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Dependent competing risks and summary survival curves 

BY ERIC V. SLUD 

Department of Mathematics, University of Maryland, College Park, Maryland, U.S.A. 

AND LAWRENCE V. RUBINSTEIN 

Biometry Branch, National Cancer Institute, Bethesda, Maryland, U.S.A. 

SUMMARY 

In many contexts where there is interest in inferring the marginal distribution of a 
survival time T subject to censoring embodied in a latent waiting time C, the times T 
and C may not be independent. This paper presents a new class of nonparametric 
assumptions on the conditional distribution of T given C and shows how they lead to 
consistent generalizations of the Kaplan & Meier (1958) survival curve estimator. The 
new survival curve estimators are used under weak assumptions to construct bounds on 
the marginal survival which can be much narrower than those of Peterson (1976). In 
stratified populations where T and C are independent only within strata examples 
indicate that the Kaplan-Meier estimator is often approximately consistent. 

Some key words: Competing risks problem; Cox model; Freund model; Kaplan-Meier estimate; Peterson 
bounds; Proportional hazards. 

1. INTRODUCTION 

The classical competing risks problem (Gail, 1975) is to infer the marginal distribution 
of a waiting time T until failure for lives or devices which are subject to censorship, i.e. 
removal from observation. For example, T may be the time until death from cancer for a 
patient entering a cancer clinical trial, in which case censorship occurs if the patient 
either withdraws from study or dies from a cause other than cancer. The event of 
censorship from any cause is generally assumed to follow a latent waiting time C, which 
may or may not depend on T. If X = min (T, C) and A = I(T < C), where I(.) denotes 
indicator function, the observable data on a single life is simply (X, A). Despite recent 
criticisms by Elandt-Johnson (1976) and Prentice et al. (1978), much survival data 
analysis depends on inference about the marginal distribution of T from such data 
(X, A). 

If the joint density f (t, s) of (T, C) is not restricted, then data {(Xi, Ai): 1 ? i K N} on 
independent lives are not enough to estimate S(t) = pr (T > t) consistently (Tsiatis, 
1975). The best that can be done generally is to estimate the subsurvival density and 
crude survival function given by 

r(t) = { f (t, s) ds, Sx(t) = pr (T > t,C > t) = {f (u, s) duds. (1) 
t t t 

Peterson (1976) gives sharp bounds in terms of these functions for the marginal survival 
curve S(t) based on data {(Xi, Ai)}. 

Under the common assumption of 'identity of forces of mortality' that the crude 
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death-specific hazard f(t)/Sx(t) is identical to the marginal hazard h(t) = -S'(t)/S(t) of T 
itself, it is well known that S(t) is consistently estimated by the Kaplan & Meier (1958) 
survival curve estimator defined by 

SKM(t)= H (A1=/r1) 
i: Xi t 

where ri = XlI(Xj > Xi). 
This assumption, which holds in particular when Ti and Ci are independent, is 

discussed at length by Elandt-Johnson (1976), advocated by Prentice et al. (1978) to 
avoid difficulties in interpreting latent failure times, and proved by Kalbfleisch & 
MacKay (1979) to be equivalent to the 'constant-sum condition' (Williams & Lagakos, 
1977). 

The only source of dependence between survival and censoring to have received much 
attention in the biostatistical literature is the stratification of populations by means of 
demographic and biological covariables Z. When T and C are assumed conditionally 
independent given Z, the unconditional joint distribution of T, C in the population 
under study becomes a mixture of product laws weighted by frequencies of occurrence of 
the different Z. Hence T and C are dependent, unless either T or C has conditional 
distribution given Z the same for all values of Z. If Z is a finite-valued random vector, 
then the distribution of T is readily estimated by a linear combination of stratumwise 
Kaplan-Meier estimators with weights given by the empirical distribution of covariates. 
If the conditional hazard of T given Z follows a proportional hazard regression model 
(Cox, 1972), then the large-sample theory of Tsiatis (1981) gives a consistent estimator of 
the survival curve. Apart from these two cases, the statistical literature gives no further 
guidance on how to deal with the unidentifiability of S(. ) from data {(Xi, Ai, Zi)}. 

The present paper first answers the question: what are all the nonparametric 
assumptions on f (t, s) under which S(t) can be consistently estimated from data 
{(Xi, Ai)}? Our ? 2 shows that for each assumption there is a simple consistent, 
generalized maximum likelihood estimator of S(. ) with a large-sample theory analogous 
to that proved by Breslow & Crowley (1974) for the product-limit estimator. Next, since 
the Peterson (1976) upper and lower bounds for S(. ) tend to be far apart if there is even a 
moderate degree of censoring, the new estimators are used to construct much improved 
bounds under weak nonparametric assumptions. We show in ? 3 that our assumptions 
have a natural interpretation in a model of dependence generalizing Freund's (1961) 
simple bivariate exponential. In ? 4 we illustrate our bounds on S(. ), as well as the often 
nearly consistent behaviour of SKM(.), on data from stratified populations where T and 
C are stratumwise but not unconditionally independent. 

2. A NEW ASSUMPTION FOR DEPENDENT CENSORING 

Our nonparametric assumption on the joint density f(t, s) of (T, C) is 

lim pr (t < T < t + IT > t, C > t) (2) 

where p(.) is a known function of t. That is, the conditional death hazard at instant t 
differs by the known factor p(t) according as an individual surviving until t is censored 
before t or after t. A function closely related to p(. ) has previously been defined in the 
context of multiple point processes by Cox & Lewis (1972) . In terms of the functions /( . ) 
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Dependent competing risks and summary survival curves 645 

and Sx(. ) defined in (1) and of the marginal density f( . ) of T, (2) can be rewritten: 

p(t) = [{f (t)/ (t)} -1] [{S(t)SXl(t)}-I - 1 (3) 

Assumption (2) gives enough information to render S(.), but not the joint law for 
(T, C), identifiable from the observable data {(Xi, Ai)}. Of course each joint law for 
(T, C) gives rise to a function p(. ). Conversely, the observable joint distribution of 
X = min (T, C) and A = I(T < C) is completely summarized by the functions /(. ) and 
Sx(.), and assumption (2) on p(.) simply relates the marginal distribution of T to / and 
Sx. In fact, rewriting (3) as a differential equation for S, namely 

d ytS(t) = -+V(t) [1 + p(t){S(t)/Sx(t) -1] 

with S(O) = 1, we find that S(t) has the unique expression 

S(t) = exp L-,f(s) p(s) {Sx(s)}1 dsj (1 ? {(s) {p(s)-'} 

x exp L {VI(u) p(u){Sx(u)}- duj ds) (4) 

over the range of t > 0 such that Sx(t) > 0. 
Returning to (3), we observe directly that p 1 if and only if 

h(t)=_ f (t)/S(t) = 0(t)lSx(t) I 

that is, if and only if the death hazard is the same as the 'crude death-specific hazard' 
(Prentice et al., 1978). If p(t) > 1 for all t, we have positive dependence between death 
and censoring, and if p < 1 uniformly, we have negative dependence. 

When p(.) is assumed known, there is a simple consistent estimator of the marginal 
survival curve S(. ) which immediately generalizes the Kaplan & Meier (1958) estimator. 
Suppose that in the sample {(Xi, Ai): 1 K i ? N}, the ordered times Xi for which Ai = 1 
are X(1) < ... < X( and the number of Xi with Ai = 0 between X,) and X(J+ 1 is cj, with 
co censored before X(1). Let ni be the number of i with Xi > X(j). Then the empirical odds 
of an uncensored surviving individual's dying at X(j) is 1: (nj- 1), and by assumption (2) 
the 'empirical' odds of a previously censored surviving individual's dying at X(j) is 
p(X(j)): (nj- 1). The product-limit estimator of the probability of being censored 
before X(j), and surviving through X(j) is therefore 

j-1 i 
N E Ck H [1-p(X(i))/{ni-1 + p(X(i))}] 

k=O i=k+_ 

while the probability of not being censored before X(j) and surviving through X(j) is 
empirically estimated by (nj-1)/N. Altogether our product-limit estimator for S(.) 
based on {(Xi,Ai)} is 

d(t) - 1 d(t) n_ __ _ __ _ 5 SP(t) = N {n(t) + E Ck Hf (5) 
k=O i=k+l nl,?fJ, 1 

where 
n(t) = XI(X1 > t), d(t) = XI(A1 = 1,X1 < t), Pi = (i) 
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After some algebra with the identities Ck = nk-nk+ 1-1, where no = N + 1, one finds 

d(t) n1-i d(t) d(t) n+-i 
SP (t) = H ?N'1 Z (Pk-l)Hl (6) 

In particular when p(.) = 1, it follows that Sp is exactly the right-continuous Kaplan- 
Meier estimator. Moreover, approximating (ni -1 )/(ni + pi -1) by exp {-i/(ni -1 )}, we 
find that Sp(t) is the same as (4) when +(s) ds and Sx(s) are replaced by their respective 
empirical estimators N- 1 bx Ai and {n(s) - 1}/N, where 6. is the point mass at u. 

From the product-limit argument we used to derive Sp(t), we conclude that Sp(t) is a 
generalized maximum likelihood nonparametric estimator for S(t) under assumption (2). 
When p(. ) is a continuous function, almost-sure consistency of Sp follows from the 
empirical-integral expressions (Breslow & Crowley, 1974); and weak convergence of 

2,S ( .)-S(. )} in C[0, 1] as N -k oo to a Gaussian process of zero mean follows from 
the proofs of Theorems 3 and 4 of Breslow & Crowley (1974), together with linearization. 
Explicit expressions for the asymptotic variance are extremely complicated and we do 
not present them here. 

From (5) it is clear that Sp(t) is a decreasing function of p for fixed t. If p(t) is as defined 
in (2) or (3), then in sufficiently large samples 

SP2(t) <, S(t) <, Spi(t) (7) 

if Pi(.) <p P() < P2( ) Under a relatively weak nonparametric assumption, e.g. that 
< ? p(t) < 2 for all t, (7) can improve dramatically over Peterson's (1976) general bounds 

which, as is easy to see from (5), correspond to (7) with Pl(.) = 0, P2(.) = oc. The 
primary value of Sp(.) is in bounding rather than estimating S(.). 

3. FREUND MODEL AND Cox MODEL 

The bivariate model of Freund (1961) assumes that the waiting times T and C are 
independently subject to constant hazard rates a and ,B until time min(T, C). Occurrence 
of T acts as a shock to change the hazard of C to /B'. Likewise, occurrence of C changes the 
hazard of T to a'. Dropping the assumption of constant hazards, we define a generalized 
Freund model in which the conditional density fc(8) of C given T < C equals its 
conditional density given T > C: 

fftl (t),c(8) (t < S), 

f (t, 8) 
fc(8)fS) 

(8) 
f2(t) (t > S), 

where the survival curves Si(. ) for i = 1, 2 have densities fi(. ) and hazard intensities 
hi(.) = fi( . )/Si(. ). A straightforward calculation of if(t), Sx(t), f (t) and S(t) and use of (3) 
show that p(t) = h2(t)/hl(t) for this model, regardless of the form of fc(.). This model 
gives an interesting equivalent description of any joint law for (T, C): every function p( . ) 
can be realized within some generalized Freund model. Wherever in specific applications 
it is possible to give plausible lower and upper bounds p1(t), p2(t) for the ratio of the 
postcensoring hazard to the precensoring hazard in a hypothetical generalized Freund 
model, (7) implies corresponding bounds for S(t). 

Another sort of dependence between C and T arises from any model with random 
covariates Z in which T and C are conditionally independent given Z, both with 
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marginal laws nonconstant in Z. The conditional joint density f (t, s1 Z) gives rise to 
observable functions /(t I Z) and Sx(t I Z) as in (1). The assumption of identity of 
conditional forces of mortality implies that 

h(t I Z) = I(t I Z)/Sx(t'l Z), S(t I Z) = pr (T > t I Z) = exp L- i (slJZ){Sx(sIJZ)}'dsj 

Equation (3) applied to such a covariate-stratified model implies 

Ez[I(t J Z) {S(t l Z)/Sx(t J Z)-1}] Sx(t) 

Ez[Sx(t I Z) {S(t I Z)/Sx(t I Z) - I}] i/i(t) 

Since 

Sx(t I Z)/S(t I Z) = Sc(t I Z) = pr (C > t I Z), 
equation (8) implies that if Sc(. I Z) = Sc(. ) for almost all Z, then p(.) = 1. Whenever, 
/(t I Z), Sx(t I Z) and S(t I Z) are continuous functions of Z in such a model, the marginal 
survival curve S(. ) is identifiable from large samples of data {(Xi, Ai, Zi)} by (8) and (4) 
via p(.). Formula (8) is useful in estimating the behaviour of p(.) in stratified 
populations, for use in constructing bounds for future studies. Further remarks on how 
p(.) might be bounded are contained in ? 5. 

4. EXAMPLES FROM STRATIFIED SURVIVAL MODELS 

Suppose that the conditional hazard h(t I Z) of T at t given Z has the form 
exp (iT Z) ho(t), and T and C are conditionally independent given Z. The large-sample 
estimates of ,B, SO( . ), the survival curve with hazard intensity ho(.), and the distribution 
of Z, are consistent (Tsiatis, 1981), so that 

Sc(t) = N' E {So(t)}exp(ITZi) 
iS= 1 

consistently estimates S(t). The Kaplan-Meier estimator, constructed from the entire 
nonstratified sample, generally has some other limit, which can be calculated. For 
example, if Z is discrete taking values 1, ..., kc with probabilities Pt .1. , Pk and if T and C 
given Z = j are independent exponential variables with parameters Aj, ji,, then 

k 

S(t) = E pj exp (-Aj t), lim SKM(t) = exp L-J' {f(s)/Sx(s)} dsj (9) 
j=1 

as sample size N becomes infinite, where 

i/(s) = E)jpj exp {-(ij + j) s}, Sx(5) = Zpexp {(Aj + j) s}. 

We compared lim SKM(t) to S(t) for numerous examples of such stratified populations 
by applying equations (9). Only for cases which involved both heavy censoring and pu. 
varying directly or inversely with Aj did we see significant discrepancies between 
lim SKM(t) and S(t). If the magnitudes of the Ai and 4cj are positively related, lim SKM(t) 
overestimates S(t). If the magnitudes of the Aj and 4u1 are inversely related, limSKM(t) 
underestimates S(t). For example, we calculated lim SKM(t), for various values of t, 
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for cases where the population is divided into five equally probable strata with vector of 
death rates A = (1,2, 3, 4, 5). If the vector of censorship rates is ,u = (2,4,6,8,10), the 
probability of censorship is 0-67, and lim SKM(t) = 0 557, 0-480 and 0-312 for t = S- '(2), 
S- '(0 4) and S- '(0 2), respectively. If 4u = (10, 8, 6,4, 2), the probability of censorship is 
0-63, and lim SKM(t) = 0-441, 0 318 and 0-087 for the same three values of t. 

We also considered examples of the stratified population model where the make-up of 
the entry population varies over the accrual period, and all censorship is administrative 
at the end of the study. In this model, if, for example, the patients in the high-risk strata 
tend to enter late in the accrual period, there will be a positive relation between death 
and censorship hazard rates. Although it is not hard to construct artificial examples in 
which time trends in the entering patient population will have an extreme effect on 
summary survival estimates, we found here as in other stratified population models that 
only strong trends coupled with heavy censoring leads to noticeable bias. 

Table 1 illustrates the close agreement between SKM(. ) and Sc(. ) that can be found in 
typical practice. We used the most recent data for 167 stage III and IV patients from 
VACURG Study 2 of prostate cancer who died of myocardial infarct, pulmonary embolus, 

Table 1. Summary survival curves for 167 patients from VACURG prostate-cancer 
Study 2 who died from cardiovascular related causes; ti, months follow-up; ri, number at 

ris3k 

tj ri SKM SC SO SO33 Si S2 S5 S 

4 146 0897 0899 0898 0898 0898 0896 0893 0862 
12 124 0788 0-792 0796 0-793 0792 0-781 0764 0719 
20 107 0701 0707 0719 0712 0709 0687 0661 0-611 
30 80 0577 0583 0-617 0-602 0-595 0550 0-506 0449 
38 60 0475 0480 0539 0514 0503 0437 0388 0353 
51 34 0310 0309 0431 0379 0358 0257 0-207 0174 

One hundred and thirteen died from myocardial infarct, response; 54 from pulmonary embolus or 
stroke, censoring. 
Covariates in model for Sc were: age, indicator of history of pretreatment cardiovascular disease, 
systolic and diastolic blood pressure, three EKG indicators, and standardized weight. 

or cerebro-vascular accident and for whom complete cardiovascular-related covariates 
were available (Byar, 1973). A proportional hazards model with eight covariates was 
estimated, using death from myocardial infarct as the response variable and death from 
the other two competing causes as censorship. The estimators SKM and Sc are always 
within 0 006 of one another, even though the Peterson bounds SO(. )and SO(.) are quite 
far apart. Our bounds S5(.) and SO.33(.) are somewhat closer, and S2( . ), S2(.) are close 
enough to give useful information on the sensitivity of S to slight dependence between 
death and censoring. It is worth emphasizing that Sc is calculated via the assumption of 
stratumwise independence of death and censoring, but if there w.ere stratumwise 
dependence with p(t I Z) always between - and 2 the curves S2(. ), S2(.) would 
approximately bracket the true survival function. This set of data was chosen as one 
where it is plausible to expect dependence between death and censoring times within 
strata, but such dependence is unidentifiable from the survival data {(Xi, Ai, Zi)}, as has 
been discussed above. 

5. CONCL-USIONS 

In constructing summary survival curves it has been the rule to assume that the death 
and censoring hazard rates are independent. The two primary reasons for this are (1) 
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that the observed {(Xi, Ai)}, can in no way contradict this assumption, by the 
nonidentifiability argument, and (2) that the Peterson bounds, in the presence of even 
modest censoring, are generally too broad to be useful. When covariate information is 
available, the data {(Xi, Ai, Zi)} can in principle contradict the assumption of indepen- 
dent censoring by yielding an estimated p(.) function, via formula (8), not equal to 1. 
However, unless there is significant censoring and a systematic and pronounced 
dependence between death and censoring, mediated by the Zi, the Kaplan-Meier 
summary survival curve SKM(.), calculated under the assumption of independence, will 
not differ much from the true S(. ) or from Sc. When systematic dependence is suspected 
beyond that mediated by the Zi, i.e. when there is dependent censoring within strata, one 
can calculate bounds (7) on S(t) in terms of assumed bounds on the p(. ) function used to 
define the degree of this dependence. Conceptualizing the p(. ) function as a hazard ratio 
within a generalized Freund model should help in determining reasonable bounds. 
Alternatively, one may use the best available risk-prognostic covariate factors to assess 
the group differences between the patients lost to follow-up and those remaining and 
thereby indirectly to guess at bounds for p( . ). The resulting bounds on S(. ) can be much 
tighter than those of Peterson (1976). 

We acknowledge many useful comments and suggestions of Charles Brown, David 
Byar, Mitchell Gail, Larry Muenz, Robert Tarone, Grace Yang and the referees, and also 
the expert secretarial assistance of Julie Paolella. 
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