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Abstract

A new strategy is developed for obtaining large-sample efficient estimators of finite-dimensional
parameterg within semiparametric statistical models. The key idea is to maximize eenon-
parametric log-likelihood with the infinite-dimensional nuisance paranietplaced by a consistent
preliminary estimato;{/; of the Kullback—Leibler minimizing valugy for fixed . Itis shown that the
parametric submodel with Kullback—Leibler minimizer substitutedifisrgenerally a least-favorable
model. Results extending those of Severini and Wong (Ann. Statist. 20 (1992) 1768) then establish
efficiency of the estimator gf maximizing log-likelihood with/. replaced for fixeds by Zﬁ. These the-
oretical results are specialized to censored linear regression and to a class of semiparametric survival
analysis regression models including the proportional hazards models with unobserved random effect
or ‘frailty’, the latter through results of Slud and Vonta (Scand. J. Statist. 31 (2004) 21) characterizing
the restricted Kullback—Leibler information minimizers.
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1. Introduction

There are now several different tools for expressing the semiparametric information about
the finite-dimensional (‘structural’) parameters in semiparametric models and for establish-
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ing efficiency of candidate estimatoBi¢kel et al., 1993Van der Vaart and Wellner, 1996
Bickel and Kwon, 200]and many other references for specific models cited in these works).
Yet even in the iid case, there are important problems—such as the general transformation
model Bickel et al., 1993 Section 4.7, Example Zheng et al., 1995where there are
either no candidate efficient estimators, or where natural candidates like the NPMLE are
computable but intractable to characterize abstra8iyd and Vonta, 2004

An approach to likelihood inference which has been influential and successful in both
parametric and semiparametric problems is that of profile or partially maximized likelihood
(Kalbfleisch and Sprott, 1970; McCullagh and Tibshirani, 1990; Stafford, 1 %28 both
non- and semi-parametric problen®wen (1988)andQin and Lawless (1994)onstruct
anempirical likelihoodby fixing structural parameters and substituting an analytically de-
termined restricted NPMLE over nuisance parameters, with the objective of establishing
valid generalized likelihood-ratio-based confidence regions. In the semiparametric con-
text, the recent paper ®flurphy and van der Vaart (200§ noteworthy, suggesting that
generalized likelihood-ratio tests can be constructed and justified generally whenever one
can verify abstract functional-analytic conditions about the maximizer over the unknown
infinite-dimensional nuisance parameter for fixed values of the structural parameter. Related
research on semiparametric generalized likelihood-ratio tests, with substituted nuisance-
parameter estimators other than the partial NPMLE’s, has been purséed eyal. (2001)

The paper oBSeverini and Wong (1992Zhowed that efficient semiparametric estimators
arise by maximizing a ‘modified profile likelihood’, i.e., a likelihood with nuisance parame-
ters replaced by an estimated least-favorable parameterization. These authors advanced the
idea of obtaining a least-favorable nuisance-parameterization by maximiziegpketed
log-Likelihoodor negativeKullback—Leiblerfunctional. When a smoothly consistent esti-
mator of this maximizer for fixed structural-parameter values is substituted into the likeli-
hood, and the latter is then maximized over the structural parameters, an efficient estimator
results. (In the case of infinite-dimensional nuisance param&evsyini and Wong (1992)
developed this idea only in the special case of their ‘conditionally parametric models’.) The
general theory of the extension of this idea to the infinite-dimensional case is developed
here, providing least-favorable parametric submodels, information bounds, and efficient
estimators.

Thetheory of this method justifies a general principle of semiparametric estimation, which
can be used (i) to unify existing semiparametric-efficightconsistent estimators in many
problems; (ii) to generate new examples of such estimators; and (iii) to provide alternative
and simpler formulas for semiparametric information bounds. In this paper, we first use
the general theory to develop a new form of efficient estimators for the censored linear
regression problems, in which efficient estimating equations had previously been found
by Tsiatis (1990)andRitov (1990) Next we apply the theory to a broad class of survival
(‘frailty’) transformation models—beyond those already treatedClgyton and Cuzick
(1986) Parner (1998)andKosorok et al. (20043-obtaining new computable formulas for
information bounds and sketching the construction of efficient estimators.
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1.1. Organization of the paper

The paper is organized as follows. In Section 2 we present the general problem setting
for independent data, along with notational definitions, preliminary assumptions, and the
central theoretical results. The remaining assumptions are stated in the Technical Appendix,
in Section A.1, and discussed in Section A.2, and some technical consequences of the
assumptions are also proved in Section A.3. Two applications of the theory are given,
first in Section 3 to establish (known) information bounds and a new form of the efficient
estimator in the censored linear regression model, and then in Section 4 to provide a new
information bound formula in general frailty or transformation survival regression models,
as well as a sketch of how to construct efficient estimators in that setting.

2. Consistency and efficiency of maximum modified profile likelihood estimators

Assume that the independent identically distributed (iid) data-saXipl&o, ..., X,
of random vectors it* is observed and assumed to follow a marginal probability law
=Py 0, wheref® € % c R, )% € v c LO(R?, v) (Borel-measurable functions),
whereZ is a fixed open sety” is a fixed set of positive measurable functions; and the
o-finite measure (locally finite, but not necessarily a probability measure) is fixedRén
In addition assume that there is a famil§ 5, (8, 4) € % x 7"} of Borel probability
measures of, such that

(Ao) For all (8, 2) € U x V", P ;) <p, and the regularity of densitiegy (-, f, 1) =
dPg, ;y/du as functions of §, 1) will be further restricted below. Note that by definition,
Fx (., B2, 7% = 1. The true parameter-component vafifés assumed to lie in the interior
of a fixed, known compact sét C %.

(A1) There exist fixed positive, finite real-valued functions ¢ on R? such that
0<c1()<0%< () <00 ae. (v) and

Viev, vae c1()<i<e(). (1)

In what follows, let| - ||1 denote theL1(RF, w) norm. Here and belowj - |2 always
denotes a Euclidean norm on vectors, or on matrices considered as vectors, rather than an
L? functional norm. The spacg” is regarded from now on as a subset of the normed linear
space

Vo={E()e2() : e LRI, W)}, NAllyg = 14/c2lloo,y- &)

The densitiesy, and estimators to be substituted for the nuisance paranigtmesfurther
restricted in AssumptionéA2)—(Ag) given in Section A.1 of the Technical Appendix. In
those assumptions, we consider perturbations of functioas?” by small multiples of
functions in subsets

G C Gy C{ye ORI, v): [y <er(n)} ®)
such that

{p/c1 17 €%} is| - lle densein {g e L¥(R?,v) : [glloc <1}. 4)
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Here and in what follows, we define the differentiation operadgrfor all functions¢ :
7" — R, and ally € %, by:

d .
(D; (D)) = - p(A+ D)
dv 9=0
and denote total differentiation if by VT. Throughout,V®2 = v V' denotes a matrix-
valued second-derivative (Hessian) operator.
The log-likelihood for the model®; ;) and dataX = {X;}_, is defined by

logLik, (8. 2) = log fx(Xi. p. 7). (B. 7)€ (U x V).
i=1

When there is no danger of ambiguity in what follows, we drop the subgdriphe notation
logLik,,.
Define the Kullback—Leibler functional by

HBA) = — / log fx (x. f. 2) du(x).

The key idea ofmodified profile likelihoodSeverini and Wong, 1994s to replace the
nuisance parameterin the log-likelihood by a suitable estimatﬁ))g, restricted by(Ag),

of the minimizer/g of #"(B, -) over 4 € ¥~ (assumed unique and with further regularity
properties in(Ag)). The estimator of, to be proved efficient, is then the maximizer of the
modified profile likelihood.

Remark 1. The key insight enabling the modified profile likelihood approach to guarantee
semiparametric efficient estimators is that in estimaﬂﬁghe directional derivatives with
respect to the nuisance parametén functional space need be taken only at base points
within a set sufficiently large so as to contain all partial maximizggsfor fixed but arbitrary

B), in directions which should include all linear combinations of derivatwg’éﬂbﬁ,j =
1, 2, and their preliminary estimators. Such spaces of base points and tangents are infinite

dimensional, but can be far smaller than the linear spaces spanned respectively by parameters
A € v~ and by differences of elements of.

Proposition 1 (Severini and Wong, 1992 The d-dimensional smooth parametric sub-
model (8, 4p) is a least-favorablei-dimensional regular parametric submodel for the
general semiparametric mode); ;, wheredg is the minimizer of#"(f, ) as in(Ag).
Proof. According to Theorem 3.4.1 dBickel et al. (1993)it suffices to check for any
Y € 9o, with Dg as in (3) and (4),
E ({leo Fx(X /3))}‘ 9 og Fexa, 2.9+ 0) —0
w0\ 1Vp 109 Jx (&1, P, 4p ﬂ:ﬁodﬁgx 1L, P4 /19:0—.

However, after expressing the expectation as an integral and expressing the latter in terms
of the blocksA, B, B*, C of the operator bilinear fOI’I‘Tyﬁo‘io defined in (34) in the
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Technical Appendix, this assertion becomes an immediate consequence of (41)-(43), (44)
and Lemma 1. O

Now we can define our proposed efficient estimator fioras the maximizer of
logLik, (B, Zg). Since we assume i) thatﬁ0 € int(F), our precise definition becomes

p = arg maxlogLik,, (8, p). 5)
PeF

Theorem 1. With probability converging td asn — oo, the estimatorfi defined in(5) is
uniquely definedies for largen in the interior of F C %, and is consistent foﬁo.

Proof. Let § >0 be small enough so thgf € RY : || — [3°||2<5} C F. By the mean
value theorem

L logLik . Jp) — L logLikp°, J0)
n n
= (b~ " FlogLik . 7ye)
n
1 . ~
t 5 (B BT (V)2 logLik (B*. Ag) (B — °)

for somef* on the ray betweeﬂo, f, which implies via Proposition 3 and (52) in Section
A.3, thatfor a constant > 0 not depending om, taken smaller than the minimum eigenvalue
of (vg)®2 (B2, 2°), that

sup n~tlogLik (B, 4g) <n~*logLik (f°, ;lﬁo) —6%0/2
BeF, Ip—ll2>6

with probability converging to 1 as gets large. Thu$[3 — ﬁ~°||2 < 0 with probability
converging to 1, and sinc&> 0 can be taken arbitrarily smal§, € F is consistent. This
concludes the proof of Theorem 1.1

At this point, we know that logLikg, ;1,;) is strictly concave on compact subsetgoivith

probability converging to 1, and thfﬁﬁs consistent and uniquely definedinMoreover, as
shown in Proposition 3, with probability near 1 for largethe random function” (8, 4z)

is strictly convex or#, with Hessian uniformly close, on neighborhoodgdfvhich shrink
down to{ﬁo} asn gets large, to the information bound, or least-favorable information matrix,

A=y <Pﬁo’ olB. P i) (Bickel et al, 1993 p. 23)
defined for alla € R? by
o fza = ]ﬂojo ((a, Vﬁxlﬁo), (a, V[g/l/jo)> (6)

and equivalently expressed by (46) in the Technical Appendix.
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Strict concavity of logLik here also implies theﬁ is uniquely (locally, withinZ) char-
acterized as the solution of the equation, for ale RY,

a"" v} logLik,, (B, i) =
a"VglogLik, (B, 1g) + (D logLik,, (B, 24))(@" Vi) = 0. 7

The next objective is to prove under the assumptions given above that the esﬁ‘riﬁitor
J/n consistent, asymptotically normal, and efficient.

Theorem 2. Under the assumption®\g)—(As), for all a € R4,

Vna" (B — %) (1 + op(1))
7 (a"(fg)*l vy logLik (2, 1)

d
+ @Iongk(ﬁO A2 494" (I Vg )

) ®

Proof. We examine separately and Taylor- expand as functions,of) about(ﬁ %) the
two terms in the second line of (7) evaluate@ at 8. First, the consistency @Ffor ° (from
Theorem 1) and oVg )ﬁo for Vg iﬁo (from (Ag)) and the difference-quotient definition of
the derivative imply

by = Ao =g (B =P +0p(B— ) =Vpip(B— )+ op(f - (9

in the sense of norm - ||,-,. Next, for smalk), Taylor-expanding irf aboutﬁ0

d Iongk(ﬁ /1 + 9y)

dv
= %Ioguk(ﬂo 249y + (- O v®2 logLik (8°, 7 *ﬁo + 9y)
a2 5
+ mloguk(ﬂ /1/30 +19y+t(/1 —Aﬁo)) +0p(n(/3—/3°)).

Now divide through byz and apply Proposition 2 from Section A.3, then evaluating at
B=p° 9=0,tofind fory = af Vﬁiﬂ,

=0

d1, 0

— By pB— B 0= Cp o (3 B= B Vi) +o0eB— ).
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By the consistency already proved for the estimaﬁptogether with equation (44), we
conclude that with probability approaching 1 as— oo

d1l T d1l -
— = logLik (B, 17+17) Iongkw Puop| +op(B-%  (10)
U n B 9=0 Ty 9—0

fory =a" Vﬁiﬁ. Next consider the term
n~tay Vg logLik (B, ZB)

which we Taylor-expand aboaﬁo, %) and re-express via Proposition 2 to obtain

alr _ B B - B
~2 VglogLik (%, 2% — Ao 0(a, B — %) = Byo j0(az, 45— Jyo) + 0p(f — 7).

Combining (9) with the previous equation, and making use of (44) and (6), we find
% VglogLik (B, 7p) = % VplogLik (8%, 1% = G (B— ) +op(B— .  (11)
Finally, combine (7), (10), and (11), using also the second equality in (9), to establish
{1vﬁ|oguk(ﬂ° 20 — JO B - % }+(D,1IogL|k(ﬁo ,10))< 2 Vs )
=op(B — 7).

-1
Then, replacingf by a" (f%) completes the proof. []

In our iid setting, Theorem 2 immediately implies
Theorem 3. Under AssumptionAg)—(Ag), as n — oo
~ 7 -1
Jn (ﬁ - /30) 2w (o, (fg) ) . (12)

Proof. In view of Theorem 2, and the Cramer—Wold device for denvmg multivariate dis-
tributional limits from univariate ones, we need only express (with= (J ) ta)
d
—logLik,, (5°, /% + ﬁagvﬁlﬁo)

% ( dv 9=0 )

asanormalized iid sum to which the ordinary central limittheorem applies. But the displayed
expression is
ﬁ:o}

a§ VlogLik,, (8%, ) +

1 < d .
NG 3 {ag Vg log fx(Xi, f°, 70 + 35 109 fx(Xi, °, i°+z9a‘2'vﬁmﬁo)
i=1

1 & \
- Y a3 Vg log fx(Xi, B, 2p)
i=1 p=p°
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A familiar calculation as in (45) shows that the variance of these summan@sﬁ% a,

and after recalling, = (ﬁ%)*la, the assertion follows by (8) and the central limit theorem.
O

3. Censored linear regression

The problem of estimating linear-regression parameters efficiently in a semiparametric
setting, where the error-distribution is unknown and the data are randomly right-censored,
has been studied by many authors. (Baekel et al., 1993for background and refer-
ences.) This is a problem where efficient estimating equations are krisiati§, 1990;

Ritov, 1990 Bickel et al., 1993pp. 147f), but where the efficient estimators are not simple
enough to have come into general use.

The censored linear-regression model assumes

Xi=ZB+e&, T=minX;, C), 4;=Ix<c

where the observed data consist of independent identically distributed riples;, 4;),
and¢; is assumed independent @f;, C;). The unknown parameters are the structural
coefficientsf, and the hazard intensityu) = F/(u)/(1 — Fz(u)).
t
Denoted(r) = [ A(s)ds, whichwill be assumed finite for all< oo, and, with(°, 1%)

—00

denoting the true parameters actually governing the data
0 0
q:() = P(1>1|Zy=2) = P(C1>1| Z1 = 0)e M = 1),

The measure is Lebesgue measure &h The data-spad® = R x R? x {0, 1} consists
of triplesx = (¢,z,0) witht e R, z € RY, 6 =0, 1. We define the probability law for the
true model by

dut, 2, 0) = (37°( — 2% 4. (1) dF2(2) + (L — &) e AP dF, (2, 1)) .

The densitiesfx (x, B, 2) have the formi(r — 2" 8) /2%t — 2 %)) exp(A%(r — 2" f°) —
A(t — z"B)). Therefore, the log-likelinood in this setting is

n

logLik (B, ) =Y _ {4 log A(Ti — Z[" B) — A(T; — Z" B} (13)
i=1

apart from additive terms not depending @h 1), and the Kullback—Leibler functional is
(after integration by parts inin the second term)

AP, 1)
=— f / q:(1) {;P(r — 2% log At — 2By dr — At —z”ﬁ)} dr dFz(2).

The random vector&; may contain a constant component. These vectors must be
compactly supported, and not linearly degenerate, and we proceed to indicate the further
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regularity conditions which are sufficient to apply the efficiency theory given in Section 2.
Assume

(Co) The parametef lies in the interior of the fixed compact regich c R?, and
co = esssup||Z1]lz2 < oo, so that

oo = ess sup|(f — O Z1| <co - diam) < oo.
peil

Moreover, for every nonzero constant vecigithe variables' Z; has positive variance,
i.e., is nondegenerate.
(C1) (@) The paramete%0 belongs to the set of nonnegative, twice continuously differ-
t

entiable functions. on R which satisfyA(r) = [ /(s)ds < oo for t < 0o, A(c0) = c0.
—00

(b) Also, define the fixed functions

cit)y= inf % +s), ca(t) = sup 2%t +5)

Is< a0 Is| <o
and assuméca/c1|lo.v < 00. For all £ as in (a), definev, (¢, z, 0) by:

VAO)
(22))°
x sup {(1+ A(x)) 1+ Ax) + A(x))2e 40y, (14)

[x—t] <o

wy(t + z"ﬁo, z,0) =

t
Then c2(t) + [log c1(t)| + [ ca(s)ds + w,o(t, 2, ) € L1(D, p).
—0Q

(Co) Forj=1,2, |§Tjj log io(t)| < ¢3 for some finite constant.

(Cg) As a function ofr, P(C1>1t| Z1=7z) is almost surely twice continuously differen-
tiable, with a finite constant; such that forj = 1, 2 and allt, z, I% logP(C1>1t|Z1=
)< ca.

The regularity conditiongAg)—(A4) are readily checked to follow froriCp)—(Cg) in
this setting, with

V= {AeV0:Vs|<ao, c1(t) <Als + 1) <ca(t),

]n;% a7 log A(t)

<2c3, wy(t,z,0) € Ll(,u)}

and, for a fixed positive finite constary,

Is| < oo Is| < oo

%z{ye“//(): sup [y(r +s)[<ca(r), sup |"/(S+t)|<6501(t)},

Yo= {? €770 sup [p(r+s)<ca®), sup sup |y'(s +0)l/cat) < 00}-

Is| <o I s|<oo
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The log-likelihood summands and their derivatives up to second order @ssjrare
dominated by the function

b(t,z) = (|log c1(u)]

—00

+2 / ca(s)ds + 4L+ co)?(L + c3) (L + Cz(u))) )
u=t—z 0

For example, byCp) and the definition of¢

<co(2c3 + c5).

V551080 4+ 90 =B | 1, o<
=0

-2
[ A
2 /12 1=z 9

Similarly, the individual likelihood terms and their derivatives up to second order(@s;)n
are dominated by the function

r(t, z,0) =41+ co)2 ((1 + C3)2 + cs) w)y(t, z,0).

The operators&ﬁo’io, Bﬁo’/lo, Cﬁo)io have the explicit forms

(o)
ap @ = [ [ a0 @2 ey el LG (15)
tr A 2 (t _Ztrﬂo
Bpsan=- [ [awc - ﬁ)wdtd&@’ (16)
. _tr 0
Cpo 001, 7) = f/‘h( ). i Ztrfgo dr dFz(2). 17

From these formulas, it follows immediately that (35) holdg/atl) = (°, 1%, since

o 0(a,a) + 2B j0a, ) + Cyo 0(7,7)

/ 2
/ f /lo(tqZ(t)t,ﬁo a"z 2% —ztrﬁo)—v(t—z”ﬁo)) dr dFz(z)

cannot be 0 unlesg" Z is a.s. conditionally degenerate (at a value other than 0, the same
forall't) givenT >t for a.e.t. This proveg/As), since the finiteness af ;, Cy ; follows
from the dominatedness conditiots3)—(A4).
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The maximization with respect to for fixed § to determinely is unconstrained, and
results in the equation, for all bounded

Lt
0=//qz(r) {z"(z—z”ﬁ)” allL) —v(r—z”ﬁ)}drsz(z)

i([ tr ﬂ)
0 trep 0
= //qz(t+z”ﬁ)y(t) |:/1( +Z;(§f ) —1i| dtdFz(z)

from which it follows that
J g +27 ) 2%+ (B — %) dF7 ()
[ q:(t + 2" p)dFz(2)

From this explicit formula, together wittCs), there follows(Ag). Next, an information
bound formula is derived from (44), (18) and the calculation

Ap(t) = (18)

[ 2q:(+ 2% 2% (1) dFz(2)
[ -+ 2% dF2(2)
where Eg and later Vag denote (conditional) mean and variance under the model with

parametersg°, 2°).
Thus the semiparametric information matrix has quadratic form given by

Vsp(0)| o = = Eo(Z|T - 2"f°=0 %),

a" f%a = A[)’O jo(a, a) + Bjo 0(a, atrVﬁ/lﬁo)

()0 (l trﬁo))Z )
- [ [0 S=mm e

—(z"a)Eo(z”a | T— 70> — z“ﬁ")} dt dFy(2).

which after the change of variabte= r — z" f° becomes

20/ 2
/ / P(T —Z"B%>s) (A;O((S))) {z"a — Eo(Z%a|T — ZtrﬁOZS)}st dFz(z)
(S
o’ 2
= / %Varo(z”a T —Z" =) P(T — Z"%>5)ds (19)
S

and this last formula agrees with the efficient information bound formula giveRitoy
(1990)
- : ' . . =0
Efficient estimators can next be defined based on a consistent preliminary esfimator
of [30, together with a preliminary kernel-type estimaﬁ%ﬁ obtained from right-censored
~0
‘data’s; = X; — Z}rﬁ .
Note that the smoothness ¢f in ¢, as provided by(C3), was needed to check the
smoothness ol in $ as required foAg). Assumption(Az) is easily checked directly,

where the distance functignis taken to bep (41, 12) =k (Z, -0 || dﬂ (A1 — /12)||~V0) , with
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the real-valued functiok(x) defined ask(x) = x> 1/2) — 109(1 — X) [x<1/2). We now
proceed to exhibit the estimatoy satisfying(Ag) by defining preliminary estimators.

A preliminary estimatoﬁ0 can be obtained in the spirit &bul et al. (1981)y regression
A;iT; /Sciz(Ti| Zi) on Z;.

In this generalitySc‘z will be some kernel-based nonparametric regression estimator, as
in Cheng (1989)In the more special case wherg and C; are also independent, the
Kaplan—Meier estimatoﬁ'é'v'(T,-) will do: this was (after some modifications needed to
obtain asymptotic distributional results) the setting and approaklowifet al. (1981)

~0
The preliminary estimatof  is obtained as a kernel-density variant of the Nelson—-Aalen
estimator, as described Ramlau—Hansen (1983yith kernelcdf A(-), bandwidthb,, \ 0
slowly enough (say, ~ an~°):

_ AN tr gO
z°<w)=bi/A,(wb ) > AN+ 2 %)

2ily, > u+ZV )

tr 0
:iiA-A/ w-Ti+ 7P S ;
by &~ by = >TH(Z—Z0)" )

Then Z/; is defined by substituting the estimat&osinto empirical averages ovet
within /4 defined by (18),

:llf(f)EXn:A< tﬁ)io(wrz" p— ﬁo /Z I_Ztrﬁ>

i=1

and}lﬂ is obtained by numerically integratirig over[0, t]. The estimatoi,; is easily shown
to satisfy(Ag) if the kernelcdf A(-) is compactly supported and three times continuously
differentiable. Finally, we substitute these expressions into

logLik (8, Zp) =Y [Aj log Zﬁ(Tj—z}fﬁ)—Zﬁ(Tj—cz}fﬁ)]
=1

which is to be numerically maximized ovgrin defining.

4. Transformation and frailty models

The semiparametric problems which motivated the present work concern transformation
and frailty models in survival analysi€6x, 1972; Clayton and Cuzick, 1986; Cheng et al.,
1995; Parner, 1998; Slud and Vonta, 2002, 2@¢@sorok et al., 200/ This class of models
postulates, for the random lifetime of an individual with an obsedrdémensional vector
Z of covariates, a conditional survival function

S7o2(t12) = exp(—G (& P A(1))), (20)
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whereG is a known function, satisfying the following regularity conditions giverShyd
and Vonta (2004)

(F1) G is a strictly increasing and conca¢® function on(0, co) satisfyingG (0) =
0,0 < G'(0) < 00, G(00) = 00, G'(00) = 0, along with the further properties

sup(—xG” (x))/G'(x) <00, suplxG (x)/G'(x)] < oo,

x>0 x>0
f e 9™ Jog(1/ G’ (x)) G’ (x) dx < oo.

The assumptions imposed on the functiGrare easily satisfied by the Clayton—Cuzick
model (Gamma distributed frailty, which correspondsitor) = 5~ log(1 + bx) for a
constanb > 0) and by Inverse Gaussian frailties. Examples of different frailty distributions,
also satisfying the assumptions, can be founiddsorok et al. (2004and references cited
there.
Here the unknown parameters, with true valgeh 1°), are(8, 1) wheref € R? and
t

A@t) = [ A(s) ds is a cumulative-hazard function, i&(s) >0, A(co) = co. For notational
0
simplicity, we assume that the variablés= R? have discrete and finite-valued distribution,
n, = P(Z = z), but a compactly supported distribution yields the same set of theoretical
r%sults. Again the assumpti@@y) is in force, with# a small closed Euclidean ball around
B e R4
The data are randomly right-censored, i.e., there is an underlying positive random variable
C conditionally independent ¢f given Z = z with

R:(y)=P(C2y|Z=2).
The observable data for a sampled@idependent individuals at&; = min(Tl.O, CH, 4, =
Iipoccy Zini=1,....n), encoded into the processes

NI =Ai Lizi=. ;<. VIO =Tizi=.1,>0.

For the present, we will assume that the distributiorZond the conditional censoring
survivor functionsR, are known, which is actually not a significant restriction since the
estimators we develop do not depend on the fornkpfand are ‘adaptive’ in the sense

of attaining the same information bounds as for the case of estimators allowed to depend
uponR,. However, followingSlud and Vonta (2002)e also impose a nontrivial technical
restriction on the (correctly specified) distribution of the data through the function

4:() = P(T>1]Z =2) = R.(0) exp(~G(&""" %)) (21)

(which differs from the notatiog, of Slud and Vonta (2002, 2004) omitting the factor
7, = P(Z = 7)) in the form

q,(t)y=0 fort>19, ¢q.(10)>0. (22)

The import of this restriction is that for some fixed timgbeyond which the individuals in
a study do have a positive probability of surviving uncensored, the data are automatically
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right-censored atg. This is not a practically restrictive condition, but as a matter of the-
oretical technique it should be removed. (It is not needed in either the Cox model or the
Clayton—Cuzick semiparametric Pareto model when efficient estimation in these models is
treated by other methods.)

Definevto be Lebesgue measure on the intef@atg]. The data spade=R x RY x {0, 1}
again consists of triples = (¢, z, §). The Borel probability measupeon D is now given

by

du(t, 2, 8) = m. (8 4. () G' (& 4% "7 1%(r) e

_tr 50
~ - 8)e 6@ w0 gr_ 1),
The statistical problem is further specified by
(F2) Conditions(Cp) and (22) hold, and there exist positive, finite constants c> such

that

c1<%(t)<cp, ae t e[0, 1]
and the candidate parametéfs 1) are all assumed to lie ¥ x 7~, with

V= () e LY(0, 10], v) : e1<Ar) <2}

and the space¥ = % of perturbing functions are taken to by € L*°([0, 70], V) :

[7lloo <1}
The semiparametric log-likelihood in this problem is
logLik (g, 2)
n 0
-3y / [log(e? /&' )y aN] — vie" PG/ &P i) 23)
z i=1l7j

This log-likelihood leads to the expression, foe R?,y € L™ (v)

<Aﬁo’io(a,a) Bﬁo,;yo(a,y)>
Bﬁo’io(a, 7) Cﬁo,ﬂ," ™, 7)
a" 2 {1+ (xG"(x)/ G' () _girs0 4o} )®2

70
= Z T, q; tr g0 § 20
z 0/ (ez ' Ofydv(G///G/)x=e«"-”ﬁ°/10 /4

x &7 6" @ 1% 10 dv (24)

whereA® = [ 20dv = [ %) dr.
0 0

Under assumptiong1)—(F2) above, conditiongA1) of Section 2 andA2)—(A4) in
SectionA.1, along witliA7) for p(11, A2) = [|41— 42|l «.v, are easily verified by inspection.
Next we verify (As). In this model,.# (8°, 2°) evaluated at nonzer@, y) € R? x % is
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positive, unless for some, y),

a1+ M +eztrﬁ0 /«/dv G_ _|_l=0_
G'(x) ) —etrpo g0 G' )t g0 0
0

Direct reasoning shows this to be impossible(@y) for any (a, y) # (0, 0)—an assertion
equivalent tqAs)—since multiplication byl0 . G’(eznﬁo/lo) and identification of complete
differentials implies the last equality @0, o], for fixed (a, y), to be equivalent to

a”z/lo—i—/ ydv=0 on][0, tg].
0

Unlike the situation in Section 3, the restricted minimizggsannot be given explicitly
in these Transformation models. This is true even foiGlayton and Cuzick (1986hodel
successfully analyzed Warner (1998)However,Slud and Vonta (200dave shown that
4p(t) is a uniquely determined? family (smoothly indexed by}) of continuous functions
of t € [0, 7], through solving a family of ordinary differential equations o¢s) =
Ag ((AO)_l(s)), along with an auxiliary functio. In terms of the modified notation

7.(5) = ¢ (1)) = e 0 R (A% L(s)) (25)
these equations are

Y. 1. PG, (5) G/ Fs)

Li(s) = Y., ez"ﬁqz(s) G/(eztrﬁL(S)) +0(s)’

Q'(s) = Z n. &'/, (S)E

tr/fL(s)
x @1 G'@Ps) - PGP L) L'(5)) (26)

subject to the initial and terminal conditions
L©)=0, Q(A%))=0.

Slud and Vonta (20043how that these ODE’s (26) have unique solutions forpai a
sufficiently small compact neighborhodid of /30; are smooth%?) with respect to botlf
and the parameter = Q(0); and, forig(s) = L’(Ao(s)))»o(s), minimize the functional
A (B, 2p). Smoothness of; in f on the compact se then implies(Ag).

It remains to explain how to construct a smooth family of estimaigref 4p indexed
by f and satisfying(Ag). First, Slud and Vonta (2002, 2004)iscuss,/n consistent pre-
liminary estimation ofﬁo, A%, and estimating-equation based estimator€béng et al.
(1995)can also serve as preliminary estimators. Next, it can be shown that when the consis-
tent preliminary estimators are substituted 6,69 9 into the second-order ODE system
(26) determininglg, the solutions which we denote @5, Q) are still smooth functions
of  which are uniformly close o/ to the solutions(L, Q) of (26). Then we define
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Zﬂ(t) = Z’(}lo(s)) Zo(t), and this definition will satisfy(Ag) as long as¥% was initially

chosen as a small enough closed ball contailﬂ?lgAdditional research on the computa-
tional implementation and moderate-sample behavior of these estimators is needed, but the
theory of Section 2 shows that these estimators are efficient.

4.1. Information bound formula

The discussion in Technical Appendix A leading up to formula (46) implies that the
information boundﬁ% has the implicit expression

a” f%a = Ag o(a,a) + By 0(a, a" Vg 40).- (27)

Since the formula for information bound%% involves the form ofi; only throughVy )vﬂo,
we obtain such bounds in much more explicit form than those previously based on Sturm—
Liouville problem solutions as iKlaassen (1993)r Bickel et al. (1993)First, we follow
the method oSlud and Vonta (2004 observing that thd-vector-valued functioi. . (s) =

Vp Ap((A) 7)) |p_po =£ Vg L'(1)dt | ,_go is determined through an adjoint system of
linear ordinary differential equations
rp0_
0.(5) + ¥ m. &7 (5) P(s)
ZZ i eztrﬁoqZ (s)G’(eZtrﬂos)
G,, ezlrﬁo
tr O ( s)

Li(s)=—

() ==Y 1.q.(s) ¥ P.(s)+ G &)L 28

Q.(s) zzjnqgs) Gy O TTE T L) (28)
with initial and terminal conditions

L.(0)=0, 0.(A%70))=0, (29)

where
P.(s) = 2G' &P 5) + G"& P 5) & (25 + Lo(s))

andQ.(s) = Vg Q(s). Substituting into (27) using (24) gives as formula for the information
bound
70
jO _ Z . / 24, eztrﬁo G/(eztrﬁo/lo) <1+ (XGN(X)/G/(x))x=ez"/}0/10>
< 0

. G// ) tr
: (z + &P A0+ VpAgp) & + Vj log Aﬁ()) Adr,  (30)

x=e"p0 40
where
Vp2g() |p_go = 22ILLA%s).  VgAp(s)|p_go = Lu(A%(s)). (31)

The Egs. (28) leading to (31) can be solved computably, as shown in Section A.4 in
the Technical Appendix below. Substitution into (30), and numerical integration, provides
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Table 1
Information bound calculations for two-sample Clayton—Cuzick frailty mezte) =51 log(1+ b1), ).O(t) =1,
andR. (1) = max0, 1 — t/19) I, < ) for z = 0, 1, with indicated parametets, <@, <), for f = log 2.

b 1@ @ ) Ag 01D Parlnfo 79
0001 1.e8 1.e8 20 4999 2254 2253
5 1.e8 1.e8 20 2500 1218 1160
1 1.e8 1.e8 20 1667 0807 0770
2 1.e8 1.e8 20 1000 0488 0458
3 1.e8 1.e8 20 0714 0350 0326
4 1.e8 1.e8 20 0556 0272 0253
0001 2 4 3.96 3773 1677 1676
5 3 6 5.95 2227 1128 1054
1 4 8 7.9 1564 0752 0741
2 5 10 9.95 0967 0470 0453
3 6 12 11.95 0700 0342 0325
4 7 14 13.95 0548 0268 0253

The fifth column contains the upper-left entries of the information matrix; the sixth column Parlinfo is the full-
likelihood information abouf computed irSlud (1986)or a specific model with 5-dimensional nuisance density
/; and the seventh column is the information bouﬁ%i

semiparametric information bounds in the survival transformation model in a new form
which allows tractable calculations in frailty and transformation settings where essentially
no previous computations of such bounds have been available.

As examples of the resulting information formula (30), we provide numerical bounds for
several cases of the two-sample right-cens@kyton and Cuzick (1986yailty model.
Approximate numerical values of these information bounds were previously gi&ndn
(1986, Tables I-ll)via models with five-dimensional parameterization of the ‘nuisance
hazard’A. Table labove exhibits the quantitiedsﬁq ;0(L,1) and.s 0 for the case where the
covariateZ; =0, 1isthe group-label for subjectwith approximately half of alh subjects
allocated to each of the two groups; where the model (20) holdswith=b"1 log(1+bx);
where the group-1 over group-0 log hazard-ratio paramefei$, = log 2, with =1
and where the censoring distributioRg(r) = P(C >t | Z = z) are Unifornj0, t¥] subject
to additional, administrative right-censoringt i.e., forz =0, 1, R,(+) = max(0, 1 —
t/79) I, < - (Note that the cases of very larg€ values in the table correspond to data
uncensored beforg.) In this setting, we calculatdd(s) numerically, from formula (67) at
a spacing of: = 19/1000, leading toﬁ% values with accuracy approximately0001. The

numerically calculated valueg$ are in all cases slightly smaller than the values found in
Slud (1986) But note that the numerical values in the columns 0.5 (corresponding to
b=0.5in our notation) of Tables I-1l oBlud (1986)are incorrect: they should be multiplied
throughout by 2. The cage=0.0001 corresponds closely to the relatively easily calculated
and well-established values for Cox model, which is the limiting case of the Clayton—Cuzick
model ath = 0+. The main finding in this table is that the information bound values which
Slud (1986)had thought were already converged with a nuisance-hazard parameter of
dimension five, were at that stage still a few percent away from convergence.
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Appendix A. Technical Appendix

A.1. Definitions and regularity conditions

We begin by listing the further regularity conditio(;)—(Asg) for the general statistical
problems we study. Basic notations and assumptifig$—(A1) are as in Section 2 above.
(A2) Forall 4 € 77, there exists & ¢ = ¢(4) < 1 such that, for alh € % defined in

(3), the mapping

(B, 9) = fx(, B, A+ € L

is twice continuously differentiable (in strong or Fréchet sense) florm(—e, ¢) to L1 (u).
(A3) There exist$ € L1(u) such that, for alf € %, A € ¥" and foru-a.e.x € R¥,

llog fx(x, B, )|+ sup (Vg log fx(x,p, A+ 92 ly=0)

7€%0

+ 5Up<||v(/; 9) |0g fX(x’ ﬁv A+ 19’)’)”2|79:0) éb(x). (32)

In addition, for eacht € 77, y € %, there existg; > 0 so small that

sup sup [V, log fx(x, B, 4+ 072 € L*(w.
Be 19| <&

(A4) For eachl € 7" there exists; e L(u) such that, for alf € % and foru-a.e x,

| fx (e, B )1+ sup (Vg0 fx(x, B, 2+ 99)ll2ly=0)

’760

- suguvg%) Fx (e, B A+ 99)ll2lg—0) <ri(x). (33)
yeYy

In addition, for eachl € 77, y € %, there exists, > 0 so small that

sup sup [[VE2) fx(x. B, 2+ 9li2 € L* ().
el 19| < &2

Under conditions(Az), (A3) and (As), the second-derivative operatghr = 75, on
R? x %qis defined through the bilinear forms

Ipi= ( o 2) (34)
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for al, az € Rd, VAS Yo, by

A(a1, a2) = Ap ;(a1, az) = — / (atlr V?Z log fx(x, B, 2) az) du(x),

B(a,y) = Bp(a,y) = —f (af VgVy log fx(x, B, 2+ 97) lg=o du(x),

d2
COY = Cpiy) = — / (—

92 log fx(x,ﬂ,iJrz?y))‘ du(x).

=0

The transposed or adjoint bilinear form corresponding ts
Bz,g(i’v a) = Bg ;(a, 7).

The evaluation ¢ ; ((a1.71). (a2.7,)) for p € %, € 7" is equal by definition to
Ap (a1, a2) + Bp (a1, v2) + Bp s(a2, 71) + Cp (1, V2)-
(As) Forall (a, ) € R x 9o\{(0,0)}and(B, ) € U x ¥,

|Ap(a,a)| <oo, |Bp;la, y)l<oo, Cp(y, ) <00,
Aﬂo’io(a, a) + ZBﬁo’Zo(a, y) + Cﬁo’ko(y, y) > 0. (35)

(Ae) For 8 € %, there exists a unique minimizep € 7~ of #"(f, -) which is also the
unique solution of the derivative equation

(D; A (B, 2p)) () =0 Ve U, ye€ %o (36)

Moreover, — /g is twice Fréchet differentiable as a mapping framc R? to g, (cf.
(2)), such that{ Vs, atlrvl?z)% az € Yforallay, az € R? with sufficiently small norms,
and there is a finite constasms such that

for j=1, 2, sup||v?f Jgll2 <ezer(-).
B

One further regularity condition on the family of densitigs(x, 5, A) is needed in the
setting of infinite-dimensional.

(A7) There exists a functiom € L1(R¥, u) and a distance-functiomon {1 + 9y : 1 €
1,y € Go, |U|<e(A)} suchthap(iy, A2) >[141 — Z2(l4+, and such that forall =0, 1, 2,
all e andalliy, Ao € ¥,y € %,

IIV%@UOQ fx(x, B, A1+ 3Ip) —log fx(x, B, A2 + ) ly=olla <m(x) p(Z1, £2).

The final assumption relates to a familyofvalued estimatoriﬁ assumed to be defined
for eachn, i.e. a family of measurable mappinds: # x (R)" — 7, with 45 =
APy X,y on,s Xn).
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(Ag) The estimator—procesi;[; defined onff € %, as a mapping fron% to the A-
parameterspacé” C 70, is twice continuously differentiable, wifqg eV andatlrvﬁiﬁ,
a‘fvﬁ ipaz € 9 as. forallag, az € R? with sufficiently small norms. Moreover, the

estlmatorslﬁ are such that, for the same distance-funcpias in(A7), and for all vectors
a, a1, az € R? of sufficiently small norms, as — oo,

supp (2 +a"Vip + afV§?igaz. Jp+a"Vyly+af V§Zigaz) 0. (37)
peil

Moreover, there is a positive constagsuch that with probability approaching Lras> oo,
forall e %,v ae. t,

2
2p@) = 21+ Y IV Gp = 2 Dll2 < s ea (o). (38)
j=1

A.2. Discussion of the assumptions

Assumptions(Ag) and (A2)—(As) are slight variants of standard statistical regularity
conditions (for likelihood inference based on finite-dimensional parameters) dating back to
Harald Cramer. These assumptions are imposed both ¢grethét parameter-components,
although only the structural paramefias to be estimated efficiently. However, itis very con-
venient in the infinite-dimensional case that positive definitenegéof need be checked

only at the true parameteﬁo, 29). The usual assumption adentifiability for the param-
eterization (assertion (47) below) follows immediately fréfp)—(As). The requirement
thatl + ¥y continue to be an element whefg(-) is defined, as ifiA»), is a somewhat re-
strictive feature of our setup associated wi#h ), allowing consideration only of elements

A bounded above and below by fixed functions. Assumpt{@a3 and(A4) are needed for

a dominated convergence justification of interchange of derivatives and integrals in expres-
sions for the first- and second-order gradientsing) of #°(f, A+ 4y). Itis important that

the expressiond, B, C for the block-decomposition of (s ;) exist on a set of satisfying

the density restriction (4), as iA\s), and that the first derivatives arising in the expression
(36) and in Proposition 1 also hold for alke %,. However, the uniform second-derivative
bounds assumed i, butnotin %, are needed in the bracketing metric entropy estimates
underlying the proof of Proposition 2. The spa€en which the more restrictive bounds

are assumed to hold might be much smaller tf#gnits main role is to contain all small
multiples of the first- and second-order gradients&gf;lﬁ. The idea of conditior(Ag),

along with Proposition 1 as a consequence, was first giveBdwerini and Wong (1992)
AssumptiongA7) and(Asg), as well as the existencein (A3) simultaneously for all, are
needed specifically for the validity of bracketing metric entropy bounds and uniform laws
of large numbers on empirical processes related to the log-likelihood and its derivatives,
with /4 substituted for.
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A.3. Consequences of the assumptions

We derive two types of technical consequences of the assumpfighs(Asg): first those
based on standard advanced-calculus manipulationg’gh 1), and second those which
use empirical process theory on the normalized log-likelihood and its derivatives.

A.3.1. Calculus on?”
By Dominated Convergence aid3), for eachi € 77,y € %o, ande = ¢(4) as in(Ay),
the derivativesv g ») 4 (B, /. + 97) andvfffﬁ) A(B, A+ 9y) are continuous functions of

(B, V) € U x (—¢, &). By Dominated Convergence at@l3)—(A4) applied to the difference-
quotients in the defining integrals, the derivatives commute with the integrals, yielding for
j = 1’ 21

v(%{' 9 A (B, A+ 0y) = — / vﬁ;{ 9 109 £, B, 2+ 07) du(x) (39)
and
[ S e pis opaun =0, [ VR, et p e+ 09 duy =0
so that
Ap jlas,az) = af VE2 A (B, Daz,  Bp ;a1 ) = a{ VgD A (B, (),
C(y,7) =Dy (DA (B, D)) () (40)

and, witha®? = aa' fora € R?,

A olay, az) = / aff (Vglog fx(x, % 1%)®2 az du(x), (41)
By j0(a,7) = / (@"Vglog fx(x, f%.4%) D; log fx (x. f°. A% () du(x),  (42)

0 ;0y.0)2
C/so,)."(% ) =/ (D;L log fx(x, ", A )("/)) du(x). (43)

Animportant consequence (&g) appears by applying the Chain Rule for (total) implicit
Fréchet differentiatiorvg with respect t@ in the determining equation (36). Freely swap-

ping the order of derivatives up to second order and integrals in the definitigh(6f 74)
as in (39), we obtain for fixed € R?, f € %, y € %y,

h d h
a" Vi (DA (B 2p) ()] = —a" Vg = / log fx (x, B, A+ 97) du(x)ly=o

= - / {D;@" Vg log fx(x, B. 2p) ()
+D;(D;(log fx(x, B, Ap) () (a" Vgig)} du(x).
Substituting the definitions of the bilinear operatdrg;, Bg ;, Cp ; at 4 = ig then yields

a" Vi [(D; A (B, 2p) (D] = Bp (@, 7) + Cps,(@" Vgig, 7) =0. (44)
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Similarly, with arguments$, 45) understood throughout fot, B, C,

a" (V) P2AH (B, 2g)a = Ala, a) + 2B(a, a"Vhp) + C(a" Vi, a"Vgip)
= A[f,i/; (a,a) — C[i’,/l,; (a" Vg /1/;, a Vgip) (45)

=A@, a) + Bp ;,(a,a" Vgip), (46)

where the cross-term involving(a, y) in the first line of the formula has been replaced
according to (44) by-C (a" Vg Ag, ) in the following lines (45) and (46).

By definition of (5, 1) and the Information (or Jensen’s) Inequality, the functional
A is bounded below by# (82, 2°), with equality holding if and only iffx(-, B, 2) =
FxC, % 2% = 1 ae (u). The minimum value is attained &8, 1) = (8°, 2%, and Eqgs.
(39)—(43) along with(As) imply that.#" is strictly convex, so tha(tﬂo, 20) is the unique
local and global (o x #7) minimizer of ", and as a corollary

(B, ) — fx(, B, 7 isa 1-to-1 function int(%) x ¥~ — LYRF, p). (47)

By smoothness of the functior (5°, 2° + 1y) of 9, when|9| <&(A°) and|y| <c1, and the
fact that it is minimized at} = 0, there follows:

D (B2, 29)() =0 Vy e %.

By the uniqueness (ﬂfﬁo in (36), we find

Lemma A.1l. Under assumptionAg)—(A4) and (Ag), )»ﬁo =9

A.3.2. Empirical process theory for logLik
Next, note that with probability approaching 1 as— oo, by (1), (3) and(Asg), for
a € R?, with respect to the metrigon {L + 9y : 1 € 7",y € %o, |0| <e(L)},

pU. 20) > 0. p(a"Vghso. a" Vgl 0) = O (48)
and by(A2), (Ae), and(Ag)
VB e, 35>0:¥y e 9o, Y9 <8, fx(. B, As+9y) € L*w. (49)

This latter property is needed to make valid substitutions of estimatéstoflog-likelihood
expressions differentiated with respectito

The key technical result about the log-likelihood, loglikeeded in this paper is the
following:

Proposiition A.2. AssumdAg)—(Ag). Asn — oo, for I(f) equal to either of the/"-valued
curvesig or Ag, for all compact subsets C %,

;umn*l logLik,, (B, L(B)) + # (B, 1(B))| = 0p(1) (50)
eF
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and forj = 1,2 and(f) = Zﬁ or g, andg(a, f) on (a, ) € R? x % equal either to
a Vﬁ}iﬁ or atrV?ZZﬁ a,

sup Vﬁglly) |: logLik, (B, 1 +Jg) + A (B, l+79g)i| lv=0. 1=1(p)
BeF, llall2<1 g=g(a,p)
) (51)

The theoretical lemma on which this is based incorporates a bount'fbracketing
numbers described Man der Vaart (1998)

Lemma A.2 (Van der Vaart, 1998Thm. 19.4, Example 19.8Suppose that the sequence
of random variablegX;}!_, (which may take vector valugsr even values in a separable
metric space Bis independent and identically distributed with Borel I@xand that{#,, :

o € o/}, with o7 a compact metric spaces a family of functionsS — R such that

o> hy(x) is continuous Vx €S
and

H(x) = suplhyw| € LX(S, P).

oo

Thensuple&,ﬂ% Yol 1ha(Xi) — [ hy(x)dP(x)| — 0almost surelyin outer measurgas
n — o0.

These assertions primarily concern the so-caBédenko—Cantellproperty of an empir-
ical process\{an der Vaart, 1998Sec. 19.2) with respect to a class of functions. However,
in the present setting, we wish to prove uniform laws of large numbers for logLik and

derivative processes also with estimaté;;;ssubstituted forlz. Our approach is to apply
Lemma A.2 for the parts of (50) and (51) concerning evaluation of logLik and derivatives at
points involving/; and derivatives, and then to ug;) for the terms involving estimators

/g and derivatives.

Proof of Proposition A.2. First apply Lemma A.2 for the variable®; as above(Ag),
S=RK P=p, withoa=p, .o/ = F C % closed, and with functions, given successively

by
v®f log fx(B.2p). j=0,1,2, v®f D;(log fx(B. Ap)(Vglg), j=0,1

Dj (D;(log fx(B. ) (Vpip)) (Vgip), D,(log fx(p, ﬂﬁ))(V?Ziﬁ v),

wherev ranges over an orthonormal basidR¥f. The hypotheses of Lemma A.2 care easily
checked usingA3z). Then the Lemma implies that (50) and (51) hold witf) = /

andg(a, ) = a" Vphg or a®f V?ziﬁa. The remaining assertions of (50) and (51) follow
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immediately from the ones just proved, together witty)—(Ag) and (48). For example
1 ) - .
‘; logLik,, (. /1/}) + (P, /1/;)
Xi, B, %
<= Z Iog Ix( ﬂ /})
n fx(Xi, B, 2p)

1 :
+ ‘; logLik,, (8, 75) + 4" (8, ;v,g)‘ AP, I — A B, ).

The supremum ovef € F C % of the middle term on the right-hand side is one of the
terms we just showed to go to 0 using Lemma A.2, and the supremum of the third term goes
to 0 by uniform continuity ovep € F of 13 and#"(f3, 4p). For the first term, we find via

(A7)
log fx(Xi, . Ap)
Ix(Xi, B, 2p)

The supremum ovet € F of the final upper bound is the product of afactor/ﬂapjlﬁ, A8)
converging to 0 by(Ag) and a factorn*lzﬁzlm(x,-) which is stochastically bounded,
according to the Law of Large Numbers. Thus the product converges in probability to O.
The proofs of the other assertions of (50) and (51) are very similar.

n

nt Z

i=1

<pCp 2pn™ Y m(Xo).
i=1

As an immediate consequence of (51) and Proposition 2, uniformly over compact sets of
B within %,

V%Zﬁ) [ logLik,, (8, )ﬁ+19atr vﬁi[g)+9i/([3 ,1[;+19a V[g/bﬂ)iH Po. (52)

The main deductions we make from Proposition A.2 are:

Proposition A.3. Asn — oo,

0)
L 9T logLik B, 7g) 2250 (53)
o V109 s Ap) | p=po lI2

(i) with probability going tol, uniformly over compact sets gfe %, (V;)‘X’2 logLik (S,
/) is negative-definite
Proof. From Lemma A.1 and (36) for large the continuously differentiablg-vector-

valued random functloﬁ’g A (P, /1/;) has value p(1) in norm at[fo and (50), (51) and the
mean value theorem then imply (i) directly.
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Next, we turn to (ii). By the chain rule and the differentiabilityfq;‘ assumed inAg),
fora e RY andf e %

a"" (V) ®? logLik (B, i) a

=a" VZ?Z logLik (B, 25) a
v v, L togLik(p. L
+12a” Vg —logLik(B, Ap + Uy) + — logLik(B, 45+ Jy) )
dd di y=a"V,,}./;,/z9=0

d .
+ g 109LIK (B, g+ 07) (54)

y=al (V;?Zj.[;) a,9=0 "'

By (52) and Proposition A.2 applied to the four terms on the right-hand side of the last
equation, whem — oo,

1 . = = 5
- atr(V;}—)(@zIOngk”(ﬁ’ Aﬁ)a + jﬁl/; ((a, V/g/l/}), (a, Vﬁ/L/g)) =op(1). (55)

In eliminating the last term in (54) from the limit (55), we also appealed to (36) and the
observation that forall € 77, y € %y,

(D2 B 7)) ) = (D34 (B. 7)) () —> ©.

The same application of (52) and Proposition A.2 used to give (55) also shows that for any
compact subset C %, asn — oo

SURge

tr ~ 3 1
a? (V) ®logLik, (B. 2p)a+ 7 ;5 ((@. Vglp). (a. Vgip) ‘ ‘2 —o
(56)

Then, by the joint continuity of? s ; in its arguments, the same statement holds with the
term ¢ By replaced by

S p.05(@, Vphp), (@, Vpig)) = (V)2 A (B, Ap).

The assertion of (ii) follows immediately from (56) aflls), since thel x d matrices on
both sides of the last equation are continuous functiorfs of]

A.4. Solution forv,;ﬂ,ﬁo, Vﬂ/lﬁo in Section 4.1
As indicated in Section 4.1, the desired functions can be derived by solving the linear
system (28) of adjoint ordinary differential equations with initial and terminal conditions

(29). To simplify these equations, we define

he =Y ne"g.6)6'E Ps), (57)
Z

B =Y m 26756 s, (58)
Z
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B ==Y P g6 s), (59)
I ==Y . &P g 56" @ ), (60)
72" B )2
Je(s) = . &0 G 7 5)” 61
5(5) Z m q.(s) e (61)
710y 2
J _ i 30— M 62
6(5) Z zm € g (s) Py (62)
In terms of these notations, Egs. (28) become
i Ly _ Ly (s) L+(0) _ (0
ds (Q*) ) =Al) (Q*(S)) +E@), (Q*(/lo(fo))> =lo) (63)
where
3 J3(5)/J1(s) ~1/J1(s)
Al) = (J§<s>/11<s> ~ Js(s) —J3(S)/J1(S)> (64)
and
_ (Ja(s)s — J2(s))/ Ja(s)
E(s) = <J4<s> — Ua(s)s + (J3(5)/J1(5)) (Ja(s)s — Jz(S))) : (65)

Now, unlike the adjoint equation system 8lud and Vonta (2004)system (63) with
initial and terminal conditions (29) imhomogeneousHowever, the homogeneous part
A (L+, 0" is exactly the same as for system (29)—(30) given there (with the notAtion
there changed t@.. here).

To solve system (28) we define the notatté(y) on [0, o] for the ‘fundamental matrix’
of the homogeneous syste@dddington and Levinson, 1956h. 3), a 2x 2 matrix-valued
function satisfying

i H(s) =A(s)H(s), H@O) =1,
ds

wherel denotes the 2 2 identity matrix. The discussion in Coddington and Levinson makes
it clear that if the matrix-valued functiofd(s) were piecewise constant on successive small
intervals(k—1)h, kh), k=1, ..., A%(10)/ h (for smallk, with s/ h and A% (o) / h assumed

to be integers), then the fundamental matrix would be given uniquely by

H(s) = exp(hA(s — h)) exp(hA(s — 2h)) - - - exp(hA(h)) exp(hA(0)).

Inthe general case, whedds) is a piecewise Lipschitz functiohi (s) can be approximated
(k+1)h
as the product of term&; = exp[ [ A(@) dt) with the integral approximated via
kh
Simpson’s or some other quadrature rule.
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(k+D)h
Note that all of the 2« 2 matrices [ A(r) dr have trace 0 and negative determinant,

with positive upper-left element anéhnegative off-diagonal elements, and are thus of the
form
(k+1)h
A= / A(r)dr = <
kh

ar  —bg 2_ 2
—ck _ak> 5 dk = ak + bka (66)

with ag, by, cx > 0. ThenA; has right eigenvector&y, ax + di)" and (by, a; — di)",
respectively for the eigenvaluesiy, di, and it follows that

ex axr  —br\ _ by by e 0 by by -t
P —cr —ar ) \ax+dy ar—dy 0 el ar +dry  ap — di
1 b b e 0\ [(di—ax bk
T 2bidi \ak +di ap — di 0 & )\di+a —b
10 1 .
= coshdy) (O 1) + a sinh(dy) Ax.
Thus, the fundamental matrix(s) is approximately given by

[s/h] -1 1

Ho ~ ] {cosr(dk)l + = sinh(dk)Ak} , (67)

dj
k=0
where[-] denotes greatest-integer; the product of matrix terms is understood as an ordered
product with earlier terms appearing rightmost; and the quality of the approximation is
controlled by the step-size converging to the actual fundamental matrixzagnds to 0.
The linear second-order ODE system (63) determiipg= Vg Aﬁo can now be solved

using the fundamental matrik (s) for the homogeneous system. First, observe as in
Coddington and Levinson (1955, p. #at

i i L, B _1 i L, _ L*(S)
ds {(H(s)) (Q*)(S)}_(H(S)) {ds (Q*>(s) A(S)(Q*@)}

so that Eq. (28) becomes
d% {(H(s))—l (gj) (s)} = (H() L) (68)

and the full solution can be developed by quadratures, as follows. First, making use of the
boundary conditions (29) and integrating from Q4%(zg), we deduce

A°%(zg)

0
et () < (L5 )= [ o tEoe
0

Thus, using the notation)4, (v), to denote the first and second components of a two-
dimensional vectoy,
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A%(to)
-1
Lo =| [ HoyEG / <(H(A°(7:o))) ) ,
11
0 1
A%(w)

1
0.(0) = | L.(A%10)) (H(A%(z0))) 71 (0)— f H@)LE@) dr
0

2
and we find that
Li(s)) _ 0 [ -1
<Q*(s)) =H() | 240 (1) + Of HO)E@dr | (69)
We conclude from (63) and (69) that
Vp log 2p0((49)7H(s))
= |A®H®) | 0:0) (2) +/(H(r>)flE(t)dr +E® |
0 1
VpAp((A%) 7)) = | H(s) | 24(0) (2) + / H)EM || . (70)
0 1

Although complicated, these formulas are explicit up to numerical quadratures and the
matrix products in formula (67).
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