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Exact calculation of power and sample size
in bioequivalence studies using two
one-sided tests�

Meiyu Shen,a* Estelle Russek-Cohen,b and Eric V. Sludc,d

The number of subjects in a pharmacokinetic two-period two-treatment crossover bioequivalence study is typically small,
most often less than 60. The most common approach to testing for bioequivalence is the two one-sided tests procedure.
No explicit mathematical formula for the power function in the context of the two one-sided tests procedure exists in the
statistical literature, although the exact power based on Owen’s special case of bivariate noncentral t-distribution has been
tabulated and graphed.
Several approximations have previously been published for the probability of rejection in the two one-sided tests procedure
for crossover bioequivalence studies. These approximations and associated sample size formulas are reviewed in this article
and compared for various parameter combinations with exact power formulas derived here, which are computed analytically
as univariate integrals and which have been validated by Monte Carlo simulations. The exact formulas for power and sample
size are shown to improve markedly in realistic parameter settings over the previous approximations. Copyright © 2014 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In a typical pharmacokinetic two-period two-treatment crossover
bioequivalence study, subjects are randomized to one group
receiving the reference drug (R) first or the other group receiv-
ing the test drug (T) first. Each group receives the complementary
drug in the second period. Within each period for each sub-
ject a drug plasma concentration profile over time is obtained.
Then AUC (area under the concentration–time curve), Cmax (max-
imum concentration), and Tmax (time to reach maximum con-
centration) for each subject from each treatment are obtained
from the observed concentration–time profiles. Because previous
experience indicates that log(AUC) and log(Cmax) are approxi-
mately normally distributed‡, we assume this throughout and
denote by �T and �R the mean of the response variable of
interest used, respectively for the test product and reference
product. The number of subjects in a pharmacokinetic two-period
two-treatment crossover bioequivalence study is typically small,
most often less than 60, with range from 12 to 170 according to
the survey by Davit et al. [1] of 12 years of bioequivalence studies
submitted to the United States Food and Drug Administration.

In order to conclude the bioequivalence of the test product and
the reference product, we should reject the null hypothesis in the
following hypothesis test [2]:

H0 : �T � �R 6 �1 or �T � �R > �2

Ha : �1 < �T � �R < �2
(1)

Here, �1 and �2 are pre-specified constants, also called equiva-
lence margins, and �1 < �2.

The null hypothesis, H0, states that �T and �R are not
equivalent. The alternative hypothesis representing equivalence,
Ha, is the intersection of the two one-sided parameter regions,
f�1 < �T � �Rg and f�T � �R < �2g.

No exact analytical formula has previously been published for
the probability of rejection in the two one-sided tests procedure
for crossover bioequivalence studies under general parameter
settings, but there are several published approximations [3–6].
All of these approximations, as well as the analytical formu-
las derived in this paper, apply to the two one-sample tests
procedure when the response variable of interest, log(AUC)
or log(Cmax), is normally distributed. Phillips [3] and Diletti,
Hauschke, and Steinijans [4] calculated the power and the
sample size using Owen’s [7] special case of the bivariate non-
central t-distribution and presented some sample size tables
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and power graphs. Phillips’ [3] calculations were for equivalence
margins �2 D ��1 D 0.20, different from the values �2 D

��1 D log 1.25 D 0.2231 recommended in [8], the Food
and Drug Administration (FDA) Guidance for Industry. Kieser
and Hauschke [5] proposed approximate methods for sample
size determination, and Chow and Wang [6] derived approxi-
mate formulas for sample size calculation under crossover or
parallel designs.

In Section 2 of this article, we present the background, nota-
tion, and standard assumptions in two-stage crossover designs
for tests of bioequivalence, and in Section 3, we briefly derive the
exact formula for the power of the two one-sided tests proce-
dure for testing bioequivalence based on a univariate normally
distributed response variable and indicate how numerical inte-
gration easily provides accurate numerical values for power and
sample size. In Section 4, we compare the numerical results of the
exact method with the tabulated sample size values of Diletti et
al. [4], the power values tabulated by Phillips [3] for �2 D ��1 D

0.20, and the sample size and power values generated by the
approximate method of Chow and Wang [6].

2. LINEAR MIXED EFFECT MODEL FOR A
TWO-PERIOD TWO-TREATMENT
CROSSOVER BIOEQUIVALENCE STUDY

In a two-period two-treatment crossover design, there is a
washout period between two periods of observation to limit
or remove any carryover effect. Let Yijk be the response (e.g.,
log(AUC)) of the kth subject in the jth period of the ith sequence
in the two-period two-treatment crossover study, where i D 1, 2,
j D 1, 2, and k D 1, : : : , ni . Then, the linear mixed effect model for
Yijk is

Yijk D � C Sik C Pj C Fij C "ijk (2)

where � is the overall mean; Pj is the fixed effect of period j; Fij

is the fixed effect of the formulation administered in period j of
sequence i; Sik is the random effect of subject k in sequence i;
and "ijk is the random error. From the treatment assignments, we
know that F11 D F22 D �R and F12 D F21 D �T . The param-
eters can be estimated only subject to restrictions: P1 C P2 D

�T C �R D 0, because otherwise the parameters P1, P2,�T , and
�R are not separately identifiable. The Sik and the "ijk are all inde-
pendent normal random variables with mean 0. The variance of
Sik is �2

S and the variance of "ijk is �2
T if i ¤ j,8i, j D 1, 2 for

the test formulation and �2
R if i D j,8i, j D 1, 2 for the reference

formulations.
Let �� D �T � �R, where �T and �R are the true means of the

test and reference formulations, respectively. An estimator of ��

is given as

OD D
NY12� � NY11� C NY21� � NY22�

2
. (3)

The pooled estimate of variance is

S2 D
1

n1 C n2 � 2
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(4)

Clearly, the estimator OD is the average of the averages of the
intra-subject difference between the test and the reference for
the two sequences, and S2 is a pooled estimate of the variance of
the intra-subject difference. For this two-period two-treatment
crossover design, OD is a normally distributed unbiased estimate

of �� with variance �2
OD
D

�2
RC�

2
T

4

�
1

n1
C 1

n2

�
, and .n1Cn2�2/�S2

�2
TC�
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distributed as �2 with � D n1 C n2 � 2 degrees of freedom.

3. EXACT POWER FUNCTION AND THE JOINT
PROBABILITY DENSITY FUNCTION OF T1
AND T2

First, we define test statistics T1 D
OD��1

S
2 �
q

1
n1
C 1

n2

and T2 D

OD��2
S
2 �
q

1
n1
C 1

n2

as the basis for the hypothesis test (1). To correct the

misstatement of Liu and Li [9] that test statistics .T1, T2/ do not
have a joint density (see first two lines after Equation (3) in [9]),

we simply observe that the function mapping
�
OD, S2

�
to .T1, T2/,

with domain .�1,1/ � .0,1/ and range f.t1, t2/ : t1 > t2g,
is both differentiable and differentially invertible, while the inde-
pendent variables OD and S2 have normal and gamma densities,
respectively, as described in the previous text. For an exposition
of the change-of-variable formula for differentiable one-to-one
transformations of random vectors with a joint density, see For-
mula 4.3.2 on page 158 and Theorem 2.1.8 on page 53 of [10]. The
joint density for .T1, T2/ can also be obtained directly by differen-
tiation with respect to t1 and t2 on the region t1 > t2 of the joint
cumulative distribution function derived and published by Owen
[7, Section 5].

Although the exact power function can easily be developed as
a double integral from the joint pdf of T1 and T2, we will derive a
simpler form of the exact power function by integrating the con-
ditional power given S2. This alternative formula, in the same spirit
as Formulas (8) and (12) in Section 5 of [7], is simpler because
it involves only a univariate integral over a bounded interval,
after recognizing that the conditional power given S2 is a readily
evaluated normal tail probability.

The exact power function can be written, in terms of the ˛ and
1� ˛ quantiles t�.˛/ and t�.1� ˛/ D �t�.˛/ of the t distribution
with � degrees of freedom, as
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This last expression is the expectation over S of a conditional
probability given S, which is expressed simply in terms of the
cumulative normal distribution function as

ES
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where t˛.�/ is the 1 � ˛ quantile of the t-distribution with
� D n1 C n2 � 2 degrees of freedom,ˆ.�/ is the standard normal
cumulative distribution function, I .�/ is the indicator function,

and recall that �2
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where c1 D
.�2��1/
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.

The gamma density and integrand written using the normal
cumulative distribution function are readily evaluated, so the
integral (5) is easily evaluated in any good statistical computing
package: R code for it is given in Appendix A.

In the two one-sided tests procedure for one single variable, the
power (P1/ is the probability of rejecting H0 when Ha in (1) is true.
For sample size determination and power of two one-sided tests
procedure in the bioequivalence literature, Schuirmann [2], Diletti
et al. [4], and Chow and Wang [6] all assumed that n1 D n2 D n=2
and �2

T D �2
R D �2. Following this convention, we will compare

the exact power with the approximate power of Chow and Wang
under the assumption that n1 D n2 D n=2 and �2

T D �2
R D �2.

The exact power function becomes
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where c2 D
n.�2��1/

2�

8t2
˛.�/�2 .

The power values computed numerically from (5) using a stan-
dard numerical-integration routine, integrate in R [11], were
carefully checked both in terms of their own estimated error
bounds and by comparing them with Monte Carlo simulations
of rejections in the two one-sided tests procedure. As examples
of the results, we found using 106 Monte Carlo replications (with

corresponding simulation standard errors less than 0.0005), for
a combination of �� equal to 0, 0.1, 0.2, and log(1.25), and of
� D 0.2 and 0.3, that the simulated and exact values were always
within 0.001 of one another, and that the numerical-integration

error bounds were less than 0.0001 (usually by one or more orders
of magnitude).

Because �
˚

t2
˛ .�/

�
is an increasing function of � (see the proof

in Appendix B), both the upper limit of integration and the inte-
grand in the integral formula (6) are directly seen to be monotone
increasing as a function of n, so the integral (6) itself is also mono-
tone increasing in n. Hence, we use a bisection search or other
numerical root-finder to find the required sample size n by first
solving for the continuous value n D n� at which the exact power
(6) with all parameters held fixed is equal to 1-ˇ and then round-
ing it up to the smallest even number n > n�. Code lines for
doing this in R are also supplied in Appendix A.

4. COMPARISON OF EXACT POWER WITH
APPROXIMATE POWER

4.1. Comparison of exact power function with approximate
power function of Chow and Wang

4.1.1. Approximate power formulas of Chow and Wang. Assuming

P
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o
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mated the power function P1 .�
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With this replacement, for �2 D ��1 D � and �� D

0, Chow and Wang approximated P1 .�
�, n, �/ by PCW D
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. Hence, the sample size formulas

of Chow and Wang are

n >

8̂<
:̂

2�2.t˛.n�2/Ctˇ.n�2//
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.��j��j/
2 if �� ¤ 0

2�2.t˛.n�2/Ctˇ=2.n�2//
2

�2 if �� D 0

(7)

4.1.2. Comparison of exact power and approximate power of
Chow and Wang. The approximate power function of Chow and
Wang [6] tends to overestimate power by removing the upper-tail
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bound on
OD���

S�
p

1=n
, but because of the further replacement of sam-

ple standard deviation by true � in the inequality for
OD���

S�
p

1=n
, their

approximation does not overestimate for all possible parameter
combinations. The differences between exact power and approx-
imate powers are illustrated in Figures 1–4 for wide ranges of
standard deviations and true mean differences.

As defined in Section 2, �2 is the variance of log-transformed
data from the reference product and the coefficient of variation
(CV) in the untransformed data is CV D

p
e�2
� 1.

The product is considered a highly variable drug when CV for
untransformed AUC or Cmax is greater than 0.3 [12,13]. Regard-
less of the magnitude of the standard deviation � from exam-
ination of many numerical results, the approximate power of
Chow and Wang [6] seems to overestimate the exact power
when both n and �� are very small. The power curve of Chow
and Wang has a peak because their calculation used differ-
ent formulas for power when �� is zero and nonzero. The dif-
ference between the approximate power of [6] and the exact
power decreases as the total sample size increases for the

Figure 1. Approximate power of Chow and Wang versus exact power numerically calculated from Equation (6) against true mean difference �� when � D 0.2, at different
total sample sizes, n.

Figure 2. Approximate power of Chow and Wang versus exact power numerically calculated from Equation (6) against true mean difference �� when � D 0.3, at different
total sample sizes, n.9
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Figure 3. Approximate power of Chow and Wang versus exact power numerically calculated from Equation (6) against true mean difference �� when � D 0.4, at different
total sample sizes, n.

Figure 4. Approximate power of Chow and Wang versus exact power numerically calculated from Equation (6) against true mean difference �� when � D 0.7, at different
total sample sizes, n.

same � and n, and also decreases as the true difference (��)
increases. When � increases from 0.2 to 0.7, there are more cases
when the approximate power of Chow and Wang exceeds the
exact power.

Thus, sample sizes are underestimated using the approximate
power of Chow and Wang for the combination of small n and
small ��. When studies are underpowered, they may fail to meet
the study objectives. For a combination of large �� and small n,
the approximate power of Chow and Wang can underestimate

the true power slightly, which results in having a few more sub-
jects than necessary.

Previous authors [3,4,6] often focused on CV<0.3. However,
errors of approximation may also be important for the large �
values of highly variable drugs.

From Figure 1, it is seen that the approximate power of Chow
and Wang [6] is very close to the exact power for n >18 and
�*>0.04 when � D 0.2. From Figures 2–4, it is seen that the
approximate power of Chow and Wang overestimates the exact

Pharmaceut. Statist. 2015, 14 95–101 Copyright © 2014 John Wiley & Sons, Ltd.
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Table I. Comparison of sample size from exact power given by Equation (6) and approximate power of Chow and
Wang for achieving 80% power at different combinations of � and ��.

�� D 0.01 �� D 0.02 �� D 0.03 �� D 0.04

� Exact Chow and Wang Exact Chow and Wang Exact Chow and Wang Exact Chow and Wang

0.1 6 6 6 6 6 6 6 6
0.2 16 14 16 14 18 16 18 18
0.3 34 28 34 30 36 32 38 36
0.4 58 46 60 50 62 56 66 62
0.5 90 70 92 78 94 86 100 94
0.6 128 100 130 110 136 122 144 136
0.7 172 136 176 150 184 164 194 184

Table II. Comparison of the exact power given by Equation (6) and power values
from Figure 1(c) in Diletti and colleagues’ paper when CV D 20% and n D 24.

�� D �T � �R

Method 0 log(1.05)D0.04879 log(1.1)D0.09531

Diletti and colleagues’ power 0.97 0.9 0.7
Exact power, P1 .�

�, n, �/ 0.9679 0.902 0.696

power for many more combinations of �� and n when � > 0.3
than when � D 0.2. For example, for n D 50, �� D 0.02 and
� D 0.4, the approximate power of Chow and Wang is 80.35%,
while the exact power is 71.63%.

4.1.3. Comparison of exact sample size with approximation of Chow
and Wang. In Table I, we compare the total sample sizes from the
exact power as in Equation (6) and the approximate power of
Chow and Wang [6] for achieving 80% power. The total sample
size is rounded up to the next even number. Table I shows that
the difference in the total sample sizes increases as � increases,
and decreases as �� increases, for each given ��. For example,
the total sample size from the Chow–Wang approximate power
is about 10% less than that from exact power when �� D 0.03
and � D 0.2, about 15% less when �� D 0.02 and � D 0.4, and
about 20% less than that from exact power when �� D 0.01 and
� D 0.3.

4.2. Comparison of the exact power and Diletti and
colleagues’ power

Because Diletti et al. [4] did not provide the explicit mathematical
formula for their power calculation, we read three power values
from Figure 1(c) of [4]. The exact power values versus those read
from Figure 1(c) of [4] for these parameters are listed in Table II.

From Table II, the power in [4] is very close to the exact value.
However, the graphs and tables in [4] present a limited num-
ber of cases. For instance, [4] did not provide any power value
for CV>30%, as would be the case with highly variable drugs.
Exact and explicit power functions will allow such situations to
be considered.

4.3. Comparison of the exact power and PhillipsŠ power

Because Phillips [3] did not provide the explicit mathematical
formula for his power calculation, we also read power values
for three sets of parameter values from Figure 3 of [3]. We then

Table III. Comparison of the exact power given
by Equation (6) and power values from Figure 3 [3]
when CV D 20% and n D 24.

�� D �T � �R

Method 0.015 0.05 0.1

Phillips’ power 0.9 0.8 0.5
Exact power, P1 .�

�, n, �/ 0.909 0.809 0.517

compared the exact power values by Equation (6) and the
power values from Figure 3 [3] for these three sets of param-
eters and list these in Table III. In order to compare the exact
power with Phillips’ values, the exact values were computed using
�2 D ��1 D 0.20.

From Table III, Phillips’ power is quite close to the exact power.
However, the graphs and tables present a limited number of cases
as Phillips [3] did. Exact and explicit power formulas, such as P1 in
Equations (5) and (6), allow any situation to be considered.

5. DISCUSSION AND CONCLUSIONS

The exact power has been derived from the joint density func-
tion of the two correlated test statistics (T1 and T2) used in
the two one-sided tests procedure. The exact power numerically
integrated from Equation (5) is corroborated by the results of the
Monte Carlo simulations and is readily available using numerical
integration, and R code for this is provided in Appendix A. Exact
sample size calculation is then easy using the exact power for any
parameter combinations in bioequivalence studies based on two
one-sided tests. The Chow–Wang values are often used in stan-
dard software packages, for example, nQuery [14]. The fact that
the approximate power of Chow and Wang [6] markedly overes-
timates the exact power for many combinations of �� and n as
shown in Figures 1–4 and Table I demonstrates the preferability1

0
0
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of the exact power function P1 .�
�, n, �/ in planning of bioequiv-

alence studies, especially when �� is small relative to � . Mean
differences in log(AUC) or log(Cmax) as small as 0.03 are of practical
interest based on the review by Davit et al. [1] of 12 years of bioe-
quivalence studies from the FDA, which found that more than
50% of studies have mean differences of less than 0.05 between
generic product and innovator (these are mean differences in
log(AUC) or log(Cmax), when the corresponding mean differences
in AUC and Cmax between generic and innovator products are
respectively 3.56% and 4.35%).

While the exact power agrees closely with [3,4] in the few cases
displayed in those papers, it is important to have exact powers
and sample sizes in all bioequivalence study settings, including
those for highly variable drugs with CV > 30%.
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APPENDIX A: R CODE FOR EXACT POWER AND
SAMPLE SIZE

The power P1 .�
�, n1, n2, �T , �R/ in (5) is calculated by the follow-

ing lines of R code. Here, the arguments n1 and n2 respectively
represent the sample sizes n1, n2of sequences 1 and 2; sigT , sigR
represent �T and �R; th1 and th2 respectively represent �1 and
�2; and tstar represents ��. In fact, .n1, n2, �T , �R/ enters formula
(5) only through the quantities �2

OD
D
�
�2

R C �
2
T

�
.1=n1 C 1=n2/ =4

and � D n1Cn2�2, and arguments sigD and nu represent � OD and
� . Pow1$value is the power in formula (5) (with Pow1$abs.error
the estimated absolute error of integration), and SSiz denotes
the sample size obtained by equating formula (6) to 1-beta.
We use two standard R functions: integrate to perform univari-
ate numerical integration, and uniroot to perform root-finding
or inversion.

Pow1 = function(sigD, nu, th2,th1,tstar, alpha=.05){
Integrand = function(x) {

(pnorm((th2-tstar)/sigD-qt(1-alpha, nu)*sqrt(x/nu))-
pnorm((th1-tstar)/sigD+qt(1-alpha,

nu)*sqrt(x/nu)))*dchisq(x,nu)
}
integrate(Integrand, lower = 0, upper =

nu*((th2-th1)/(2*qt(1-alpha, nu)*sigD))^2)[1:2]
}

SSiz = function(beta, sigT,sigR,th2,th1,tstar, alpha=.05,
uppern=300){

Pow2 = function(n) {
Pow1(sqrt((sigT^2+sigR^2)/n), n-2, th2, th1, tstar,

alpha)$value-1+beta }
uniroot(Pow2,c(3,uppern))$root

}

APPENDIX B: PROOF OF MONOTONICITY OFp
� =t˛ .�/

Define t .�/
ıp

� D Z
.p

Y .�/ , where Z is the standard

normal random variable and Y .�/ is the chi-squared random
variable with degrees of freedom. Because Y.�/ D

P�
iD1 Z2

i ,
where Z1, Z2, : : : , Z� are independent and identical standard nor-
mal random variables, then obviously Y.� C 1/ is stochastically
larger than Y.�/, which means for any real value x, P.Y.� C 1/ >
x/ > P.Y.�/ > x/. From this, it follows that t .� C 1/

ıp
� C 1

is stochastically smaller than t .�/
ıp

� , from which it follows
that t˛ .� C 1/

ıp
� C 1 < t˛ .�/

ıp
�. Therefore,

p
� =t˛ .�/ is a

monotonic increasing function of �.
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