, which is a weighted sum of dependent log-normal random

variables. Examination of the sampling distributions of the standardized log(AUC) for many cases in
Section 4 and in Section 5.3 with large samples shows that the sampling distribution of the
standardized log(AUC) sometimes has heavy tails compared to the normal distribution regardless
of the choice of compartmental models. But normality assumption of log(AUC) seems reasonable if
the independent and identical measurement errors are assumed to be t with more than 10 degrees of
freedom, moderately heavy tails.

Since Cmaxi= max
j

Cij
� �

from dependent observed values for subject i, the distribution of Cmaxi is

affected by the sampling schedule. So Cmaxi should not be log-normal variable even if Cijis a log-

Table 3. Quantiles of log(AUC) and log(Cmax) at 0.05 significance level (10,000 simulations) for 40 subjects with cvpk = 0.2 or 0.3,
residual errors ei ¼ ½ei1; :::; eini �0, �= 0, and CV = 0.4.

Case

log η~Nðλ;^Þ
Quantiles for N(0,1): (25th, 50th, 75th) = (−0.674,0,0.674)

the standardized log(AUC) the standardized log(Cmax)

ρ0 cνpk 25th 50th 75th 25th 50th 75th

1 0.5 0.3 −0.792 0.044 0.875 −0.446 0.317 1.094
3 0.1 0.3 −0.728 0.011 0.741 −0.419 0.317 1.061
5 0.5 0.2 −0.616 −0.030 0.549 −0.356 0.248 0.878
7 0.1 0.2 −0.572 −0.048 0.475 −0.350 0.240 0.853
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normal random variable. Examination of the sampling distributions of the standardized log(Cmax)
for many cases in Section 4 and in Section 5.3 with large samples shows that the distribution of log
(Cmax) is obviously skewed to the right or the left regardless of the choice of compartmental models.
The sampling distribution of log(Cmax) is skewed even if the independent and identical measure-
ment errors are assumed to be t. Especially, the normality assumptions of log(Cmax) is severely
violated if there is a subpopulation with a slower absorption process. However, the rejection rate of
the Shapiro–Wilk normality test when simulating many small studies does not provide the signifi-
cant evidence for these cases.

In conclusion, the sampling distribution of log(AUC) with large samples seems not to deviate very
far from normality for a limited number of cases studied in this article, but often has heavy tails. The
sampling distribution of log(Cmax) is skewed either to the left or to the right and is not robust to
many perturbations studied in this article. Examination of the sampling distributions of log(AUC)
(or log(Cmax)) for a large number of simulated subjects helps to identify the nature of non-
normality of log(AUC) (or log(Cmax)). On the contrast, the rejection rate of Shapiro–Wilk normal-
ity test which is not sensitive for many small samples (e.g. 40 subjects) cannot provide such insight.
Hence it is necessary to examine the sampling distribution of the response variable for more large
sample size simulations with more extensive variation of pharmacokinetic parameters and distribu-
tions so that the nature of the distribution for log(AUC) (or log(Cmax)) can be further evaluated. We
must point out the limitation of our investigation since it is based on the simulations generated from
the pharmacokinetic compartmental models and a lognormal measurement error structure with
specific assumed values, while the real concentration–time profile may not fit the pharmacokinetic
compartmental model and measurement error structure may be very different from lognormal. It
would be reasonable to conclude that the non-normality situation might probably be worse than
what our article found because of the relatively few deviations from lognormal parameters and
normal measurement-error distributions and stationary correlations that we had tried.
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