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Abstract

A new strategy is developed for obtaining large-sample efficient estimators of finite-dimensional
parameters� within semiparametric statistical models. The key idea is to maximize over� a non-
parametric log-likelihood with the infinite-dimensional nuisance parameter� replaced by a consistent
preliminary estimator̃�� of the Kullback–Leibler minimizing value�� for fixed�. It is shown that the
parametric submodel with Kullback–Leibler minimizer substituted for� is generally a least-favorable
model. Results extending those of Severini and Wong (Ann. Statist. 20 (1992) 1768) then establish
efficiency of the estimator of�maximizing log-likelihoodwith� replaced for fixed� by �̃�. These the-
oretical results are specialized to censored linear regression and to a class of semiparametric survival
analysis regression models including the proportional hazards models with unobserved random effect
or ‘frailty’, the latter through results of Slud andVonta (Scand. J. Statist. 31 (2004) 21) characterizing
the restricted Kullback–Leibler information minimizers.
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1. Introduction

There are nowseveral different tools for expressing the semiparametric information about
the finite-dimensional (‘structural’) parameters in semiparametric models and for establish-
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ing efficiency of candidate estimators (Bickel et al., 1993; Van derVaart andWellner, 1996;
Bickel andKwon, 2001, andmanyother references for specificmodels cited in theseworks).
Yet even in the iid case, there are important problems—such as the general transformation
model (Bickel et al., 1993, Section 4.7, Example 2;Cheng et al., 1995) where there are
either no candidate efficient estimators, or where natural candidates like the NPMLE are
computable but intractable to characterize abstractly (Slud and Vonta, 2004).
An approach to likelihood inference which has been influential and successful in both

parametric and semiparametric problems is that of profile or partially maximized likelihood
(Kalbfleisch and Sprott, 1970; McCullagh and Tibshirani, 1990; Stafford, 1996). For both
non- and semi-parametric problems,Owen (1988)andQin and Lawless (1994)construct
anempirical likelihoodby fixing structural parameters and substituting an analytically de-
termined restricted NPMLE over nuisance parameters, with the objective of establishing
valid generalized likelihood-ratio-based confidence regions. In the semiparametric con-
text, the recent paper ofMurphy and van der Vaart (2000)is noteworthy, suggesting that
generalized likelihood-ratio tests can be constructed and justified generally whenever one
can verify abstract functional-analytic conditions about the maximizer over the unknown
infinite-dimensional nuisance parameter for fixed values of the structural parameter. Related
research on semiparametric generalized likelihood-ratio tests, with substituted nuisance-
parameter estimators other than the partial NPMLE’s, has been pursued byFan et al. (2001).
The paper ofSeverini andWong (1992)showed that efficient semiparametric estimators

arise bymaximizing a ‘modified profile likelihood’, i.e., a likelihoodwith nuisance parame-
ters replaced by an estimated least-favorable parameterization. These authors advanced the
idea of obtaining a least-favorable nuisance-parameterization by maximizing theexpected
log-Likelihoodor negativeKullback–Leiblerfunctional. When a smoothly consistent esti-
mator of this maximizer for fixed structural-parameter values is substituted into the likeli-
hood, and the latter is then maximized over the structural parameters, an efficient estimator
results. (In the case of infinite-dimensional nuisance parameters,Severini andWong (1992)
developed this idea only in the special case of their ‘conditionally parametric models’.) The
general theory of the extension of this idea to the infinite-dimensional case is developed
here, providing least-favorable parametric submodels, information bounds, and efficient
estimators.
The theoryof thismethod justifiesageneral principleof semiparametricestimation,which

can be used (i) to unify existing semiparametric-efficient
√
n consistent estimators in many

problems; (ii) to generate new examples of such estimators; and (iii) to provide alternative
and simpler formulas for semiparametric information bounds. In this paper, we first use
the general theory to develop a new form of efficient estimators for the censored linear
regression problems, in which efficient estimating equations had previously been found
by Tsiatis (1990)andRitov (1990). Next we apply the theory to a broad class of survival
(‘frailty’) transformation models—beyond those already treated byClayton and Cuzick
(1986), Parner (1998), andKosorok et al. (2004)—obtaining new computable formulas for
information bounds and sketching the construction of efficient estimators.
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1.1. Organization of the paper

The paper is organized as follows. In Section 2 we present the general problem setting
for independent data, along with notational definitions, preliminary assumptions, and the
central theoretical results. The remaining assumptions are stated in the TechnicalAppendix,
in Section A.1, and discussed in Section A.2, and some technical consequences of the
assumptions are also proved in Section A.3. Two applications of the theory are given,
first in Section 3 to establish (known) information bounds and a new form of the efficient
estimator in the censored linear regression model, and then in Section 4 to provide a new
information bound formula in general frailty or transformation survival regression models,
as well as a sketch of how to construct efficient estimators in that setting.

2. Consistency and efficiency of maximum modified profile likelihood estimators

Assume that the independent identically distributed (iid) data-sampleX1, X2, . . . , Xn

of random vectors inRk is observed and assumed to follow a marginal probability law
� = P

(�0,�0) where�0 ∈ U ⊂ Rd , �0 ∈ V ⊂ L0(Rq, �) (Borel-measurable functions),
whereU is a fixed open set;V is a fixed set of positive measurable functions; and the
�-finite measure� (locally finite, but not necessarily a probability measure) is fixed onRq .
In addition assume that there is a family{P(�,�), (�, �) ∈ U × V} of Borel probability
measures onRk, such that
(A0) For all (�, �) ∈ U × V, P(�,�)>�, and the regularity of densitiesfX(·,�, �) ≡

dP(�,�)/d� as functions of(�, �) will be further restricted below. Note that by definition,

fX(·,�0, �0) ≡ 1. The true parameter-component value�0 is assumed to lie in the interior
of a fixed, known compact setF ⊂ U.
(A1) There exist fixed positive, finite real-valued functionsc1, c2 on Rq such that

0<c1(·)��0�c2(·)<∞ a.e. (�) and

∀� ∈ V, �-a.e. c1(·)���c2(·). (1)

In what follows, let‖ · ‖1 denote theL1(Rk, �) norm. Here and below,‖ · ‖2 always
denotes a Euclidean norm on vectors, or on matrices considered as vectors, rather than an
L2 functional norm. The spaceV is regarded from now on as a subset of the normed linear
space

V0 ≡ { �(·)c2(·) : � ∈ L∞(Rq, �)}, ‖�‖V0 ≡ ‖�/c2‖∞,�. (2)

The densitiesfX, and estimators to be substituted for the nuisance parameters�, are further
restricted in Assumptions(A2)–(A8) given in Section A.1 of the Technical Appendix. In
those assumptions, we consider perturbations of functions� ∈ V by small multiples of
functions in subsets

G ⊆ G0 ⊆ {� ∈ L0(Rq, �) : |�(t)|�c1(t) } (3)

such that

{�/c1 : � ∈ G0} is‖ · ‖∞ dense in {g ∈ L∞(Rq, �) : ‖g‖∞�1}. (4)
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Here and in what follows, we define the differentiation operatorD� for all functions� :
V → R, and all� ∈ G0, by:

(D� �(�))(�)= d

dϑ
�(� + ϑ�)

∣∣∣∣
ϑ=0

and denote total differentiation in� by ∇T. Throughout,∇⊗2 = ∇ ∇ tr denotes a matrix-
valued second-derivative (Hessian) operator.
The log-likelihood for the modelsP(�,�) and dataX = {Xi}ni=1 is defined by

logLikn(�, �)=
n∑
i=1

log fX(Xi, �, �), (�, �) ∈ (U×V).

When there is no danger of ambiguity inwhat follows,wedrop the subscriptn in the notation
logLikn.
Define the Kullback–Leibler functional by

K(�, �) ≡ −
∫

log fX(x,�, �)d�(x).

The key idea ofmodified profile likelihood(Severini and Wong, 1992) is to replace the
nuisance parameter� in the log-likelihood by a suitable estimator�̃�, restricted by(A8),
of the minimizer�� of K(�, ·) over� ∈ V (assumed unique and with further regularity
properties in(A6)). The estimator of�, to be proved efficient, is then the maximizer of the
modified profile likelihood.

Remark 1. The key insight enabling the modified profile likelihood approach to guarantee
semiparametric efficient estimators is that in estimating�0, the directional derivatives with
respect to the nuisance parameter� in functional space need be taken only at base points
withinaset sufficiently largesoas tocontainall partialmaximizers (��, for fixedbutarbitrary

�), in directions which should include all linear combinations of derivatives∇⊗j
� ��, j =

1,2, and their preliminary estimators. Such spaces of base points and tangents are infinite
dimensional, but canbe far smaller than the linear spacesspanned respectively byparameters
� ∈ V and by differences of elements ofV.

Proposition 1 (Severini and Wong, 1992). The d-dimensional smooth parametric sub-
model (�, ��) is a least-favorabled-dimensional regular parametric submodel for the
general semiparametric modelP�,�, where�� is the minimizer ofK(�, ·) as in(A6).

Proof. According to Theorem 3.4.1 ofBickel et al. (1993), it suffices to check for any
� ∈ G0, withG0 as in (3) and (4),

E�0,�0

(
{∇T

� log fX(X1,�, ��)}
∣∣∣
�=�0

d

dϑ
log fX(X1,�

0, �0 + ϑ�)

∣∣∣∣
ϑ=0

)
= 0.

However, after expressing the expectation as an integral and expressing the latter in terms
of the blocksA, B, B∗, C of the operator bilinear formJ�0,�0 defined in (34) in the
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Technical Appendix, this assertion becomes an immediate consequence of (41)–(43), (44)
and Lemma 1. �

Now we can define our proposed efficient estimator for�, as the maximizer of
logLikn(�, �̃�). Since we assume in(A0) that�

0 ∈ int(F ), our precise definition becomes

�̃ ≡ arg max
�∈F

logLikn(�, �̃�). (5)

Theorem 1.With probability converging to1 asn → ∞, the estimator̃� defined in(5) is
uniquely defined, lies for largen in the interior ofF ⊂ U, and is consistent for�0.

Proof. Let 	>0 be small enough so that{� ∈ Rd : ‖� − �0‖2�	} ⊂ F . By the mean
value theorem

1

n
logLik(�, �̃�) − 1

n
logLik(�0, �̃�0)

= (� − �0)tr
1

n
∇T

� logLik(�0, �̃�0)

+ 1

2n
(� − �0)tr(∇T

� )
⊗2 logLik(�∗, �̃�∗) (� − �0)

for some�∗ on the ray between�0, �, which implies via Proposition 3 and (52) in Section
A.3, that for a constant
>0not dependingonn, takensmaller than theminimumeigenvalue
of (∇T

� )
⊗2K(�0, �0), that

sup
�∈F, ‖�−�0‖2�	

n−1 logLik(�, �̃�) �n−1 logLik(�0, �̃�0)− 	2 
/2

with probability converging to 1 asn gets large. Thus‖�̃ − �0‖2< 	 with probability
converging to 1, and since	>0 can be taken arbitrarily small,�̃ ∈ F is consistent. This
concludes the proof of Theorem 1.�

At this point, we know that logLik(�, �̃�) is strictly concave on compact subsets ofUwith

probability converging to 1, and that�̃ is consistent and uniquely defined inF. Moreover, as
shown in Proposition 3, with probability near 1 for largen, the random functionK(�, �̃�)

is strictly convex onU, with Hessian uniformly close, on neighborhoods of�0 which shrink
down to{�0}asngets large, to the information bound, or least-favorable informationmatrix,

I0
� ≡ I

(
P�0,�0 |�, P�,�

)
(Bickel et al., 1993, p. 23)

defined for alla ∈ Rd by

atr I0
� a ≡ J�0,�0

(
(a, ∇���0), (a, ∇���0)

)
(6)

and equivalently expressed by (46) in the Technical Appendix.
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Strict concavity of logLikn here also implies that̃� is uniquely (locally, withinU) char-
acterized as the solution of the equation, for alla ∈ Rd ,

atr ∇T
� logLikn(�, �̃�)=

atr∇�logLikn(�, �̃�)+ (D� logLikn(�, �̃�))(a
tr∇��̃�)= 0. (7)

The next objective is to prove under the assumptions given above that the estimator�̃ is√
n consistent, asymptotically normal, and efficient.

Theorem 2. Under the assumptions(A0)–(A8), for all a ∈ Rd ,

√
natr(�̃ − �0)(1+ oP(1))

= 1√
n

(
atr(I0

�)
−1∇� logLik(�

0, �0)

+ d

dϑ
logLik(�0, �0 + ϑatr(I0

�)
−1∇���0)

∣∣∣∣
ϑ=0

)
. (8)

Proof. We examine separately and Taylor-expand as functions of(�, �) about(�0, �0) the
two terms in the second line of (7) evaluated at�= �̃. First, the consistency of�̃ for �0 (from
Theorem 1) and of∇� �̃�0 for ∇� ��0 (from (A8)) and the difference-quotient definition of
the derivative imply

�̃�̃ − �̃�0 = ∇� �̃�0 (�̃ − �0)+ oP(�̃ − �0)= ∇� ��0 (�̃ − �0) + oP(�̃ − �0) (9)

in the sense of norm‖ · ‖V0. Next, for smallϑ, Taylor-expanding in� about�0

d

dϑ
logLik(�̃, �̃�̃ + ϑ�)

= d

dϑ
logLik(�0, �0 + ϑ�)+ (�̃ − �0)tr ∇⊗2

�,ϑ logLik(�
0, �̃�0 + ϑ�)

+ d2

dt dϑ
logLik(�0, �̃�0 + ϑ� + t (�̃�̃ − �̃�0))

∣∣∣∣
t=0

+ oP(n(�̃ − �0)).

Now divide through byn and apply Proposition 2 from Section A.3, then evaluating at
� = �0, ϑ = 0, to find for� = atr ∇��̃�̃,

d

dϑ

1

n
logLik(�̃, �̃�̃ + ϑ�)

∣∣∣∣
ϑ=0

= d

dϑ

1

n
logLik(�0, �0 + ϑ�)

∣∣∣∣
ϑ=0

− B�0, �0(�̃ − �0, �)− C�0, �0

(
�, (�̃ − �0)tr ∇��̃�0

)
+ oP(�̃ − �0).
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By the consistency already proved for the estimator�̃, together with equation (44), we
conclude that with probability approaching 1 asn → ∞

d

dϑ

1

n
logLik(�̃, �̃�̃+ϑ�)

∣∣∣∣
ϑ=0

= d

dϑ

1

n
logLik(�0, �0+ϑ�)

∣∣∣∣
ϑ=0

+ oP(�̃ − �0) (10)

for � = atr ∇��̃�̃. Next consider the term

n−1atr2 ∇� logLik(�̃, �̃�̃)

which we Taylor-expand about(�0, �0) and re-express via Proposition 2 to obtain

atr2

n
∇�logLik(�

0, �0)− A�0,�0(a2, �̃ − �0)− B�0, �0(a2, �̃�̃ − �̃�0)+ oP(�̃ − �0).

Combining (9) with the previous equation, and making use of (44) and (6), we find

1

n
∇� logLik(�̃, �̃�̃)=

1

n
∇� logLik(�

0, �0)−I0
� (�̃ − �0)+ oP(�̃ − �0). (11)

Finally, combine (7), (10), and (11), using also the second equality in (9), to establish

atr2

{
1

n
∇�logLik(�

0, �0)−I0
� (�̃ − �0)

}
+ (D�logLik(�

0, �0))
(
atr2

n
∇��̃�̃

)
= oP(�̃ − �0).

Then, replacingatr2 by atr
(
I0

�

)−1
completes the proof.�

In our iid setting, Theorem 2 immediately implies

Theorem 3. Under Assumptions(A0)–(A8), as n → ∞
√
n
(
�̃ − �0

)
D−→N

(
0 ,
(
I0

�

)−1
)
. (12)

Proof. In view of Theorem 2, and the Cramer–Wold device for deriving multivariate dis-
tributional limits from univariate ones, we need only express (witha2 ≡ (I0

�)
−1a)

1√
n

(
atr2 ∇� logLikn(�

0, �0)+ d

dϑ
logLikn(�

0, �0 + ϑ atr2∇���0)

∣∣∣∣
ϑ=0

)

asanormalized iid sum towhich theordinary central limit theoremapplies.But thedisplayed
expression is

1√
n

n∑
i=1

{
atr2 ∇� log fX(Xi, �0, �0)+ d

dϑ
log fX(Xi,�

0, �0 + ϑ atr2∇���0)

∣∣∣∣
ϑ=0

}

= 1√
n

n∑
i=1

atr2 ∇T
� log fX(Xi, �, ��)

∣∣∣∣∣
�=�0

.
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A familiar calculation as in (45) shows that the variance of these summands isatr2 I0
� a2,

and after recallinga2= (I0
�)

−1a, the assertion follows by (8) and the central limit theorem.
�

3. Censored linear regression

The problem of estimating linear-regression parameters efficiently in a semiparametric
setting, where the error-distribution is unknown and the data are randomly right-censored,
has been studied by many authors. (SeeBickel et al., 1993for background and refer-
ences.) This is a problem where efficient estimating equations are known (Tsiatis, 1990;
Ritov, 1990; Bickel et al., 1993, pp. 147ff), but where the efficient estimators are not simple
enough to have come into general use.
The censored linear-regression model assumes

Xi = Ztr
i � + �i , Ti =min(Xi, Ci), �i = I[Xi �Ci ],

where the observed data consist of independent identically distributed triples(Ti, Zi, �i ),
and �i is assumed independent of(Zi, Ci). The unknown parameters are the structural
coefficients�, and the hazard intensity�(u) ≡ F ′

�(u)/(1− F�(u)).

Denote(t) ≡
t∫

−∞
�(s)ds,whichwill beassumedfinite for allt <∞, and,with(�0, �0)

denoting the true parameters actually governing the data

qz(t) ≡ P(T1� t |Z1 = z)= P(C1� t |Z1 = z)e−0(t−ztr �0).

The measure� is Lebesgue measure onR. The data-spaceD=R×Rd × {0,1} consists
of triplesx = (t, z, 	) with t ∈ R, z ∈ Rd , 	 = 0,1. We define the probability law for the
true model by

d�(t, z, 	) ≡ (	 �0(t − ztr�0) qz(t)dFZ(z)+ (1− 	)e−0(t−ztr�0) dFZ,C(z, t))dt.

The densitiesfX(x,�, �) have the form(�(t − ztr�)/�0(t − ztr�0))	 exp(0(t − ztr�0)−
(t − ztr�)). Therefore, the log-likelihood in this setting is

logLik(�, �)=
n∑
i=1

{
�i log �(Ti − Ztr

i �)− (Ti − Ztr
i �)

}
(13)

apart from additive terms not depending on(�, �), and the Kullback–Leibler functional is
(after integration by parts int in the second term)

K(�, �)

=−
∫ ∫

qz(t)
{
�0(t − ztr�0) log �(t − ztr�)dt − �(t − ztr�)

}
dt dFZ(z).

The random vectorsZi may contain a constant component. These vectors must be
compactly supported, and not linearly degenerate, and we proceed to indicate the further
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regularity conditions which are sufficient to apply the efficiency theory given in Section 2.
Assume
(C0) The parameter�0 lies in the interior of the fixed compact regionU ⊂ Rd , and

c0 ≡ ess. sup‖Z1‖2<∞, so that


0 ≡ ess. sup
�∈U

|(� − �0)trZ1|�c0 · diam(U)<∞.

Moreover, for every nonzero constant vectora, the variableatr Z1 has positive variance,
i.e., is nondegenerate.
(C1) (a) The parameter�0 belongs to the set of nonnegative, twice continuously differ-

entiable functions� onR which satisfy(t) ≡
t∫

−∞
�(s)ds <∞ for t <∞,(∞)=∞.

(b) Also, define the fixed functions

c1(t) ≡ inf|s|�
0
�0(t + s), c2(t) ≡ sup

|s|�
0
�0(t + s)

and assume‖c2/c1‖∞,� <∞. For all� as in (a), definew�(t, z, 	) by:

w�(t + ztr�0, z, 	) ≡ e
0(t)

(�0(t))	

× sup
|x−t |�
0

{(1+ �(x)) (1+ �(x)+ (x))2 e−(x)}. (14)

Then c2(t)+ | log c1(t)| +
t∫

−∞
c2(s)ds + w�0(t, z, 	) ∈ L1(D,�).

(C2) For j = 1,2, | dj
dtj

log �0(t)| � c3 for some finite constantc3.
(C3)As a function oft, P (C1� t |Z1= z) is almost surely twice continuously differen-

tiable, with a finite constantc4 such that forj = 1,2 and allt, z, | dj
dtj

logP(C1� t |Z1 =
z)|�c4.
The regularity conditions(A0)–(A4) are readily checked to follow from(C0)–(C3) in

this setting, with

V= {
� ∈ V0 : ∀|s|�
0, c1(t)��(s + t)�c2(t),

max
j=1,2

∣∣∣∣ djdtj log �(t)

∣∣∣∣ �2c3, w�(t, z, 	) ∈ L1(�)
}

and, for a fixed positive finite constantc5,

G=
{

� ∈ V0 : sup
|s|�
0

|�(t + s)|�c1(t), sup
|s|�
0

|�′(s + t)|�c5c1(t)

}
,

G0 =
{

� ∈ V0 : sup
|s|�
0

|�(t + s)|�c1(t), sup
t

sup
|s|�
0

|�′(s + t)|/c1(t) < ∞
}
.
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The log-likelihood summands and their derivatives up to second order as in(A3) are
dominated by the function

b(t, z)= (| log c1(u)|

+2

u∫
−∞

c2(s)ds + 4(1+ c0)
2(1+ c3) (1+ c2(u))



u=t−ztr�0

.

For example, by(C0) and the definition ofG

‖∇⊗2
�,ϑ log(� + ϑ�)(t − ztr�)

∣∣∣ ϑ=0,
�=�0

‖2�
∣∣∣∣∣
∣∣∣∣∣z
{

�′

�
− �′�

�2

}
t−ztr�

∣∣∣∣∣
∣∣∣∣∣
2

�c0(2c3 + c5).

Similarly, the individual likelihood terms and their derivatives up to second order as in(A4)

are dominated by the function

r(t, z, 	)= 4(1+ c0)
2
(
(1+ c3)

2 + c5

)
w�(t, z, 	).

The operatorsA�0,�0, B�0,�0, C�0,�0 have the explicit forms

A�0,�0(a, a)=
∫ ∫

qz(t) (z
tra)2

(
�0

′
(t − ztr�0)

)2
�0(t − ztr�0)

dt dFZ(z), (15)

B�0,�0(a, �)=−
∫ ∫

qz(t) (z
tra) �(t − ztr�0)

�0
′
(t − ztr�0)

�0(t − ztr�0)
dt dFZ(z), (16)

C�0,�0(�, �)=
∫ ∫

qz(t)
�2(t − ztr�0)

�0(t − ztr�0)
dt dFZ(z). (17)

From these formulas, it follows immediately that (35) holds at(�, �)= (�0, �0), since

A�0,�0(a, a)+ 2B�0,�0(a, �)+ C�0,�0(�, �)

=
∫ ∫

qz(t)

�0(t − ztr�0)

(
atrz �0

′
(t − ztr�0)− �(t − ztr�0)

)2
dt dFZ(z)

cannot be 0 unlessatr Z is a.s. conditionally degenerate (at a value other than 0, the same
for all t) givenT � t for a.e.t . This proves(A5), since the finiteness ofB�,�, C�,� follows
from the dominatedness conditions(A3)–(A4).
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The maximization with respect to� for fixed � to determine�� is unconstrained, and
results in the equation, for all bounded�,

0=
∫ ∫

qz(t)

{
�0(t − ztr �0)

�(t − ztr �)
�(t − ztr �)

− �(t − ztr �)
}
dt dFZ(z)

=
∫ ∫

qz(t + ztr �) �(t)

[
�0(t + ztr(� − �0))

�(t)
− 1

]
dt dFZ(z)

from which it follows that

��(t)=
∫
qz(t + ztr �) �0(t + ztr(� − �0))dFZ(z)∫

qz(t + ztr �)dFZ(z)
. (18)

From this explicit formula, together with(C3), there follows(A6). Next, an information
bound formula is derived from (44), (18) and the calculation

∇���(t)
∣∣
�=�0 =

∫
z qz(t + ztr�0) �0

′
(t)dFZ(z)∫

qz(t + ztr�0)dFZ(z)
= E0(Z |T − Ztr�0� t) �0

′
(t),

whereE0 and later Var0 denote (conditional) mean and variance under the model with
parameters(�0, �0).
Thus the semiparametric information matrix has quadratic form given by

atr I0
� a = A�0,�0(a, a)+ B�0,�0(a, a

tr∇���0)

=
∫ ∫

qz(t)
(�0

′
(t − ztr�0))2

�0(t − ztr�0)

{
(ztra)2

−(ztra)E0(Z
tra |T − Ztr�0� t − ztr�0)

}
dt dFZ(z),

which after the change of variables = t − ztr�0 becomes

∫ ∫
P(T − Ztr�0�s)

(�0
′
(s))2

�0(s)

{
ztra − E0(Z

tra |T − Ztr�0�s)
}2

ds dFZ(z)

=
∫

(�0
′
(s))2

�0(s)
Var0(Z

tra |T − Ztr�0�s) P (T − Ztr�0�s)ds (19)

and this last formula agrees with the efficient information bound formula given byRitov
(1990).

Efficient estimators can next be defined based on a consistent preliminary estimator�̃
0

of �0, together with a preliminary kernel-type estimator�̃�0 obtained from right-censored

‘data’ �̃i ≡ Xi − Ztr
i �̃

0
.

Note that the smoothness ofqz in t , as provided by(C3), was needed to check the
smoothness of�� in � as required for(A6). Assumption(A7) is easily checked directly,

where the distance function� is taken to be�(�1, �2)=k
(∑2

j=0 ‖ dj

dtj
(�1 − �2)‖V0

)
, with
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the real-valued functionk(x) defined ask(x) ≡ xI [x�1/2] − log(1− x) [x<1/2]. We now

proceed to exhibit the estimator�̃� satisfying(A8) by defining preliminary estimators.

A preliminary estimator�̃0 can be obtained in the spirit ofKoul et al. (1981)by regression

�i Ti / ŜC|Z(Ti |Zi) on Zi.

In this generality,ŜC|Z will be some kernel-based nonparametric regression estimator, as
in Cheng (1989). In the more special case whereZi andCi are also independent, the
Kaplan–Meier estimator̂SKMC (Ti) will do: this was (after some modifications needed to
obtain asymptotic distributional results) the setting and approach ofKoul et al. (1981).

The preliminary estimator̃�
0
is obtained as a kernel-density variant of theNelson–Aalen

estimator, as described byRamlau–Hansen (1983), with kernelcdfA(·), bandwidthbn ↘ 0
slowly enough (saybn ∼ an−1/6):

�̃
0
(w)= 1

bn

∫
A′
(
w − u

bn

) ∑
i dNi(u+ Ztr

i �̃0)∑
i I[Ti �u+Ztr

i �̃0]

= 1

bn

n∑
i=1

�i A
′

w − Ti + Ztr

i �̃0

bn


/ n∑

j=1

I[Tj �Ti+(Zj−Zi)
tr �̃0].

Then �̃� is defined by substituting the estimators�̃
0
into empirical averages overZ

within �� defined by (18),

�̃�(t) ≡
n∑
i=1

A

(
Ti−t−Ztr

i �

bn

)
�̃0
(
t + Ztr

i

(
�−�̃0

))/ n∑
i=1

A

(
Ti−t−Ztr

i �

bn

)

and̃� is obtainedbynumerically integrating�̃� over[0, t].Theestimator̃�� is easily shown
to satisfy(A8) if the kernelcdfA(·) is compactly supported and three times continuously
differentiable. Finally, we substitute these expressions into

logLik(�, �̃�)=
n∑

j=1

{
�j log �̃�(Tj−Ztr

j �)−̃�(Tj−cZtr
j �)

}

which is to be numerically maximized over� in defining�̃.

4. Transformation and frailty models

The semiparametric problems which motivated the present work concern transformation
and frailty models in survival analysis (Cox, 1972; Clayton and Cuzick, 1986; Cheng et al.,
1995; Parner, 1998; Slud andVonta, 2002, 2004; Kosorok et al., 2004). This class of models
postulates, for the random lifetime of an individual with an observedd-dimensional vector
Z of covariates, a conditional survival function

ST 0|Z(t |z)= exp(−G(eztr� (t))), (20)
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whereG is a known function, satisfying the following regularity conditions given bySlud
and Vonta (2004):
(F1) G is a strictly increasing and concaveC3 function on(0,∞) satisfyingG(0) =

0,0<G′(0)<∞,G(∞)=∞,G′(∞)= 0, along with the further properties

sup
x>0

(−xG′′(x))/G′(x)<∞, sup
x>0

|xG′′′
(x)/G′(x)|<∞,

∫
e−G(x) log(1/G′(x))G′(x)dx <∞.

The assumptions imposed on the functionG are easily satisfied by the Clayton–Cuzick
model (Gamma distributed frailty, which corresponds toG(x) = b−1 log(1 + bx) for a
constantb>0) and by InverseGaussian frailties. Examples of different frailty distributions,
also satisfying the assumptions, can be found inKosorok et al. (2004)and references cited
there.
Here the unknown parameters, with true values(�0, �0), are(�, �) where� ∈ Rd and

(t) ≡
t∫
0

�(s)ds is a cumulative-hazard function, i.e.�(s)�0,(∞)=∞. For notational

simplicity, we assume that the variablesZ ∈ Rd have discrete and finite-valued distribution,
�z ≡ P(Z = z), but a compactly supported distribution yields the same set of theoretical
results. Again the assumption(C0) is in force, withU a small closed Euclidean ball around
�0 ∈ Rd .
Thedata are randomly right-censored, i.e., there is anunderlying positive randomvariable

C conditionally independent ofT givenZ = z with

Rz(y) ≡ P(C�y |Z = z).

Theobservable data for a sample ofn independent individuals are(Ti ≡ min(T 0
i , Ci), �i ≡

I[T 0
i �Ci ], Zi, i = 1, . . . , n), encoded into the processes

Ni
z(t)= �i I[Zi=z,Ti � t], Y i

z (t)= I[Zi=z,Ti � t].

For the present, we will assume that the distribution ofZ and the conditional censoring
survivor functionsRz are known, which is actually not a significant restriction since the
estimators we develop do not depend on the form ofRz and are ‘adaptive’ in the sense
of attaining the same information bounds as for the case of estimators allowed to depend
uponRz. However, followingSlud and Vonta (2002)we also impose a nontrivial technical
restriction on the (correctly specified) distribution of the data through the function

qz(t) ≡ P(T � t |Z = z)= Rz(t) exp
(
−G(eztr�0 0(t))

)
(21)

(which differs from the notationqz of Slud and Vonta (2002, 2004)by omitting the factor
�z = P(Z = z)) in the form

qz(t) ≡ 0 for t > �0, qz(�0)>0. (22)

The import of this restriction is that for some fixed time�0 beyond which the individuals in
a study do have a positive probability of surviving uncensored, the data are automatically
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right-censored at�0. This is not a practically restrictive condition, but as a matter of the-
oretical technique it should be removed. (It is not needed in either the Cox model or the
Clayton–Cuzick semiparametric Pareto model when efficient estimation in these models is
treated by other methods.)
Define� to beLebesguemeasureon the interval[0, �0]. Thedata spaceD=R×Rd×{0,1}

again consists of triplesx = (t, z, 	). The Borel probability measure� onD is now given
by

d�(t, z, 	)= �z
(
	 qz(t)G′(eztr�

0
0)ez

tr�0�0(t)dt

− (1− 	)e−G(ez
tr�0 0(t)) dRz(t)

)
.

The statistical problem is further specified by
(F2)Conditions(C0) and (22) hold, and there exist positive, finite constantsc1<c2 such

that

c1��0(t)�c2, a.e. t ∈ [0, �0]
and the candidate parameters(�, �) are all assumed to lie inU×V, with

V ≡ {� ∈ L1([0, �0], �) : c1��(t)�c2}
and the spacesG = G0 of perturbing functions are taken to be{� ∈ L∞([0, �0], �) :
‖�‖∞�c1}.
The semiparametric log-likelihood in this problem is

logLik(�, �)

=
∑
z

n∑
i=1

�0∫
0

{
log(ez

tr� G′(eztr�)�)dNi
z − Y i

ze
ztr�G′(eztr�)�d�

}
. (23)

This log-likelihood leads to the expression, fora ∈ Rd , � ∈ L∞(�)(
A�0,�0(a, a) B�0,�0(a, �)
B�0,�0(a, �) C�0,�0(�, �)

)

=
∑
z

�0∫
0

�z qz


 atr z {1+ (xG′′(x)/G′(x))

x=eztr�00}
ez

tr�0
·∫
0

�d�(G′′/G′)
x=eztr�00 + �/�0




⊗2

× ez
tr�0G′(eztr�

0
0) �0 d� (24)

where0 =
·∫
0

�0 d� =
·∫
0

�0(t)dt .

Under assumptions(F1)–(F2) above, conditions(A1) of Section 2 and(A2)–(A4) in
SectionA.1, alongwith(A7) for�(�1, �2) ≡ ‖�1−�2‖∞,�, are easily verified by inspection.
Next we verify(A5). In this model,I(�0, �0) evaluated at nonzero(a, �) ∈ Rd × G0 is
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positive, unless for some(a, �),

atr z

(
1+

(
xG′′(x)
G′(x)

)
x=eztr�00

)
+ ez

tr�0


 ·∫

0

�d�


(G′′

G′

)
x=eztr�00

+ �

�0
= 0.

Direct reasoning shows this to be impossible by(C0) for any(a, �) �= (0,0)—an assertion

equivalent to(A5)—sincemultiplication by�0 ·G′(eztr�00) and identification of complete
differentials implies the last equality on[0, �0], for fixed(a, �), to be equivalent to

atr z0 +
∫ ·

0
�d� ≡ 0 on [0, �0].

Unlike the situation in Section 3, the restricted minimizers�� cannot be given explicitly
in these Transformation models. This is true even for theClayton and Cuzick (1986)model
successfully analyzed byParner (1998). However,Slud and Vonta (2004)have shown that
��(t) is a uniquely determinedC2 family (smoothly indexed by�) of continuous functions
of t ∈ [0, �0], through solving a family of ordinary differential equations forL(s) ≡
�

(
(0)−1(s)

)
, along with an auxiliary functionQ. In terms of the modified notation

qz(s) ≡ qz((0)−1(s))= e−G(ez
tr�0s) Rz((0)−1(s)) (25)

these equations are

L′(s)=
∑

z �z ez
tr�0qz(s)G

′(eztr�0s)∑
z �z ez

tr�qz(s)G
′(eztr�L(s))+Q(s)

,

Q′(s)=
∑
z

�z ez
tr�qz(s)

G′′

G′

∣∣∣∣∣
eztr�L(s)

× (ez
tr�0 G′(eztr�

0
s)− ez

tr� G′(eztr�L(s))L′(s)) (26)

subject to the initial and terminal conditions

L(0)= 0, Q(0(�0))= 0.

Slud and Vonta (2004)show that these ODE’s (26) have unique solutions for all� in a
sufficiently small compact neighborhoodU of �0; are smooth (C2) with respect to both�
and the parameter
 = Q(0); and, for��(s) ≡ L′(0(s))�0(s), minimize the functional
K(�, ��). Smoothness of�� in � on the compact setU then implies(A6).

It remains to explain how to construct a smooth family of estimators�̃� of �� indexed
by � and satisfying(A8). First, Slud and Vonta (2002, 2004)discuss

√
n consistent pre-

liminary estimation of�0,0, and estimating-equation based estimators ofCheng et al.
(1995)can also serve as preliminary estimators. Next, it can be shown that when the consis-
tent preliminary estimators are substituted for(�0, �0) into the second-order ODE system
(26) determining��, the solutions which we denote as(L̃, Q̃) are still smooth functions
of � which are uniformly close onU to the solutions(L,Q) of (26). Then we define
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�̃�(t) ≡ L̃′(̃0
(s)) �̃

0
(t), and this definition will satisfy(A8) as long asU was initially

chosen as a small enough closed ball containing�0. Additional research on the computa-
tional implementation and moderate-sample behavior of these estimators is needed, but the
theory of Section 2 shows that these estimators are efficient.

4.1. Information bound formula

The discussion in Technical Appendix A leading up to formula (46) implies that the
information boundI0

� has the implicit expression

atr I0
� a = A�0,�0(a, a)+ B�0,�0(a, a

tr ∇� ��0). (27)

Since the formula for information boundsI0
� involves the form of�� only through∇� ��0,

we obtain such bounds in much more explicit form than those previously based on Sturm–
Liouville problem solutions as inKlaassen (1993)or Bickel et al. (1993). First, we follow
themethodofSlud andVonta (2004)in observing that thed-vector-valued functionL∗(s) ≡
∇� �((

0)−1(s)) |�=�0 =
s∫
0
∇� L

′(t)dt |�=�0 is determined through an adjoint system of

linear ordinary differential equations

L′∗(s)=−Q∗(s)+∑
z �z ez

tr�0qz(s) Pz(s)∑
z �z ez

tr�0
qz(s)G

′(eztr�0s)
,

Q′∗(s)=−
∑
z

�zqz(s)e
2ztr�0 G

′′(eztr�0s)
G′(eztr�0s)

(Pz(s)+G′(eztr�
0
s)L′∗(s)) (28)

with initial and terminal conditions

L∗(0)= 0, Q∗(0(�0))= 0, (29)

where

Pz(s) ≡ zG′(eztr�
0
s)+G′′(eztr�

0
s)ez

tr�0(zs + L∗(s))

andQ∗(s)=∇� Q(s). Substituting into (27) using (24) gives as formula for the information
bound

I0
� =

∑
z

�z

�0∫
0

z qz e
ztr�0 G′(eztr�

0
0)

(
1+ (xG′′(x)/G′(x))

x=eztr�00

)

·
(
z+ ez

tr�0(z0 + ∇��0)
G′′

G′

∣∣∣∣
x=eztr�00

+ ∇� log ��0

)tr
�0 dt, (30)

where

∇���(s) |�=�0 = �0(s)L′∗(0(s)), ∇��(s)|�=�0 = L∗(0(s)). (31)

The Eqs. (28) leading to (31) can be solved computably, as shown in Section A.4 in
the Technical Appendix below. Substitution into (30), and numerical integration, provides
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Table 1
Information bound calculations for two-sample Clayton–Cuzick frailty modelG(t)=b−1 log(1+bt), �0(t) ≡ 1,
andRz(t)=max(0,1− t/�(z)) I[t � �0] for z= 0,1, with indicated parameters(b, �(0), �(1)), for � = log 2.

b �(0) �(1) �0 A�0,�0(1,1) ParInfo I0
�

.0001 1.e8 1.e8 20 .4999 .2254 .2253

.5 1.e8 1.e8 20 .2500 .1218 .1160
1 1.e8 1.e8 20 .1667 .0807 .0770
2 1.e8 1.e8 20 .1000 .0488 .0458
3 1.e8 1.e8 20 .0714 .0350 .0326
4 1.e8 1.e8 20 .0556 .0272 .0253
.0001 2 4 3.96 .3773 .1677 .1676
.5 3 6 5.95 .2227 .1128 .1054
1 4 8 7.9 .1564 .0752 .0741
2 5 10 9.95 .0967 .0470 .0453
3 6 12 11.95 .0700 .0342 .0325
4 7 14 13.95 .0548 .0268 .0253

The fifth column contains the upper-left entries of the information matrix; the sixth column ParInfo is the full-
likelihood information about� computed inSlud (1986)for a specific model with 5-dimensional nuisance density
�; and the seventh column is the information boundI0

�.

semiparametric information bounds in the survival transformation model in a new form
which allows tractable calculations in frailty and transformation settings where essentially
no previous computations of such bounds have been available.
As examples of the resulting information formula (30), we provide numerical bounds for

several cases of the two-sample right-censoredClayton and Cuzick (1986)frailty model.
Approximate numerical values of these information bounds were previously given inSlud
(1986, Tables I-II)via models with five-dimensional parameterization of the ‘nuisance
hazard’�. Table 1above exhibits the quantitiesA�0,�0(1,1) andI

0, for the case where the
covariateZi=0, 1 is the group-label for subjecti, with approximately half of alln subjects
allocated toeachof the twogroups; where themodel (20)holdswithG(x)=b−1 log(1+bx);
where the group-1 over group-0 log hazard-ratio parameter is�= �1= log 2, with�0 ≡ 1;
and where the censoring distributionsRz(t)=P(C� t |Z= z) are Uniform[0, �(z)] subject
to additional, administrative right-censoring at�0, i.e., for z = 0,1, Rz(t) = max(0, 1−
t/�(z)) I[t��0]. (Note that the cases of very large�(z) values in the table correspond to data
uncensored before�0.) In this setting, we calculatedH(s) numerically, from formula (67) at
a spacing ofh= �0/1000, leading toI0

� values with accuracy approximately 0.0001. The

numerically calculated valuesI0
� are in all cases slightly smaller than the values found in

Slud (1986). But note that the numerical values in the columns
 = 0.5 (corresponding to
b=0.5 in our notation) of Tables I-II ofSlud (1986)are incorrect: they should bemultiplied
throughout by 2. The caseb=0.0001 corresponds closely to the relatively easily calculated
andwell-established values forCoxmodel, which is the limiting case of theClayton–Cuzick
model atb= 0+. The main finding in this table is that the information bound values which
Slud (1986)had thought were already converged with a nuisance-hazard parameter of
dimension five, were at that stage still a few percent away from convergence.
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Appendix A. Technical Appendix

A.1. Definitions and regularity conditions

We begin by listing the further regularity conditions(A2)–(A8) for the general statistical
problems we study. Basic notations and assumptions(A0)–(A1) are as in Section 2 above.
(A2) For all � ∈ V, there exists 0< � ≡ �(�)<1 such that, for all� ∈ G0 defined in

(3), the mapping

(�, ϑ) �→ fX(·,�, � + ϑ�) ∈ L1(�)

is twice continuously differentiable (in strong or Fréchet sense) fromU× (−�, �) toL1(�).
(A3) There existsb ∈ L1(�) such that, for all� ∈ U, � ∈ V and for�-a.e.x ∈ Rk,

| log fX(x,�, �)| + sup
�∈G0

(‖∇(�,ϑ) log fX(x,�, � + ϑ�)‖2 |ϑ=0
)

+ sup
�∈G

(
‖∇⊗2

(�,ϑ) log fX(x,�, � + ϑ�)‖2|ϑ=0

)
�b(x). (32)

In addition, for each� ∈ V, � ∈ G0, there exists�1>0 so small that

sup
�∈U

sup
|ϑ|� �1

‖∇⊗2
(�,ϑ) log fX(x,�, � + ϑ�)‖2 ∈ L1(�).

(A4) For each� ∈ V there existsr� ∈ L1(�) such that, for all� ∈ U and for�-a.e.x,

|fX(x,�, �)| + sup
�∈G0

(‖∇(�,ϑ) fX(x,�, � + ϑ�)‖2|ϑ=0
)

+ sup
�∈G

(‖∇⊗2
(�,ϑ) fX(x,�, � + ϑ�)‖2|ϑ=0)�r�(x). (33)

In addition, for each� ∈ V, � ∈ G0, there exists�2>0 so small that

sup
�∈U

sup
|ϑ|� �2

‖∇⊗2
(�,ϑ)fX(x,�, � + ϑ�)‖2 ∈ L1(�).

Under conditions(A2), (A3) and (A4), the second-derivative operatorJ ≡ J�,� on
Rd × G0 is defined through the bilinear forms

J�,� =
(
A B

B∗ C

)
(34)
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for a1, a2 ∈ Rd , � ∈ G0, by

A(a1, a2)= A�,�(a1, a2)=−
∫ (

atr1 ∇⊗2
� log fX(x,�, �) a2

)
d�(x),

B(a, �)= B�,�(a, �)=−
∫ (

atr1 ∇�∇ϑ log fX(x,�, � + ϑ�)
) |ϑ=0 d�(x),

C(�, �)= C�,�(�, �)= −
∫ (

d2

dϑ2 log fX(x,�, � + ϑ�)
)∣∣∣∣

ϑ=0
d�(x).

The transposed or adjoint bilinear form corresponding toB is

B∗
�,�(�, a)= B�,�(a, �).

The evaluationJ�,�
(
(a1, �1), (a2, �2)

)
for � ∈ U, � ∈ V is equal by definition to

A�,�(a1, a2)+ B�,�(a1, �2)+ B�,�(a2, �1)+ C�,�(�1, �2).
(A5) For all (a, �) ∈ Rd × G0 \{(0,0)} and(�, �) ∈ U×V,

|A�,�(a, a)| <∞, |B�,�(a, �)|<∞, C�,�(�, �)<∞,

A�0,�0(a, a)+ 2B�0,�0(a, �)+ C�0,�0(�, �)>0. (35)

(A6) For� ∈ U, there exists a unique minimizer�� ∈ V of K(�, ·) which is also the
unique solution of the derivative equation

(D� K(�, ��))(�)= 0 ∀� ∈ U, � ∈ G0. (36)

Moreover,� �→ �� is twice Fréchet differentiable as a mapping fromU ⊂ Rd toV0, (cf.

(2)), such thatatr1∇���, a
tr
1∇⊗2

� �� a2 ∈ G for all a1, a2 ∈ Rd with sufficiently small norms,
and there is a finite constant
3 such that

for j = 1, 2, sup
�

‖∇⊗j
� ��‖2�
3c1(·).

One further regularity condition on the family of densitiesfX(x,�, �) is needed in the
setting of infinite-dimensional�.
(A7) There exists a functionm ∈ L1(Rk,�) and a distance-function� on {�+ ϑ� : � ∈

V, � ∈ G0, |ϑ|��(�)} such that�(�1, �2)�‖�1− �2‖V0, and such that for allj =0,1,2,
all � ∈ U and all�1, �2 ∈ V, � ∈ G,

‖∇⊗j
(�,ϑ)(log fX(x,�, �1 + ϑ�)− log fX(x,�, �2 + ϑ�))|ϑ=0‖2�m(x)�(�1, �2).

The final assumption relates to a family ofV-valued estimators̃�� assumed to be defined

for eachn, i.e. a family of measurable mappings�̃ : U × (Rk)n → V, with �̃� ≡
�̃(�,X1, . . . ,Xn).
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(A8) The estimator-process̃�� defined on� ∈ U, as a mapping fromU to the �-

parameter spaceV ⊂ V0, is twice continuously differentiable, with̃�� ∈ V andatr1∇��̃�,

atr1∇⊗2
� �̃� a2 ∈ G a.s. for alla1, a2 ∈ Rd with sufficiently small norms. Moreover, the

estimators̃�� are such that, for the same distance-function� as in(A7), and for all vectors
a, a1, a2 ∈ Rd of sufficiently small norms, asn → ∞,

sup
�∈U

�
(
�� + atr∇��� + atr1∇⊗2

� �� a2 , �̃� + atr∇��̃� + atr1∇⊗2
� �̃� a2

)
P→0. (37)

Moreover, there is apositive constant
4 such thatwith probability approaching1asn → ∞,
for all � ∈ U, � a.e. t ,

|�̃�(t)− ��(t)| +
2∑

j=1

‖∇⊗j
� (�̃� − ��)(t)‖2 � 
4 c1(t). (38)

A.2. Discussion of the assumptions

Assumptions(A0) and (A2)–(A5) are slight variants of standard statistical regularity
conditions (for likelihood inference based on finite-dimensional parameters) dating back to
Harald Cramer. These assumptions are imposed both on the� and� parameter-components,
althoughonly thestructural parameter� is tobeestimatedefficiently.However, it is verycon-
venient in the infinite-dimensional case that positive definiteness ofJ�,� need be checked

only at the true parameter(�0, �0). The usual assumption ofidentifiability for the param-
eterization (assertion (47) below) follows immediately from(A2)–(A5). The requirement
that�+ ϑ� continue to be an element wherefX(·) is defined, as in(A2), is a somewhat re-
strictive feature of our setup associated with(A1), allowing consideration only of elements
� bounded above and below by fixed functions. Assumptions(A3) and(A4) are needed for
a dominated convergence justification of interchange of derivatives and integrals in expres-
sions for the first- and second-order gradients in(�,ϑ) ofK(�, �+ϑ�). It is important that
the expressionsA,B,C for the block-decomposition ofJ(�,�) exist on a set of� satisfying
the density restriction (4), as in(A5), and that the first derivatives arising in the expression
(36) and in Proposition 1 also hold for all� ∈ G0. However, the uniform second-derivative
bounds assumed inG, butnot in G0, are needed in the bracketing metric entropy estimates
underlying the proof of Proposition 2. The spaceG on which the more restrictive bounds
are assumed to hold might be much smaller thanG0: its main role is to contain all small
multiples of the first- and second-order gradients of��, �̃�. The idea of condition(A6),
along with Proposition 1 as a consequence, was first given bySeverini and Wong (1992).
Assumptions(A7)and(A8), aswell as the existence ofb in (A3) simultaneously for all�, are
needed specifically for the validity of bracketing metric entropy bounds and uniform laws
of large numbers on empirical processes related to the log-likelihood and its derivatives,
with �̃� substituted for�.
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A.3. Consequences of the assumptions

Wederive two types of technical consequences of the assumptions(A0)–(A8): first those
based on standard advanced-calculus manipulations onK(�, �), and second those which
use empirical process theory on the normalized log-likelihood and its derivatives.

A.3.1. Calculus onK
By Dominated Convergence and(A3), for each� ∈ V, � ∈ G0, and�= �(�) as in(A2),

the derivatives∇(�,ϑ)K(�, � + ϑ�) and∇⊗2
(�,ϑ)K(�, � + ϑ�) are continuous functions of

(�,ϑ) ∈ U×(−�, �). By DominatedConvergence and(A3)–(A4) applied to the difference-
quotients in the defining integrals, the derivatives commute with the integrals, yielding for
j = 1,2,

∇⊗j
(�,ϑ)K(�, � + ϑ�)=−

∫
∇⊗j
(�,ϑ) log f (x,�, � + ϑ�)d�(x) (39)

and ∫
∇(�,ϑ) fX(t,�, � + ϑ�)d�(t)= 0,

∫
∇⊗2
(�,ϑ) fX(t,�, � + ϑ�)d�(t)= 0

so that

A�,�(a1, a2)= atr1 ∇⊗2
� K(�, �)a2, B�,�(a1, �)= atr1∇�D�K(�, �)(�),

C(�, �)=D�
(
D�K(�, �)(�)

)
(�) (40)

and, witha⊗2 ≡ aatr for a ∈ Rd ,

A�0,�0(a1, a2)=
∫

atr1 (∇� log fX(x,�
0, �0))⊗2 a2 d�(x), (41)

B�0,�0(a, �)=
∫

(atr∇� log fX(x,�
0, �0))D� log fX(x,�

0, �0)(�)d�(x), (42)

C�0,�0(�, �)=
∫ (

D� log fX(x,�
0, �0)(�)

)2
d�(x). (43)

An important consequence of(A6) appears by applying theChainRule for (total) implicit
Fréchet differentiation∇T

� with respect to� in the determining equation (36). Freely swap-
ping the order of derivatives up to second order and integrals in the definition ofK(�, ��)

as in (39), we obtain for fixeda ∈ Rd ,� ∈ U, � ∈ G0,

atr ∇T
�

[(
D�K(�, ��)

)
(�)
]= − atr ∇T

�
d

dϑ

∫
log fX(x,�, �� + ϑ�)d�(x)|ϑ=0

= −
∫ {

D�(a
tr ∇� log fX(x,�, ��))(�)

+D�(D�(log fX(x,�, ��))(�))(a
tr ∇���)

}
d�(x).

Substituting the definitions of the bilinear operatorsA�,�, B�,�, C�,� at� = �� then yields

atr ∇T
� [(D�K(�, ��))(�)] = B�,��

(a, �) + C�,��
(atr ∇���, �)= 0. (44)
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Similarly, with arguments(�, ��) understood throughout forA, B, C,

atr(∇T
� )

⊗2K(�, ��)a = A(a, a)+ 2B(a, atr∇���)+ C(atr∇���, a
tr∇���)

=A�,��
(a, a)− C�,��

(atr ∇� ��, a
tr ∇���) (45)

=A�,��
(a, a)+ B�,��

(a, atr ∇���), (46)

where the cross-term involvingB(a, �) in the first line of the formula has been replaced
according to (44) by−C(atr ∇� ��, �) in the following lines (45) and (46).

By definition ofK(�, �) and the Information (or Jensen’s) Inequality, the functional
K is bounded below byK(�0, �0), with equality holding if and only iffX(·,�, �) ≡
fX(·,�0, �0) ≡ 1 a.e. (�). The minimum value is attained at(�, �) = (�0, �0), and Eqs.
(39)–(43) along with(A5) imply thatK is strictly convex, so that(�0, �0) is the unique
local and global (onU×V) minimizer ofK, and as a corollary

(�, �) �→ fX(·,�, �) is a 1-to-1 function: int(U)×V → L1(Rk,�). (47)

By smoothness of the functionK(�0, �0+ϑ�) of ϑ, when|ϑ|��(�0) and|�|�c1, and the
fact that it is minimized atϑ = 0, there follows:

(D�K(�0, �0))(�)= 0 ∀� ∈ G0.

By the uniqueness of��0 in (36), we find

Lemma A.1. Under assumptions(A0)–(A4) and(A6), ��0 = �0.

A.3.2. Empirical process theory for logLik
Next, note that with probability approaching 1 asn → ∞, by (1), (3) and(A8), for

a ∈ Rd , with respect to the metric� on {� + ϑ� : � ∈ V, � ∈ G0, |ϑ|��(�)},

�(�̃�0, ��0)
P→ 0, �(atr∇��̃�0, a

tr∇���0)
P→ 0 (48)

and by(A2), (A6), and(A8)

∀� ∈ U, ∃	>0 : ∀� ∈ G0,∀|ϑ|< 	, fX(·,�, �̃� + ϑ�) ∈ L1(�). (49)

This latter property is needed tomake valid substitutions of estimates of� into log-likelihood
expressions differentiated with respect to�.
The key technical result about the log-likelihood, logLikn, needed in this paper is the

following:

Proposition A.2. Assume(A0)–(A8).Asn → ∞, for l(�) equal to either of theV-valued
curves�̃� or ��, for all compact subsetsF ⊂ U,

sup
�∈F

|n−1 logLikn(�, l(�))+K(�, l(�))| = oP(1) (50)
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and for j = 1,2 and l(�) = �̃� or ��, and g(a,�) on (a,�) ∈ Rd × U equal either to

atr ∇��̃� or a
tr∇⊗2

� �̃� a,

sup
�∈F, ‖a‖2�1

∣∣∣∣∣
∣∣∣∣∣∇⊗j

(�,ϑ)

[
1

n
logLikn(�, l + ϑg)+K(�, l + ϑg)

]
|ϑ=0, l=l(�)
g=g(a,�)

∣∣∣∣∣
∣∣∣∣∣
2

P−→ 0. (51)

The theoretical lemma on which this is based incorporates a bound forL1 bracketing
numbers described inVan der Vaart (1998).

Lemma A.2 (Van der Vaart, 1998, Thm. 19.4, Example 19.8). Suppose that the sequence
of random variables{Xi}ni=1 (which may take vector values, or even values in a separable
metric space S) is independent and identically distributed with Borel lawP and that{h
 :

 ∈ A}, withA a compact metric space, is a family of functions: S → R such that


 �→ h
(x) is continuous ∀x ∈ S

and

H(x) ≡ sup

∈A

|h
(x)| ∈ L1(S, P ).

Thensup
∈A| 1
n

∑n
i=1 h
(Xi)−

∫
h
(x)dP(x)| → 0 almost surely(in outer measure) as

n → ∞.

These assertions primarily concern the so-calledGlivenko–Cantelliproperty of an empir-
ical process (Van der Vaart, 1998, Sec. 19.2) with respect to a class of functions. However,
in the present setting, we wish to prove uniform laws of large numbers for logLik and
derivative processes also with estimators�̃� substituted for��. Our approach is to apply
LemmaA.2 for the parts of (50) and (51) concerning evaluation of logLik and derivatives at
points involving�� and derivatives, and then to use(A7) for the terms involving estimators

�̃� and derivatives.

Proof of Proposition A.2. First apply Lemma A.2 for the variablesXi as above(A0),
S = Rk, P = �, with 
= �,A= F ⊂ U closed, and with functionsh
 given successively
by

∇⊗j
� log fX(�, ��), j = 0,1,2, ∇⊗j

� D�(log fX(�, ��))(∇���), j = 0,1

D�
(
D�(log fX(�, ��))(∇���)

)
(∇���), D�(log fX(�, ��))(∇⊗2

� �� v),

wherev ranges over an orthonormal basis ofRq . The hypotheses of LemmaA.2 care easily
checked using(A3). Then the Lemma implies that (50) and (51) hold withl(�) ≡ ��

andg(a,�) ≡ atr ∇��� or atr ∇⊗2
� �� a. The remaining assertions of (50) and (51) follow
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immediately from the ones just proved, together with(A7)–(A8) and (48). For example

∣∣∣∣1n logLikn(�, �̃�)+K(�, �̃�)

∣∣∣∣
� 1

n

n∑
i=1

∣∣∣∣∣log
(
fX(Xi,�, �̃�)

fX(Xi,�, ��)

)∣∣∣∣∣
+
∣∣∣∣1n logLikn(�, ��)+K(�, ��)

∣∣∣∣+ |K(�, �̃�)−K(�, ��)|.

The supremum over� ∈ F ⊂ U of the middle term on the right-hand side is one of the
terms we just showed to go to 0 using LemmaA.2, and the supremum of the third term goes
to 0 by uniform continuity over� ∈ F of �� andK(�, ��). For the first term, we find via
(A7)

n−1
n∑
i=1

∣∣∣∣∣log
(
fX(Xi,�, �̃�)

fX(Xi,�, ��)

)∣∣∣∣∣ ��(�̃�, ��)n
−1

n∑
i=1

m(Xi).

The supremum over� ∈ F of the final upper bound is the product of a factor sup� �(�̃�, ��)

converging to 0 by(A8) and a factorn−1∑n
i=1m(Xi) which is stochastically bounded,

according to the Law of Large Numbers. Thus the product converges in probability to 0.
The proofs of the other assertions of (50) and (51) are very similar.�

As an immediate consequence of (51) and Proposition 2, uniformly over compact sets of
� withinU,

∇⊗2
(�,ϑ)

[
1

n
logLikn(�, �̃� + ϑ atr ∇��̃�)+K(�, �� + ϑ atr ∇���)

]∣∣∣∣
ϑ=0

P→ 0. (52)

The main deductions we make from Proposition A.2 are:

Proposition A.3. Asn → ∞,
(i)

1

n
‖∇T

� logLik(�, �̃�)

∣∣∣�=�0 ‖2
P−→0 (53)

(ii) with probability going to1, uniformly over compact sets of� ∈ U, (∇T
� )

⊗2 logLik(�,

�̃�) is negative-definite.

Proof. From Lemma A.1 and (36), for largen the continuously differentiabled-vector-
valued random function∇T

� K(�, �̃�) has value oP(1) in norm at�0, and (50), (51) and the
mean value theorem then imply (i) directly.
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Next, we turn to (ii). By the chain rule and the differentiability of�̃� assumed in(A8),
for a ∈ Rd and� ∈ U

atr (∇T
� )

⊗2 logLik(�, �̃�) a

= atr ∇⊗2
� logLik(�, �̃�) a

+
{
2atr ∇�

d

dϑ
logLik(�, �̃� + ϑ�)+ d2

dϑ2 logLik(�, �̃� + ϑ�)
}

�=atr∇��̃�,ϑ=0

+ d

dϑ
logLik(�, �̃� + ϑ�)

∣∣∣∣�=atr (∇⊗2
� �̃�) a,ϑ=0 . (54)

By (52) and Proposition A.2 applied to the four terms on the right-hand side of the last
equation, whenn → ∞,

1

n
atr(∇T

� )
⊗2logLikn(�, �̃�)a +J�,�̃�

(
(a,∇��̃�), (a,∇��̃�)

)
= oP(1). (55)

In eliminating the last term in (54) from the limit (55), we also appealed to (36) and the
observation that for all� ∈ V, � ∈ G0,(

D�K(�, �̃�)
)
(�)− (

D�K
(
�, ��

))
(�)

P−→ 0.

The same application of (52) and Proposition A.2 used to give (55) also shows that for any
compact subsetF ⊂ U, asn → ∞

sup�∈F
∣∣∣∣
∣∣∣∣atrn (∇T

� )
⊗2logLikn(�, �̃�)a +J�,�̃�

((a,∇��̃�), (a,∇��̃�))

∣∣∣∣
∣∣∣∣
2

P−→0.

(56)

Then, by the joint continuity ofJ�,� in its arguments, the same statement holds with the
termJ�,�̃�

replaced by

J�,��
((a,∇���), (a,∇���))= (∇T

� )
⊗2K(�, ��).

The assertion of (ii) follows immediately from (56) and(A5), since thed × d matrices on
both sides of the last equation are continuous functions of�. �

A.4. Solution for∇���0,∇��0 in Section 4.1

As indicated in Section 4.1, the desired functions can be derived by solving the linear
system (28) of adjoint ordinary differential equations with initial and terminal conditions
(29). To simplify these equations, we define

J1(s)=
∑
z

�z ez
tr�0qz(s)G

′(eztr�
0
s), (57)

J2(s)=
∑
z

�z z ez
tr�0qz(s)G

′(eztr�
0
s), (58)
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J3(s)=−
∑
z

�z e2z
tr�0 qz(s)G

′′(eztr�
0
s), (59)

J4(s)=−
∑
z

z�z e2z
tr�0 qz(s)G

′′(eztr�
0
s), (60)

J5(s)=
∑
z

�z e3z
tr�0 qz(s)

(G′′(eztr�0s))2

G′(eztr�0s)
, (61)

J6(s)=
∑
z

z�z e3z
tr�0 qz(s)

(G′′(eztr�0s))2

G′(eztr�0s)
. (62)

In terms of these notations, Eqs. (28) become

d

ds

(
L∗
Q∗

)
(s)= A(s)

(
L∗(s)
Q∗(s)

)
+ E(s),

(
L∗(0)

Q∗(0(�0))

)
=
(
0
0

)
, (63)

where

A(s)=
(

J3(s)/J1(s) −1/J1(s)
J 2
3 (s)/J1(s)− J5(s) −J3(s)/J1(s)

)
(64)

and

E(s)=
(

(J4(s)s − J2(s))/J1(s)

J4(s)− J6(s)s + (J3(s)/J1(s))(J4(s)s − J2(s))

)
. (65)

Now, unlike the adjoint equation system inSlud and Vonta (2004), system (63) with
initial and terminal conditions (29) isinhomogeneous. However, the homogeneous part
A (L∗,Q∗)tr is exactly the same as for system (29)–(30) given there (with the notationP∗
there changed toQ∗ here).
To solve system (28) we define the notationH(s) on [0, �0] for the ‘fundamental matrix’

of the homogeneous system (Coddington and Levinson, 1955, Ch. 3), a 2×2matrix-valued
function satisfying

d

ds
H(s)= A(s)H(s), H(0)= I ,

whereI denotes the 2×2 identitymatrix. The discussion inCoddington and Levinsonmakes
it clear that if the matrix-valued functionA(s)were piecewise constant on successive small
intervals[(k−1)h, kh), k=1, . . . ,0(�0)/h (for smallh, with s/h and0(�0)/h assumed
to be integers), then the fundamental matrix would be given uniquely by

H(s)= exp(hA(s − h))exp(hA(s − 2h)) · · ·exp(hA(h))exp(hA(0)).
In the general case, whereA(s) is a piecewise Lipschitz function,H(s) can be approximated

as the product of termsAk ≡ exp

(
(k+1)h∫
kh

A(t)dt

)
with the integral approximated via

Simpson’s or some other quadrature rule.
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Note that all of the 2× 2 matrices
(k+1)h∫
kh

A(t)dt have trace 0 and negative determinant,

with positive upper-left element and negative off-diagonal elements, and are thus of the
form

Ak ≡
(k+1)h∫
kh

A(t)dt ≡
(

ak −bk
−ck −ak

)
, d2k ≡ a2k + bkck (66)

with ak, bk, ck >0. ThenAk has right eigenvectors(bk, ak + dk)
tr and (bk, ak − dk)

tr,
respectively for the eigenvalues−dk, dk, and it follows that

exp

(
ak −bk
−ck −ak

)
=
(

bk bk
ak + dk ak − dk

) (
e−dk 0
0 edk

) (
bk bk

ak + dk ak − dk

)−1

= 1

2bkdk

(
bk bk

ak + dk ak − dk

)(
e−dk 0
0 edk

)(
dk − ak bk
dk + ak −bk

)

= cosh(dk)

(
1 0
0 1

)
+ 1

dk
sinh(dk)Ak.

Thus, the fundamental matrixH(s) is approximately given by

H(s) ≈
[s/h] −1∏
k=0

{
cosh(dk) I + 1

dk
sinh(dk)Ak

}
, (67)

where[·] denotes greatest-integer; the product of matrix terms is understood as an ordered
product with earlier terms appearing rightmost; and the quality of the approximation is
controlled by the step-sizeh, converging to the actual fundamental matrix ash tends to 0.
The linear second-order ODE system (63) determiningL∗ = ∇� �0 can now be solved

using the fundamental matrixH(s) for the homogeneous system. First, observe as in
Coddington and Levinson (1955, p. 74)that

d

ds

{
(H(s))−1

(
L∗
Q∗

)
(s)

}
= (H(s))−1

{
d

ds

(
L∗
Q∗

)
(s)− A(s)

(
L∗(s)
Q∗(s)

)}

so that Eq. (28) becomes

d

ds

{
(H(s))−1

(
L∗
Q∗

)
(s)

}
= (H(s))−1E(s) (68)

and the full solution can be developed by quadratures, as follows. First, making use of the
boundary conditions (29) and integrating from 0 to0(�0), we deduce

(H(0(�0)))−1
(
L∗(0(�0))

0

)
−
(

0
Q∗(0)

)
=

0(�0)∫
0

(H(s))−1E(s)ds

Thus, using the notations(v)1, (v)2 to denote the first and second components of a two-
dimensional vectorv,
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L∗(0(�0))=



0(�0)∫
0

(H(t))−1E(t)dt




1

/((
H(0(�0))

)−1
)
11
,

Q∗(0)=

L∗(0(�0)) (H(0(�0)))−1

(
1

0

)
−

0(�0)∫
0

(H(t))−1E(t)dt




2

and we find that(
L∗(s)
Q∗(s)

)
= H(s)


Q∗(0)

(
0
1

)
+

s∫
0

(H(t))−1E(t)dt


 . (69)

We conclude from (63) and (69) that

∇� log ��0((
0)−1(s))

=

A(s)H(s)


Q∗(0)

(
0
1

)
+

s∫
0

(H(t))−1E(t)dt


+ E(s)




1

,

∇��0((
0)−1(s))=


H(s)


Q∗(0)

(
0
1

)
+

s∫
0

(H(t))−1E(t)dt






1

. (70)

Although complicated, these formulas are explicit up to numerical quadratures and the
matrix products in formula (67).
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