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ABSTRACT. This paper studies the representation and large-sample consistency for non-

parametric maximum likelihood estimators (NPMLEs) of an unknown baseline continuous cumu-

lative-hazard-type function and parameter of group survival difference, based on right-censored

two-sample survival data with marginal survival function assumed to follow a transformation model,

a slight generalization of the class of frailty survival regression models. The paper’s main theoretical

results are existence and unique a.s. limit, characterized variationally, for large data samples of the

NPMLEof baseline nuisance function in an appropriately defined neighbourhood of the true function

when the group difference parameter is fixed, leading to consistency of the NPMLE when the

difference parameter is fixed at a consistent estimator of its true value. The joint NPMLE is also

shown to be consistent. An algorithm for computing it numerically, based directly on likelihood

equations in place of the expectation-maximization (EM) algorithm, is illustrated with real data.

Key words: adjoint differential equation, frailty model, large-sample theory, likelihood

equation, restricted NPML, variational method

1. Introduction

A common problem in the analysis of clinical trials or epidemiological survival data is to infer

the way in which survival over time depends upon auxiliary medical variables or risk-indi-

cators, called covariates. Right-censored survival data are collected in the form of triples

(Ti, Di, Zi) 2 [0, 1) · {0, 1} · Rp for subjects i, and idealized in terms of the latent failure

model, according to which each subject comes equipped with an unobserved random death-

time Xi, random censoring time Ci, and discrete p-vector of covariates Zi, with

Ti ¼ min(Xi, Ci) and Di ¼ I[Xi£Ci]
. We impose the usual assumption that the vectors

(Xi, Ci, Zi) are independent and identically distributed, with Ci conditionally independent of

Xi given Zi. The objective is to estimate the conditional survival function S(t|z) for Xi given Zi.

By far the most common model for the influence of covariates is that of Cox (1972),

according to which a factor depending upon covariates multiplies the hazard intensity. In this

paper, we study a generalization of that model,

SðtjzÞ ¼ PfX > tjZ ¼ zg ¼ expð	Gðez0bKðtÞÞÞ; ð1Þ

where G is assumed known and satisfies additional smoothness and regularity conditions

discussed below. Both the true finite-dimensional coefficient-vector b ¼ b0 2 Rp and the true

baseline continuous cumulative-hazard function K0, are generally unknown. The problem of

simultaneous estimation of (b, K) is called semiparametric because K is infinite-dimensional.

Cox’s (1972) model is the case G(x) ” x.

The groupwise survival functions Rz(t) ” P{C>t|Z ¼ z} for censoring, as well as the laws of

the random vectors Zi 2 Rp, are assumed not to depend upon the parameters (b, K). In

addition, all remaining study-subjects are right-censored at a fixed non-random time s0 such

that K(s0) < 1. Equivalently, in terms of the group-z probabilities cz ¼ P(Z1 ¼ z) and
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qzðtÞ � P ðT1 � t; Z1 ¼ zÞ ¼ czRzðtÞe	Gðez0b0 K0ðtÞÞ; ð2Þ

we haveX
z

qzðs0Þ > 0 and
X
z

Rzðs0þÞ ¼ 0: ð3Þ

As a consequence, for all large n the longest durations in the observed dataset will almost

surely be right-censored, with Di ¼ 0, at time Ti ¼ s0. This is reasonable because

biomedical studies will virtually never be continued until all subjects are dead. Even in

accelerated-failure reliability studies, where all tested devices might be observed until

failure, extremely delayed failures are more sensibly deemed censored, as accelerated

stresses cannot be assumed to have the same effect on extremely long-lived devices as on

others.

We study local maxima near (b0, K0) of the log-likelihood for model (1) of survival data

fðTi; Di; ZiÞgni¼1. Throughout most of the paper, q ” eb is a known positive scalar, with

Zi 2 {0, 1}, and K, K0 lie in the space of cumulative-hazard-like functions defined by

S0 � fK 2 D½0; s0� : Kð0Þ ¼ 0; K non-decreasingg;

and D is the space of right-continuous real-valued functions with left limits.

Denote the log-likelihood at K for the two-sample right-censored survival data under model

(1), with q ” eb, by logLik(K, q). The standard likelihood for right-censored survival data,

with continuous K absolutely continuous with respect to the fixed dominating measure, is

Yn
i¼1

qZiG0ðqZiKðTiÞÞ
dK
dm

ðTiÞe	GðqzKðTiÞÞ
� �Di

e	GðqzKðTiÞÞ
n oð1	DiÞ

:

When the data fðTi; Di; ZiÞgni¼1 are summarized through counting processes

NzðtÞ ¼
Xn
i¼1

DiI½Ti�t;Zi¼z�; YzðtÞ ¼
Xn
i¼1

I½Ti�t;Zi¼z�;

and N(t) ¼
P

zNz(t), Y(t) ¼
P

zYz(t), the logarithm of the likelihood is

logLikðK; qÞ ¼
X
z

Z
log qzG0ðqzKðtÞÞ dK

dm

	 

dNzðtÞ þ

Z
GðqzKðtÞÞdYzðtÞ

� �
: ð4Þ

As in Nielsen et al. (1992), we define log-likelihood by the same formula more generally for

K 2 S0 with m from now on defined to be the sum of K0 and counting measure for the jumps

of N. Although standard, this choice will be justified later (in section 2).

The objective of this paper is to prove large-sample (local) existence and consistency of the

generalized non-parametric maximum likelihood estimator (NPMLE) of (q, K) for model (1)

when q is fixed in a sufficiently small neighbourhood (not depending on n) of q0. We are

interested in consistency of NPMLEs for K in the sense of uniform convergence on the

compact interval [0, s0], where the non-random point s0 is as in (3) above.

Various authors have studied estimation in this setting, beginning with Clayton & Cuzick

(1986) and Hougaard (1986). Dabrowska & Doksum (1988) proposed but did not rigorously

justify an estimation method for frailty models. Nielsen et al. (1992) devised an estimator

specifically for the Clayton–Cuzick frailty model, by modifying the EM algorithm. Klein

(1992) implemented this estimator on real data, and Murphy (1994, 1995) established its

asymptotic properties (consistency and asymptotic distribution). Klaassen (1993) proved

existence of a consistent and efficient estimator of b in the uncensored Clayton–Cuzick model.
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Cheng et al. (1995) and Bagdonavicius & Nikulin (1997) established asymptotic properties for

estimating equation-based estimators in general transformation models. Parner (1998) has

shown the joint NPMLE for (b, K) in the right-censored Clayton–Cuzick model to be con-

sistent, asymptotically Gaussian, and semiparametric efficient. Murphy & van der Vaart

(2000) present a theory of semiparametric profile likelihoods which would apply to our log-

likelihood maximized over K for fixed q, but we cannot verify the hypotheses of their theorems

in our setting.

This paper is organized as follows. Section 2 relates model (1) to survival frailty models

(section 2.1) and gives general regularity conditions; then section 2.2 discusses alternative ex-

tensions of log-likelihood, and section 2.3 establishes equations for the NPMLE. Section 3

proves asymptotic absolute continuity for NPMLE sequences of K for fixed q, leading to a

variational characterization of the limits for such sequences. Consistency results are collected in

theorem 3 and corollary 2. In section 4, the NPML equations of theorem 1 lead to a con-

venient algorithm for calculation of the NPMLE. A related algorithm for simultaneous NPML

estimation of q and K is illustrated for a previously analysed dataset of Christensen et al. (1985)

on a clinical trial concerning primary biliary cirrhosis (PBC). In section 5, we sketch extensions

of these results to right-censored regression models and to models with additional nuisance

parameters such as the constant in the Clayton–Cuzick model. A brief discussion concludes the

paper. Key technical calculations throughout the paper are deferred to appendices. Longer,

more standard, calculations can be found in the report of Slud & Vonta (2002).

2. Background and assumptions

2.1. Frailty and transformation models

How do functions like G in model (1) arise? Most of those considered in the survival-analysis

literature (cf. Clayton & Cuzick, 1986; Hougaard, 1986) derive from proportional hazard

models (or Lehmann-alternatives two-group models) with an unobserved multiplicative ran-

dom effect called frailty. That is, suppose there are, in addition to survival-time variables T

and group-indicators Z, unobserved positive random variables n, and

SðtjZ ¼ z; nÞ � expð	nez
0bKðtÞÞ:

The distribution function Fn of n may either be known, or known except for a parameter, but

in the latter case it is crucial for identifiability of (b, Fn, K) that there not be two permissible Fn

functions differing only by a scale change. Then the stratumwise unconditional survival

function becomes

SðtjzÞ � SðtjZ ¼ zÞ ¼
Z 1

0

expð	xez
0bKðtÞÞdFnðxÞ � expð	Gðez0bKðtÞÞÞ;

where

GðyÞ ¼ 	 ln

Z 1

0

e	xydFnðxÞ
	 


: ð5Þ

Model (1) and (5) with Gamma-distributed frailty, i.e. with Fn a C(1/c,1/c) d.f., is the

‘semiparametric Pareto model’ of Clayton & Cuzick (1986). We refer to this special case, in

which G(x) ¼ ln (1+cx)/c for fixed c > 0, as the Clayton–Cuzick model. Murphy (1994,

1995) proved consistency and efficiency of the simultaneous NPMLE of (c, K) in this model

when b (assumed ¼ 0) is known. When Fn is the d.f. of a positive-stable r.v., G(x) ” xa with

0 < a £ 1 as in Hougaard (1986).
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Recently the family of semiparametric transformation models, which have been studied

intensively in the case of uncensored data (Bickel et al., 1993), have been extended for use with

right-censored data. These models are coextensive with model (1), as can be seen from the

formula g(S(t|z)) ¼ h(t) + z¢b (1.3 of Cheng et al., 1995), where g is known and h unknown,

through the correspondence g(x) ” log(G)1() log x)), h(t) ” log K(t).

Throughout this paper, we are concerned with models S(t|z) in formula (1) defined in terms

of a known function G, about which we assume that:

(G.1) G is three times continuously differentiable, strictly increasing, and concave on (0, 1),

with G(0) ¼ 0;

(G.2) )xG¢¢(x)/G¢(x) is uniformly bounded on (0, 1);

(G.3) � exp ()G(x)) log (G¢(x))G¢(x)dx>)1; and

(G.4) G¢(0) < 1.

Condition (G.1) is easy to verify, via simple properties of Laplace transforms, when G arises as

in (5) from a frailty model, but (G.1) holds more generally. Condition (G.2) holds for all frailty

models with either inf(supp(dFn)) > 0 or Fn(n) ‡ anb for n near 0, for some positive constants a,

b. It is used to ensure dominatedness of the integrand in the integral for the expected gradient of

logLik, which we need in order to differentiate under the integral sign. Condition (G.3) is a

specialized assumption to make Kullback–Leibler information integrals finite, which holds in

the most commonly applied frailty models, the Clayton–Cuzick and inverse-Gaussian

(Hougaard, 1986) and positive-stable, but not in all frailty models. Condition (G.4), which

excludes the positive-stable case, is needed in the proof of proposition 1. However, the positive-

stable frailty model can be analysed separately using standard theory for the Cox model under

the re-parameterization ~K ¼ Ka, ~q ¼ qa.

2.2. Likelihood definition

As indicated above in the introduction, the log-likelihood under model (1) takes the form (4)

when K is continuous. However, the extension of log-likelihood to functional parameters K
which are allowed to have jumps can be made in several different ways. The one most accepted

in the literature is due to Nielsen et al. (1992) and follows a clear train of thought, as follows.

The likelihood for the model of Cox (1972), the special case of (1) in which G(x) ” x, had been

written by Johansen (1983) as

exp
X
z

Z
log qz dK

dm

	 

dNzðtÞ 	 qzYzdK

� � !
; ð6Þ

for m from now on defined equal to the sum of K0 and counting measure for a fixed

countable set of (possible) jumps of K. The jumps of K enter this likelihood only in the

terms (DK(t))DNz(t) exp()qzYz(t)DK(t)), with the interpretation that the failures at t consist of

independent Poisson(qzDK(t)) numbers DNz(t) in groups z ¼ 0, 1. The likelihood (6) – which

coincides with the usual censored survival data likelihood for continuous K – also makes

sense for cumulative hazard functions K with jumps, and has the ideal property, established

by Johansen (1983), that the Cox (1972) partial likelihood is derivable as (6) maximized over

cumulative hazard functions K for fixed q. Nielsen et al.’s (1992) likelihood, with logarithm

(4), is the one which results in frailty models (1) and (5) by: (i) replacing K in the
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contribution to (6) of individual i by niK for a Fn-distributed frailty variable ni; and (ii)

integrating out the ni variable in the resulting expression with respect to the measure dFn(ni).

Nielsen et al. (1992) argue and Gill (1992) proves that this likelihood is also the one which

results directly by consideration of intensities for the observed-data filtration, and according

to Slud (1992) it can also be viewed as the limiting product of conditional likelihoods of

observed-data increments over sequences of finer and finer partitions of the time-axis by

stopping-time sequences.

The reasoning which led Johansen to the likelihood extension (6) for the Cox model also

leads directly, in our setting with general G which may not arise from a frailty model, to the

likelihood extension

exp
X
z

Z
log

dðG � qzKÞ
dm

	 

dNzðtÞ þ GðqzKÞdYz

� � !
: ð7Þ

Jumps in K contribute terms (D(G s qzK)(t))DNz(t) exp()Yz(t)D(G s qzK)(t)) to this likelihood,

corresponding to independent Poisson(D(G s qzK)(t)) distributed numbers of failures at t in

groups z ¼ 0, 1. The logic supporting the logLik extension (7) is no more or less compelling

than that of Johansen (1983). We argue in this way only to confirm that meaningful semi-

parametric likelihood extensions are not unique. Another extension was studied, with methods

like those of this paper, in Vonta (1992) and Slud & Vonta (2002). It seems likely, and is true in

the Cox (1972) model although we cannot yet prove it in general, that the NPMLEs obtained by

these variant likelihood extensions are all asymptotically equivalent.

2.3. NPML equations

We first find necessary conditions for a maximum at J ¼ 0 of log-likelihood under model (1)

over one-parameter families K ¼ KJ defined (Gill 1989) by

K#ðtÞ �
Z t

0

ð1 þ # � cðsÞÞdKðsÞ;

where J varies over a small neighbourhood of 0, and c is a bounded measurable function on

[0, s0]. This approach leads to local or relative NPMLEs in the sense of Kiefer & Wolfowitz

(1956). The maxima are often taken for fixed values q (generally different from q0), in which

case we speak of restricted NPMLEs.

As we employ the same logLik extension (4) as Nielsen et al. (1992) and virtually all later

authors, the joint NPMLEs we study agree precisely with the Cox (1972) maximum partial

likelihood estimators in the case G(x) ¼ x, according to Johansen (1983), and to the NPMLEs

studied by Klein (1992), Murphy (1994, 1995) and Parner (1998) in the Clayton–Cuzick

model. However, the asymptotic behaviour of restricted NPMLEs has not previously been

studied in models (1) other than Cox’s.

The space S0 of allowable functions K is large enough to contain all potential NPMLEs. It

suffices to check that an extended real-valued K which attains the value 1 within [0, s0]
already makes logLik negatively infinite. To show this, we first take m to be the sum of dK0 and

a counting measure on a countable set of potential jumps, and rewrite (4) as

X
z

Z
log qz dK

dK0
þ DK

	 

G0

G

	 

qzK

ðGe	GÞ

qzK

	 

dNz þ

Z
GðqzKÞdðYz þ NzÞ

� �
: ð8Þ

Now remark that Yz + Nz is non-increasing on [0, s0] by definition; that Y(s0) > 0 while

Y(s0+) ¼ 0 by (3), and that yG¢(y)/G(y) £ 1 for y 2 (0, 1) by concavity of G. Therefore the
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second integral in (8) is at most )G(qzK(s0))Yz(s0), and the argument of the logarithm of the first

integral is finite at all points of (0, s0), including any t for which K(t) ¼ 1 > K(t)). This shows

Lemma 1

logLik(K, q) as displayed in (8) is only increased, as a function on the space of extended real-

valued cumulative hazard functions on [0, s0], if K is restricted to lie in S0, i.e. to satisfy

K(s0) < 1.

The first Gâteaux derivative (¶/¶J) logLik(KJ, q)|J¼0 at the parameter-location K in the

direction KJ ) K has the general formula

X
z

Z
cðtÞ þ qz G

00ðqzKðtÞÞ
G0ðqzKðtÞÞ

Z t

0

cdK

	 
	 

ðI½DKðtÞ¼0� þ I½DKðtÞ>0�ÞdNzðtÞ

�

þ
Z

ð	YzðtÞÞqzI½DKðtÞ>0�

Z t	

0

cdK

	 

dðG0 � qzKÞðtÞ þ G0ðqzKðtÞÞcðtÞdK

� �

þ
Z

ð	YzðtÞÞqz G00ðqzKðtÞÞqz
Z t

0

cdK

	 

þ G0ðqzKðtÞÞcðtÞ

� �
I½DKðtÞ¼0�dK

�
; ð9Þ

for all K 2 S0 and all bounded measurable c. Lemmas 3 and 4 of appendix A show that a

necessary condition for (9) to be 0 for all bounded measurable c, for fixed (K, q), is that K be a

pure-jump function with jumps occurring at precisely the locations of jumps of N, i.e. for

Sn � fK 2 S0 : for t � 0; I½DK¼0�dN þ I½DN¼0�dK � 0g; ð10Þ

K is a NPMLE ¼) K 2 Sn: ð11Þ

The non-zero terms in formula (9) for such K result in a tractable finite set of NPML

equations, stated here and proved in appendix A.

Theorem 1

For K 2 Sn to be an NPMLE for model (1) based on the data (Nz(t), Yz(t), z ¼ 0, 1)t‡0 with

fixed q ¼ eb, the following system of equations must hold: if s < t are any two successive jumps

of N, and t� is the last jump of N, then

X
z

qz G0ðxÞðYzðsÞ 	 YzðtÞÞ 	
G00ðxÞ
G0ðxÞ DNzðsÞ

� �
x¼qzK̂ðsÞ

¼ DNðsÞ
DK̂ðsÞ

	 DNðtÞ
DK̂ðtÞ

; ð12Þ

X
z

qz ð	Yzðt�ÞÞG0ðqzK̂ðt�ÞÞ þ
G00

G0


qzK̂ðt�Þ

DNzðt�Þ
� �

þ DNðt�Þ
DK̂ðt�Þ

¼ 0: ð13Þ

3. Existence and consistency of NPMLE

By (11), K 2 Sn is necessary for K to be an NPMLE. When K 2 Sn, (4) provides

logLik(K, q) equal to

X
z

Z
ðG � qzKÞdYz þ

X
z;t

logðqzG0ðqzKðtÞÞDKðtÞÞDNzðtÞ: ð14Þ

We study the maximization of logLik for fixed q by grouping the terms in the last sum-

mation of (14) in a special way. Fix, for all large n, a non-random finite system
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c ¼ fcing
mðnÞ
i¼1 ¼ fcigmi¼1 of intervals (ci, ci+1] partitioning (0, s0], where 0 ¼ c0 < c1 < � � � <

cm < cm+1 ¼ s0, and satisfying the following condition, with ºÆß denoting greatest integer:

(P.1) K0ðciþ1Þ 	 K0ðciÞ ¼ K0ðs0Þ
m ; i � m ¼ mðnÞ;

where mðnÞ ¼ bK0ðs0Þ
ffiffiffi
n

p
� minz qzðs0Þqz

0G
0ðqz

0K0ðs0ÞÞc:

As the underlying distributions of the failure-times Xi are continuous, a.s. DN(ci) ¼ 0 for all

i. Now define for each i £ m, z ¼ 0, 1,

ri;z ¼ Nzðciþ1Þ 	 NzðciÞ ¼
X

t2 ðci;ciþ1�
DNzðtÞ;

pi;z ¼ E
ri;z
n

� �
¼
Z ciþ1

ci

qzðtÞdðG � qz
0K0ÞðtÞ;

Ci;zðKÞ ¼
X

t2 ðci;ciþ1�
qzG0ðqzKðtÞÞDKðtÞ½ �DNzðtÞ; K 2 S0:

Note that all of the quantities ci, m, riz, piz, Ciz(K) depend upon n, but for convenience we

suppress this dependence.

In terms of these notations, we have

logLikðK; qÞ ¼
X
z

Z
ðG � qzKÞdYz

þ
X
j;z

rj;z logðCj;zðKÞÞ þ
X

t:t2 ½cj ;cjþ1Þ

DNzðtÞ
rj;z

	 

log

qzG0ðqzKðtÞÞDKðtÞ
Cj;zðKÞ

	 
8<
:

9=
;: ð15Þ

The idea of grouping terms in just this way is that for fixed (j, z), each of the vectors of

dimension rj,z indexed by the jump-points t for Nz within (cj, cj+1] with components

1

rj;z
and

fqzG0ðqzKðtÞÞDKðtÞg
Cj;zðKÞ

is a probability vector. It is a simple consequence of Jensen’s inequality that for a fixed positive

probability vector x of finite dimension d,

max
X
k

xk log pk : p 2 ½0; 1�d ;
X
k

pk ¼ 1

( )
¼
X
k

xk log xk : ð16Þ

So we have proved an upper bound for logLik in the following lemma which will turn out to

be asymptotically attainable.

Lemma 2

For arbitrary K 2 Sn, if Nz(cj) < Nz(cj+1) for all j £ m and z ¼ 0, 1,

logLikðK; qÞ �
X
z

Z
ðG � qzKÞdYz þ

X
z

X
j

rj;z log
Cj;zðKÞ
rj;z

	 

:

The log-likelihood at (K, q) is negatively infinite if either K(cj) ¼ 1 or K(cj) ¼ K(cj+1) for some

j £ m.

From condition (P.1) along with properties (G.1) and (G.4) of G, the following useful

properties of {ci, ri,z: 0 £ i £ m + 1, z ¼ 0, 1} are derived in Slud & Vonta (2002): for

z ¼ 0, 1, a.s. for all sufficiently large n,
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for all i � m; a:s: pi;z � 1=
ffiffiffi
n

p
and jri;z 	 npi;zj � n3=8; ð17Þ

max
z¼0;1;i�m

log
G0ðqzK0ðciþ1ÞÞ
G0ðqzK0ðciÞÞ

	 

þ log

qzðciÞqzG0ðqzK0ðciÞÞðK0ðciþ1Þ 	 K0ðciÞÞ
pi;z

	 



� �
! 0:

ð18Þ

3.1. Limiting behaviour of NPMLEs

The maximizers of log-likelihood over K 2 S0 have been shown in (11) to lie in the finite-

dimensional set Sn, and for fixed q, logLik(K, q) is continuous in K and tends to )1 as K
tends to the boundary of Sn. Therefore, the maximization can without loss of generality also

be restricted to a compact subset of Sn, and it follows immediately that relative maximizers

K̂ 2 Sn of the log-likelihood (4) do exist. In the next two results, proved in appendix B, we

establish further properties which must almost surely be satisfied by any NPMLE sequence Kn

based on data samples of size n as n fi 1.

Proposition 1

Assume model (1) with fixed underlying parameters (K0, q0) and continuous K0, for survival-data

samples {(Ti, Di, Zi),i ¼ 1, . . . ,n}. Let q be fixed (not necessarily equal to q0), and let fcjgmj¼1

satisfy (P.1) and (18) as above. Then for any finite constant K > K0(s0), there exists a finite

constant C not depending upon n, such that if {Kn 2 Sn} is any sequence of relative maximizers

of (4) within {K 2 Sn : K(s0) £ K}, then almost surely for all sufficiently large n, for all j £ m,

Knðcjþ1Þ 	 KnðcjÞ � C � ðK0ðcjþ1Þ 	 K0ðcjÞÞ: ð19Þ

Theorem 2

Under the hypotheses of proposition 1,

limsup
n

1

n
logLikðKnÞ þ Nð1Þ log n½ � � sup

L
J ðL; qÞ; ð20Þ

where the supremum is taken over non-decreasing functions L absolutely continuous with respect

to K0 (i.e. such that the corresponding measures satisfy dL � dK0), and the objective-functional

J(L, q) is defined for functions L 2 S0 by

J ðL; qÞ ¼
X
z

Z
ðG � qzLÞdqz þ

Z
qz log

dðG � qzLÞ
dK0

dðG � qz
0K0Þ

� �

	
X
z

Z
qz log

X1

w¼0

qwqw
0G

0ðqw
0 K0Þ

 !
dðG � qz

0K0Þ: ð21Þ

Corollary 1

Under the same hypotheses as proposition 1, if an NPMLE sequence {Kn¢} along a subsequence

of samples of size n¢ falls within a set

A � fK 2 S0: sup
t�s0

jKðtÞ 	 L0ðtÞj � dg;

for a fixed function L0 2 S0 and d > 0 not depending upon n¢, then

lim sup
n0

1

n0
logLikðKn0 ; qÞ þ Nð1Þ log n0ð Þ � sup

L2A
J ðL; qÞ;
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where the supremum runs without loss of generality over functions L 2 S0 absolutely continuous

with respect to K0, as in the theorem.

3.2. Variational characterization of NPMLE limits

We next study the variational problem of maximizing J(Æ,q) over elements L 2 S0 which are

absolutely continuous with respect to K0. The expression J(L, q), without the last line of (21)

which is free of L, is the expectation under the true parameter values (q0, K0) of n)1

logLik(L, q) for data right-censored no later than s0. It is verified in Slud & Vonta (2002)

that the functions K for which J(L, q) > )1 all satisfy

L � K0 and
X
z

Z
qzG0ðqzLÞdL < 1: ð22Þ

Now fix a parameter value (q, L) satisfying (22), with L(s0) < 1, and consider the one-

parameter family of functions L#ðuÞ ¼
R u
0 wð#hðsÞÞ dLðsÞ in the neighbourhood of J ¼ 0,

where w is an arbitrary fixed smooth non-decreasing scalar function from the whole real line to

the positive half-line such that w(0) ¼ 1, w¢(0) ¼ 1, and where h is an arbitrary element of the

linear space

Hd;L ¼ h 2 L0ðRþ; dK0Þ : sup
z;q2Bdðq0Þ

Z s0

0

h2RzdL < 1
( )

:

We introduce w, following Bickel et al. (1993), in order that the directions h fill out a linear

space, without awkward constraints. The (small) constant d will be chosen below.

The condition that E(logLik(LJ, q)) is extremized with respect to J at 0 for arbitrary h, i.e.

has horizontal derivative, can be written

X
z

Z
hþ qz G

00

G0


qzL

Z �

0

hdL
	 


qz qz
0G

0ðqz
0K0ÞdK0 	 qzG0ðqzLÞdL

� �
¼ 0:

After integration by parts, we obtain as an equivalent condition for this extremum at L to hold

simultaneously for all h, that for s < s0:X
z

qz
0G

0ðqz
0K0ðsÞÞqzðsÞ 	

dL
dK0

qz qzðsÞG0ðqzLðsÞÞ þ qz
Z s0

s
G00ðqzLÞqzdLðuÞ

	�

	qz
0

Z s0

s

G00

G0


qzL

G0ðqz
0K0ðuÞÞqzdK0ðuÞ


�
¼ 0;

or

dL
dK0

ðsÞ ¼
P

z q
z
0qzðsÞG0ðqz

0K0ðsÞÞP
z q

z qzðsÞG0ðqzLðsÞÞ 	
R s0

s qzðG00ðqzLÞ=G0ðqzLÞÞd G � qz
0K0 	 G � qzL

� � ! :
ð23Þ

Next re-parameterize (23) using

a ¼ 	
X
z

qz
Z s0

0

qz
G00

G0


qzL

ðdðG � qz
0K0Þ 	 dðG � qzLÞÞ; ð24Þ

so that the right-hand side of equation (23) becomesP
z q

z
0G

0ðqz
0K0ðsÞÞqzðsÞ

a þ
P

z q
z qzðsÞG0ðqzLðsÞÞ þ

R s
0 qzðG00=G0Þ


qzL

ðdðG � qz
0K0Þ 	 dðG � qzLÞÞ

� � :
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By (G.1) and (G.4) making G¢¢/G¢ bounded on a neigbourhood [0, �] of 0, and by (G.2) making

it bounded on each interval [�, s0], this parameter a will be finite for any L satisfying (22). Now

treating a as an unknown parameter and defining

P ðsÞ ¼ P ðs; a; qÞ ¼ a þ
X
z

qz
Z s

0

qz
G00

G0


qzL

ðdðG � qz
0K0Þ 	 dðG � qzLÞÞ;

we transform equation (23) to obtain the second order system

dL
dK0

ðsÞ ¼
P

z q
z
0qzðsÞG0ðqz

0K0ðsÞÞP
z q

zqzðsÞG0ðqzLðsÞÞ þ P ðsÞ ð25Þ

dP
dK0

ðsÞ ¼
X
z

qzqzðsÞ
G00

G0


qzL

qz
0G

0ðqz
0K0ðsÞÞ 	 qzG0ðqzLðsÞÞ dL

dK0
ðsÞ

	 

ð26Þ

Lð0Þ ¼ 0; P ð0Þ ¼ a: ð27Þ

It follows from the particular choice of a defined in (24), for a calculus-extremum L of J(Æ, q),
that P(s0) ¼ 0, and we seek to characterize a in this way implicitly but uniquely from the

system (25)–(26).

Proposition 2

For all q lying in a sufficiently small interval (q0 ) d, q0 + d), the expression J(L, q) in (21) is

uniquely maximized over non-decreasing L 2 S0 at the function L ¼ Lq which solves the

equation system (25)–(26) subject to the conditions L(0) ¼ 0, P(s0) ¼ 0.

Proof. A solution (L, P) of (25)–(27) for q ¼ q0, a ¼ 0 is given on [0, s0] by L(s) ” K0(s),

P(s) ” 0, and the right-hand sides of (25)–(26) are uniformly bounded and smooth on [0, s0]
and smooth for (a, q) in a neighbourhood of (0, q0). Standard ordinary differential equation

(ODE) theory (cf. Coddington & Levinson 1957, Chapter 1) and the smoothness assumptions

on G imply that for (a, q) in a sufficiently small neighbourhood U of (0, q0), the solution (L, P)

of (25)–(27) on [0, s0] depends smoothly on the parameters (a, q). Thus, there exists a rec-

tangular neighbourhood ()d, d) · (q0 ) d, q0 + d)  U of values (a, q) such that the solu-

tions (L(s, a, q), P(s, a, q)) are continuously differentiable with respect to s, a. We study next

the behaviour of the partial derivatives

L�ðsÞ �
@L
@a

ðs; 0; q0Þ; P�ðsÞ �
@P
@a

ðs; 0; q0Þ; ð28Þ

when (a, q) lies in a small neighbourhood of (0, q0), by means of the adjoint system

obtained by formal differentiation of the system (25)–(26) with respect to a at the point

(a, q) ¼ (0, q0):

dL�
dK0

ðsÞ ¼ 	 P�ðsÞ þ
P

z q
2z
0 G

00ðqz
0K0ðsÞÞqzðsÞL�ðsÞP

z q
z
0G

0ðqz
0K0ðsÞÞqzðsÞ

ð29Þ

dP�
dK0

ðsÞ ¼ 	
X
z

qz
0qzðsÞ

G00

G0

	 

qz

0
K0

 
q2z

0 G
00ðqz

0K0ÞL�

	 qz
0G

0ðqz
0K0ÞðP� þ

P
w q2w

0 G00ðqw
0 K0ÞqzL�ÞP

w qw
0 qwG

0ðqw
0 K0Þ

!
; ð30Þ
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subject to the initial condition L*(0) ¼ 0, P*(0) ¼ 1. Under our regularity assumptions, the

solution of (29)–(30) exists and is unique, and satisfies

inf
s2 ½0;s0�

P�ðsÞ > 0; ð31Þ

which is proved in appendix C. Therefore (¶P/¶a)(s0, 0, q0) > 0, so that, possibly after

making the neighbourhood still smaller, for some positive constant b, and neighbourhood U1

of (0,q0) 2 R · R+,

Lðs0; a; qÞ � b;
@P
@a

ðs0; a; qÞ � b; jP ðs0; a; qÞj �
bs0

2
: ð32Þ

Thus, for each q close enough to q0, there is a unique a ¼ a(q) such that

ðaðqÞ; qÞ 2 U1 and P ðs0; aðqÞ; qÞ ¼ 0:

Moreover, the inverse function theorem implies that this locally defined function a(q) is

continuously differentiable.

The reasoning immediately preceding the statement of the proposition showed that a local

extremum of the functional J(Æ, q) on S0 for fixed q must necessarily satisfy (25)–(26) with a

real parameter a and function P such that P(0) ¼ a, P(s0) ¼ 0. For q 2 (q0 ) d, q0 + d),
such solutions exist and are unique within the set of S0 functions which are bounded and have

bounded density derivatives with respect to K0 on [0, s0]. However, the collection of such

continuous functions on [0, s0] is relatively compact in uniform norm by the Arzela–Ascoli

theorem. Hence the continuous functional J(Æ, q) on (S0, kÆk1,[0, s0]
) has a maximizer. In

summary, the functions Lq ” L(Æ, a(q), q) smoothly parameterized by q are each unique local

maximizers of J(Æ, q) over S0, as was to be proved.

The function Lq characterized in proposition 2 is the unique function to which the NPMLE

based on the fixed local value q a.s. converges.

3.3. Consistency theorems

Theorem 3

Denote by q0 ¼ eb0 and K0 the true values of the parameters q and K governing the data

{Nz(t),Yz(t), z ¼ 0,1, t ‡ 0} under model (1), together with (3) and (G.1)–(G.4); and assume that

the groupwise sample-sizes nz ” Yz(0) grow with n in such a way that almost surely

nz=n ! cz as n ! 1; ð33Þ

where cz > 0 are constants. Then almost surely, for each fixed q in a sufficiently small interval

(q0 ) d, q0 + d) and each sufficiently large sample size n, there exists an NPMLE sequence Kn

which satisfies limsup n fi 1 Kn(s0) < 1. For every such NPMLE sequence,

lim
n

1

n
logLikðKnÞ þ Nð1Þ log n½ � ¼ J ðLq; qÞ; ð34Þ

where J(Æ,q) is the functional (21), and where the unique solution Lq of the differential equations

(25)–(26) (with auxiliary function P(Æ) such that P(s0) ¼ 0) is also the unique maximizer of J(Æ,q).
Moreover,

sup
t2 ½0;s0�

jKnðtÞ 	 LqðtÞj 	! 0 as n ! 1: ð35Þ
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The proof of this theorem is given in appendix D. This proof shows that when q is fixed at

q0, the functions Lq determined by the system (25)–(26) of ODEs converge uniformly on

compact sets as q fi q0 to Lq0
¼ K0. Therefore, we have also proved:

Corollary 2

Under the assumptions of theorem 3, if q is fixed either precisely at q0 or at a strongly consistent

estimator ~qn of q0, then there exist NPMLEs with values at s0 bounded for all large n by

K0(s0) + 1, and any such sequence K̂n of NPMLEs is strongly consistent as n fi 1.

Theorem 3 and corollary 2 imply that any (restricted) NPMLE sequence over the set

Sn \ {K : K(s0) £ K0(s0) + 1} will be consistent, a remark with a very attractive computa-

tional consequence.

Corollary 3

Under the assumptions of theorem 3, define K̂KMz to be the Nelson–Aalen cumulative hazard

estimator based on the data from group z ¼ 0, 1, and define the estimator ~q of q0 by

~q ¼ G	1ðlog 2Þ
K̂KM1ðK̂	1

KM0ðG	1ðlog 2ÞÞÞ
;

in terms of right-continuous inverses. Then any restricted NPMLE of K0 within

Sn \ fK : Kðs0Þ � K̂KM0ðs0Þ þ 1g, with q fixed either at or in a small neighbourhood of ~q,
is a consistent estimator, respectively, of K0 or Lq.

The idea of the preliminary estimators used in corollary 3 is first that the groupwise Ka-

plan–Meier estimators are consistent, second that the (smallest K0 support-point greater than

or equal to the) corresponding group-0 median survival time is consistent, and therefore that ~q
consistently estimates q0.

4. Numerical algorithm and data example

4.1. Algorithm for estimation

Let t(i), i ¼ 1, . . . ,r denote the ordered jump-times for N, and z(i) denote the corresponding

group-indicators of the individuals failing at these times, where r ¼ N(s0). Equation (12) for

the NPMLE, given in theorem 1, says for i ¼ 1, . . . ,r ) 1 that for fixed q

qzðiÞG00ðqzðiÞKðtðiÞÞÞ
G0ðqzðiÞKðtðiÞÞÞ

þ 1

DKðtðiÞÞ
	 1

DKðtðiþ1ÞÞ
¼
X
z

qzG0ðqzKðtðiÞÞÞðYzðtðiÞÞ 	 Yzðtðiþ1ÞÞÞ; ð36Þ

while (13) says that

Kðtðr	1ÞÞ ¼ KðtðrÞÞ 	
1P

z q
zYzðtðrÞÞG0ðqzKðtðrÞÞÞ 	 ðqzðrÞG00ðqzðrÞKðtðrÞÞÞ=G0ðqzðrÞKðtðrÞÞÞÞ

:

ð37Þ

Equations (36) and (37) enable a backwards induction according to which K̂ðtðk	1ÞÞ is

determined uniquely from K̂ðtðiÞÞ, i ‡ k for k ranging from r to 1. In these recursions, K(tr) is

a finite unknown constant, to be determined from the system of equations (36) and (37),
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along with equation (36) at i ¼ 0, where t(0) ¼ 0 by definition, and K(t(0)) must be set equal

to 0.

Theorem 1 and the backward recursions (36) and (37) lead immediately to a strategy for

constructing the restricted NPMLE K̂ ¼ K̂q for fixed q. The idea is analogous to the ‘shooting

method’ in numerically solving two-point boundary-value differential-equation problems. For

fixed q, define the function D(u) of the starting value u ¼ K(t(r)) ¼ K(s0) for the recursion, to

be equal to the value of K(t(0)) obtained by following the recursion (36) or (37) back to i ¼ 0.

Then the estimated value K̂ðtðrÞÞ is defined as the value for which D(u) ¼ 0. In the present

setting, this function D(Æ) is well-defined, and the root of D(u) ¼ 0 has always been found in

our numerically computed examples, although we are not able to prove it generally, to be

unique. For each root u ¼ K(t(r)) of D(u) ¼ 0, there will exist a corresponding value of K(t(1)),

and we remark that the entire sequence of values K(t(k)), k ‡ 2, can be recovered from K(t(1))

via a forward recursion using (36) and (37).

Suppose we have fixed K(t(j)), j ¼ 0, 1, . . . ,i, i ‡ 1. Then there is only one possible value of

u ¼ K(t(i+1)) (the root of a monotone decreasing function of u) as can be observed by (36).

This reasoning shows that the roots u ¼ K(t(r)) of D stand in one-to-one correspondence with

the associated values K(t(1)). As a root-finder for D(Æ) requires a starting point, it is reasonable

to begin by using a simple consistent empirical estimator ~Lq for the limit Lq of NPMLEs for

fixed q. The choice of the ~Lq estimator was given in corollary 3. The suggested initial value for

u is ~LqðtðrÞÞ. The NPMLE is obtained as the solution of (12)–(13) for the root u corresponding

to the largest value of log-likelihood (4).

As restricted NPMLE’s Kn, in the class Sn \ fK : Kðs0Þ � ~Lqðs0Þ þ 1g defined in corol-

lary 3, exist and are consistent, it must be true a.s. for all sufficiently large n, that such Kn lie in

the relative interior of Sn and therefore satisfy (12)–(13). In any case, the NPMLE can now be

defined, measurably with respect to q, as the estimator of K obtained from that admissible

solution u of D(u) ¼ 0 for which the log-likelihood (4) is largest. For the NPMLE defined in

this way, the theorems of section 3 apply to prove consistency.

The algorithm described here is a semiparametric elaboration of a finite-dimensional para-

metric estimator ofVonta (1996a,b). It has been implemented computationallywith good results,

as both on real and simulated datawe have found generally that over amuch longer interval than

necessary, the function D(u) for which we are finding a root is monotone increasing.

4.2. Iterative joint estimation of NPMLE for (q,K)

The joint maximization of log-likelihood over (q, K) also yields consistent estimators. The

following theorem is proved in Slud & Vonta (2002) using the theorems above, and is illu-

strated numerically in the next subsection.

Theorem 4

Under the assumptions of theorem 3, there exists a sufficiently small d > 0, such that almost

surely as n fi 1, there exist joint NPMLE’s ðK̂n; q̂nÞ satisfying jq̂n 	 q0j < d and

lim supn K̂nðs0Þ � K0ðs0Þ þ 1. For all such joint NPMLE sequences, as n fi 1 almost surely

q̂n ! q0 and K̂n is consistent for K0 uniformly on [0, s0].

4.3. PBC data example

We illustrate the joint NPMLEs of the previous section with a frequently analysed clinical trial

dataset on PBC (Christensen et al., 1985). The trial consisted of 216 subjects, randomized
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either to a placebo or azathioprine treatment group. Survival data were recorded, together

with covariates which play no role in our analysis. Of the study subjects, nine had survival

times essentially equal to 0 and are excluded from our analysis, and 103 were lost to follow-up

before death; 98 of the 207 subjects analysed here were in the treatment group, the remaining

109 on placebo. Previous analyses of this dataset showed a non-significant treatment effect

based upon a two-sample logrank statistic, but a good fit to the Cox proportional hazards

model based on five to seven covariates and a highly significant (p-value <0.02) treatment

effect after adjusting for these covariates. Here we treat the two-sample data using a Clayton–

Cuzick (Gamma-frailty) model with unknown parameter c and treatment-effect parameter q.
We implemented in Splus the algorithm described in section 4.1 to calculate the restricted

NPMLE K̂ for fixed values of the unknown parameters q, c. On a grid of approximately 500

pairs q, c, within [1, 1.2] · [0, 1], profiled log-likelihood values were calculated by substituting

into formula (4) the restricted NPMLE’s K̂ (found to be unique in every case). Using the

Splus-supplied bivariate-interpolation and contour functions, we produced the contour plot

given as Fig. 1.

As the limiting case of the Clayton–Cuzick model, with parameter c going to 0, is the

standard Cox model, previous findings of adequacy of Cox-model fits to the PBC data, agree

with the figure showing the profiled PBC log-likelihood to be largest in the neighbourhood of

c ¼ 0. Thus the two-sample PBC data continue to indicate that Lehmann, or proportional

hazards, alternatives fit the data as well as any Clayton–Cuzick frailty model. The parameter q
maximizing log-likelihood appears to be located near 1.15, although the log-likelihood con-

tours are not nearly sharp enough in that neighbourhood to indicate a significant treatment

Clayton-Cuzick  c  parameter

r

0.0 0.1 0.2 0.3 0.4

1.
0

1.
1

1.
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3.9

4
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4.05
4.1
4.15

4.25

4.3
4.32

4.33

Fig. 1. Smoothed (Splus) contour plot of profiled log-likelihood surface for the PBC data, with respect to

parameters q and c. The contoured log-likelihood is equal to 590 plus (4) with the maximizer K̂, for fixed

(q, c), substituted for K.
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effect. (By analogy with finite-dimensional likelihood theory, q significantly different from 1

would be indicated only if the log-likelihood contours were at least 1:92 ¼ 1
2 ð1:96Þ

2 lower at

q ¼ 1 than at the maximum near c ¼ 0, q ¼ 1.15.)

5. Extensions

5.1. Nuisance parameters in G

A very interesting extension which can be treated by the methods of this paper is the case

where additional unknown finite-dimensional nuisance parameters h enter the model through

G(Æ) ” G(Æ, h). For example, in the model with Gamma-distributed frailty, the scalar parameter

c ¼ h is generally unknown and must be estimated from the data. Our results carry through in

this situation. An analogue of theorem 2 continues to hold, but the preceding algorithm must

be modified in order to provide joint NPMLEs of (h, q, K). As a first attempt at such an

algorithm, we profile the log-likelihood as a function of the finite-dimensional parameters

(h, q) by substituting into (4) the maximizer over K for fixed (h, q), restricted as in corollary 3,

and then optimize in (h, q) by applying a general-purpose function-maximizer on the resulting

(spline-smoothed) surface.

5.2. Extension to regression models

The case where the structural parameter is a vector of regression coefficients for observed

covariates is of great importance for applications and can be easily handled by our methods.

The model is (1) with b 2 Rp and z denoting a p-dimensional vector of non-constant ex-

planatory covariates. The log-likelihood (4) evaluated at KJ has the same form as before,

namely,

X
z

nZ
log eb0zG0ðeb0zKðtÞÞdK

dm

�
dNzðtÞ þ

Z
Gðeb0zKðtÞÞdYzðtÞ

	 �
;

where the sum in z ranges over the distinct observed covariate values. This restriction to finite,

as opposed to bounded, support is primarily to enable the use of the explicit preliminary

estimator (38) in place of the more complicated density-based estimators of Cheng (1989).

Results analogous to the NPML equations (12) and (13) and to theorems 2 and 3 do hold in the

regression case. For details, see Slud & Vonta (2002). As an indication of the overall consistency

result in this case, we state only one result. In that result, a specific preliminary estimator is cited

in equation (38), but any of the others of Cheng et al. (1995) would do just as well.

Theorem 5

Denote by b0 and K0 the true values of the parameters b and K governing the data {Nz(t), Yz(t),

z 2 Z, t ‡ 0} under the model (1) together with (3) and (G.1)–(G.4); and assume that as

n fi 1, the group sizes nz ” Yz(0) grow with n in such a way that a.s. nz/n fi cz>0. Assume also

that Eð 1
Z1

� �
1
Z1

� �tr
Þ is a positive-definite (p + 1) · (p + 1) matrix. Define preliminary estimators

ð~b; ~KÞ through the (p+1)-vector equations

X
z

1

z

	 

nz
n
SðzÞKM ðtÞ ¼

X
z

1

z

	 

nz
n

expð	Gðez0~b ~KðtÞÞÞ; ð38Þ

first by solving (38) at a fixed value t, such as t ¼ ðn	1
P

z nzS
ðzÞ
KM Þ

	1ð1=2Þ, and then by solving

the first component equation of (38) for all t. Then any restricted NPMLE of K0 within

Sn \ fK : Kðs0Þ � ~Kðs0Þ þ 1g; with b fixed at ~b, is a consistent estimator of K0.
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6. Discussion

In the general right-censored semiparametric transformation model, we have studied like-

lihood equations and asymptotic behaviour of the log-likelihood functional in the neigh-

bourhood of the true parameter (b0, K0) governing a large data-sample. The restricted

NPMLEs of K for fixed q gave information not previously available concerning the profile log-

likelihood surface on a non-shrinking neighbourhood of q values. This approach differs from

the usual one, expounded in Bickel et al. (1993), of studying the semiparametric likelihood

only through its differential properties at the true parameter point.

As the transformation-model likelihood considered here coincides with that of Nielsen et al.

(1992), the NPMLEs we studied coincide with theirs. Thus a very useful outcome of our

likelihood equations in theorem 1, is the fast algorithm of section 4 for NPML estimation of

K, in the same setting where Klein (1992) and others apply the EM algorithm. Estimation of q
and any other unknown parameters such as the constant c in the Clayton–Cuzick model then

proceed via a profiled likelihood.

An important direction for further work on the NPMLEs studied in this paper is to es-

tablish asymptotic normality and (semiparametric) efficiency (Gill and van der Vaart 1993).

Parner (1998) has done this for the specific case of the Clayton–Cuzick model.

The standard idea followed here in proving consistency of NMPLEs has been to charac-

terize expected log-likelihood maximizers uniquely over a sufficiently large subset of param-

eters within the infinite-dimensionsal parameter space and then to show that, to top order, the

log-likelihood and expected log-likelihood have the same maximizers. Two key steps were to

establish asymptotic absolute continuity (proposition 1) for restricted NPML sequences Kn

and to apply the theory of adjoint parameterized ODEs to characterize variationally the

maximizer of expected log-likelihood (proposition 2). These steps may prove useful inde-

pendently in other contexts.
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Appendix A: Derivative of logLik

Lemma 3

Let K̂ be an NPMLE in the space S0, for fixed q, and let J ¼ ft : DK̂ðtÞ > 0g be the countable

set of its jump points. Then K̂ is a pure jump function; all jumps of N occur at jumps of K̂; and for

t 2 J,

DNðtÞ
DK̂ðtÞ

þ
X
z

qz
n
ð	YzðtÞÞG0ðqzK̂ðtÞÞ þ G00ðqzK̂ðtÞÞ

G0ðqzK̂ðtÞÞ
DNzðtÞ

þ
Z 1

t

�
ð	YzðsÞÞdðG0 � qzK̂ÞðsÞ þ G00ðqzK̂ðsÞÞ

G0ðqzK̂ðsÞÞ
DNzðsÞ

�o
¼ 0: ð39Þ

Proof. The steps of the proof are only summarized here, with full details in Slud & Vonta

(2002). We successively set to 0 the first Gâteaux derivative of the log-likelihood function,

given in (9), for specific choices of c. First, with c ¼ I½DNðtÞ 6¼ 0;DK̂ðtÞ¼ 0�, the derivative equation

(9) implies that I½DK̂ðtÞ¼ 0�dNðtÞ is the 0-measure. Next, with c ¼ I½DK̂ðtÞ¼ 0�, equation (9) reduces
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after integration by parts and some algebra, to show via (G.1) that I½DK̂ðsÞ¼ 0�dK̂ðsÞ is also the

0-measure.

The remaining non-zero terms in the differentiated likelihood (9) lead, after changing the

order of integration in the terms involving
R t	
0 cdK̂ and noting I½DK̂ðtÞ> 0� ¼ 1 a.e. (dK̂ðtÞ), to

X
z

Z
cðtÞ DNzðtÞ

DK̂ðtÞ
þ qz ð	YzðtÞÞG0ðqzK̂ðtÞÞ þ G00ðqzK̂ðtÞÞ

G0ðqzK̂ðtÞÞ
DNzðtÞ

 !( (

þ
Z 1

t
ð	YzðsÞÞdðG0 � qzK̂ÞðsÞ þ G00ðqzK̂ðsÞÞ

G0ðqzK̂ðsÞÞ
DNzðsÞ

 !)!
dK̂

)
¼ 0:

The last equation must hold for all bounded measurable functions c, implying (39) and

completing the proof.

Lemma 4

For an NPMLE K̂ 2 S0; ft : DK̂ðtÞ > 0g ¼ ft : DNðtÞ > 0g.

Proof. By lemma 3, K̂ is a pure-jump function. Integration by parts in (39) implies

DNðtÞ
DK̂ðtÞ

þ
X
z

qz G00ðqzK̂ðtÞÞ
G0ðqzK̂ðtÞÞ

DNzðtÞ
(

þ
Z 1

t
ðG0 �qzK̂ÞðsÞdYzðsÞþ

G00ðqzK̂ðsÞÞ
G0ðqzK̂ðsÞÞ

DNzðsÞ
 !)

¼ 0:

If K̂ had a jump at t < s0 and DN(t) ¼ 0, then only the integral in the last equation remains.

The integrand is £0 by (G.1), while by (3),
P

z G
0ðqzK̂ðs0ÞÞDYzðs0Þ < 0. This contradiction

completes the proof.

Proof of theorem 1. Let s < t be two successive jump points of K̂. By subtracting (39) taken

at s from (39) taken at t, we get

DNðtÞ
DK̂ðtÞ

þ
X
z

qz 	YzðtÞG0ðqzK̂ðtÞÞ þ G00ðqzK̂ðtÞÞ
G0ðqzK̂ðtÞÞ

DNzðtÞ
(

	 DNðsÞ
DK̂ðsÞ

	 YzðsÞG0ðqzK̂ðsÞÞ 	 G00ðqzK̂ðsÞÞ
G0ðqzK̂ðsÞÞ

DNzðsÞ

	
Z t

sþ
	YzðxÞdðG0 � qzK̂ÞðxÞ þ G00ðqzK̂ðxÞÞ

G0ðqzK̂ðxÞÞ
DNzðxÞ

 !)
¼ 0:

As s and t are successive jumps of K̂, the last term above is equal to

X
z

qz 	YzðtÞDðG0 � qzK̂ÞðtÞ þ G00ðqzK̂ðtÞÞ
G0ðqzK̂ðtÞÞ

DNzðtÞ
( )

:

After some obvious cancellations we obtain equation (12).

Now let t* be the last jump point of K̂. Then for t ¼ t*, equation (39) leads to equation (13),

as there are no jumps of K̂ after t*, making the integral from t* to 1 equal to 0.
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Appendix B: Proofs of proposition 1, theorem 2

Proof of proposition 1. The idea of the proof is to define, for sequences of Kn 2 Sn satisfying

Kn(s0) £ K such that (with positive probability, for arbitrarily large n and) for some j £ m,

Knðcjþ1Þ 	 KnðcjÞ
K0ðcjþ1Þ 	 K0ðcjÞ

> C; ð40Þ

a new sequence ~K � ~Kn � Kn in Sn such that (for all large n)

logLikð~K; qÞ > logLikðKn; qÞ;

where the log-likelihoods throughout this proposition and throughout the paper are all

calculated for the fixed value q, not for q0. The sequence ~K is defined at all jump-points t of

N(Æ), with j fixed satisfying (40), by

D~KðtÞ ¼ DKnðtÞ for t 6 2 ðcj; cjþ1Þ
bDKnðtÞ for t 2 ðcj; cjþ1Þ

�
;

for an arbitrary positive constant b 2 (1/2,1). Note that ~K so defined does satisfy
~Kðs0Þ � Knðs0Þ � K.

Using this definition, (14) and (40) with

C ¼ 2G0ð0Þð1	 bÞ	1 log
1

b

	 
 P
z q

z
0P

z q
zG0ðqzKÞqzðs0Þ

;

straightforward estimates – full details of which can be found in Slud & Vonta (2002) – show

that for all large n, and arbitrarily small 1 ) b,

logLikð~K; qÞ 	 logLikðKn; qÞ > 0:

Thus Kn cannot have been the NPMLE, and the proof is complete.

Proof of theorem 2. By lemma 2 for K ¼ Kn 2 Sn,

1

n
logLikðK; qÞ � 1

n

X
z

Z
ðG � qzKÞdYz þ

X
z

X
j

rj;z
n

log
Cj;zðKÞ
rj;z

:

The Glivenko–Cantelli lemma implies that Yz(Æ)/n converges a.s., uniformly as n fi 1, to non-

increasing continuous qz. Therefore,

lim
n

X
z

Z
ðG � qzKÞ dYz

n
¼
X
z

Z
ðG � qzKÞdqz:

The remainder of the proof, which uses proposition 1, the asymptotic smallness of

maxi£m(Kn(ci+1) ) Kn(ci)) and the information inequality (16), can be found in Slud & Vonta

(2002).

Appendix C: Justification of (31)

The adjoint system (29)–(30) is a linear matrix equation

dL�=dK0

dP�=dK0

	 

¼ A

L�
P�

	 

;

L�ð0Þ
P�ð0Þ

	 

¼ 0

1

	 

; ð41Þ

with the entries Aij(s) of the 2 · 2 matrix A(s) given by
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A11ðsÞ ¼ 	A22ðsÞ ¼ 	
P

z q
2z
0 qzðsÞG00ðqz

0K0ðsÞÞP
z q

z
0qzðsÞG0ðqz

0K0ðsÞÞ
; A12ðsÞ ¼ 	 1P

z q
z
0qzðsÞG0ðqz

0K0ðsÞÞ
;

and

A21ðsÞ ¼
ð
P

z q
2z
0 qzðsÞG00ðqz

0K0ðsÞÞÞ2P
z q

z
0qzðsÞG0ðqz

0K0ðsÞÞ
	
X
z

q3z
0 qzðsÞ

G002

G0

	 

qz

0
K0ðsÞ

¼ 	q0q1ðsÞq0ðsÞ
ðG0ðq0K0ðsÞÞG00ðK0ðsÞÞ 	 q0G

00ðq0K0ðsÞÞG0ðK0ðsÞÞÞ2

G0ðq0K0ðsÞÞG0ðK0ðsÞÞ
P

z q
z
0qzG

0ðqz
0K0Þ

:

By inspection of the foregoing definitions, A21(s) < 0, A11(s)>0, A12(s)<0 uniformly on each

interval [�, s0] for which K0(s0) > 0, and

trðAðsÞÞ ¼ 0; detðAðsÞÞ ¼ 	
P

z q
3z
0 qzðsÞðG002=G0Þqz

0
K0ðsÞP

z q
z
0qzðsÞG0ðqz

0K0ðsÞÞ
:

Then if we define

BðsÞ ¼
Z s

0

AðuÞdK0ðuÞ ¼ n 	g
ðn2 	 D2Þ=g 	n

	 

;

we have

detðBÞ ¼ 	D2; n;D; g > 0; n < D;

with all inequalities uniform over [�, s0], where

nðsÞ ¼
Z s

0

A11ðuÞdK0ðuÞ; gðsÞ ¼ 	
Z s

0

A12ðuÞdK0ðuÞ;

and

D2ðsÞ ¼ n2ðsÞ þ gðsÞ
Z s

0

detAðuÞ þ A2
11ðuÞ

A12ðuÞ
dK0ðuÞ:

It is easily checked that (g, n + D)¢ and (g, n ) D)¢ are, respectively, right eigenvectors for B

with eigenvalues )D and D, so that

B ¼ g g
n þ D n 	 D

	 

	D 0
0 D

	 

g g

n þ D n 	 D

	 
	1

;

and

expðBÞ ¼ 1

2gD

g g

n þ D n 	 D

	 

e	D 0

0 eD

 !
D 	 n g

D þ n 	g

	 


¼
coshðDÞ þ ðn=DÞ sinhðDÞ 	ðg=DÞ sinhðDÞ
ððn2 	 D2Þ=gDÞ sinhðDÞ coshðDÞ 	 ðn=DÞ sinhðDÞ

	 

:

It follows immediately that eB ¼ cosh (D)I + (sinh (D)/D)B, and if u1 £ 0, u2 > 0, then

eB
u1

u2

	 

2 v1

v2

	 

: v1 � 0; v2 � e	Du2

� �
: ð42Þ

Now the linear matrix ODE (41) has a unique solution, which can be expressed as the limit over

h fi 0 of the solutions of the approximating linear system in which the coefficients A(s) are

40 E. V. Slud and F. Vonta Scand J Statist 31

� Board of the Foundation of the Scandinavian Journal of Statistics 2004.



replaced by the piecewise-constant function equal to A(kh) on the interval s 2 [kh, (k + 1)h).

That is, in terms of the matrices B(s) defined above, the solution on [0, s0] is

L�ðsÞ
P�ðsÞ

	 

¼ lim

h&0

Y
k�0:kh�s

eBððkþ1ÞhÞ	BðkhÞ 0
1

	 

;

where the multiplication in the product is done in the order with lowest-index terms furthest to

the right. Then by (42), we conclude that P�ðsÞ � expð	
R s
0 ð	 detðAðxÞÞ1=2dK0ðxÞÞ. This

integral is bounded away from 0 on [0, s0] because the formula given above for det(A(x)),

shows that () det(A(x))1/2 is uniformly bounded above on [0, s0].
Thus P(s0, a, q) is a well-defined and continuously differentiable function of (a, q) on a

neighbourhood of the point (0, q0) at which P(s0, 0, q0) is 0, and (31) follows.

Appendix D: Proof of theorem 3

Proposition 1 has already shown that for fixed q and K > K0(s0), an NPMLE sequence exists

satisfying limsupn Kn(s0) £ K. The main assertion of the theorem will follow when we exhibit

an element Kq,n 2 Sn, which is not necessarily an NPMLE but which satisfies (34) and

limsupn Kq,n(s0) £ K < 1. In terms of the partitioning sequence {cin} defined in (P.1), and the

maximizing function Lq found in proposition 2, define the random element Kq,n 2 Sn by:

DKq;nðtÞ �
1

rj�
ðLqðcjþ1Þ 	 LqðcjÞÞ for t 2 ðcj; cjþ1�; DNðtÞ > 0: ð43Þ

By continuity of K0, there are a.s. no times t which are simultaneously jumps of N0 and N1.

Clearly the functions Kq,n and Lq agree at all points cj, j ¼ 0, . . . ,m + 1, and for fixed

K > K0(s0) and q in a sufficiently small neighbourhood of q0, the proof of proposition 2

shows that Lq(s0) < K, which now implies that Kq,n(s0) < K. Recalling that the discrete part

of m is the counting measure of jumps of N, we find from the definitions (43) and (4) that

1

n
logLikðKq;n; qÞ þ Nð1Þ log n
 !

¼ 1

n

X
z

Z
G � qzKq;ndYz

þ 1

n

X
z;j

Z cjþ1

cj

log
n
rj�

qzG0ðqzKq;nðtÞÞðLqðcjþ1Þ 	 LqðcjÞÞ
	 


dNzðtÞ;

which by (17) and (18) a.s. has limiting value J(Lq, q) as n fi 1.

As Kq,n is a random element of Sn with limsup n Kq,n(s0) £ K, with Kq,n 	! Lq uniformly

on [0, s0], it follows that for sequences Kn of maximizers of (4) within {K 2 Sn : K(s0) £ K},

n)1(logLik(Kn) + N(1) log n) must asymptotically on the one hand be at least as large as

J(Lq, q), and on the other hand (by theorem 2) can be no larger than J(Lq, q). Thus (34)

holds.

If (35) did not also hold, then with positive probability, for some � > 0, a subsequence Kn¢

would fall in A ¼ {K : supt2[0, s0]
|K(t) ) Lq(t)| ‡ �}. By corollary 1, the quantities (n¢))1Æ

(logLik(Kn¢) + N(1) log n¢) could be at most sup L2AJ(L, q), which by proposition 2 is

strictly smaller than J(Lq, q). This contradiction proves (35) and the theorem.
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