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Abstract: This paper treats the decision theoretic problem of designing opti-
mal repeated significance tests, in the setting of a standard Wiener process with
unknown drift. The loss function for testing whether the drift is zero against a
specific positive alternative incorporates time-dependent costs of experimentation,
alternative-dependent costs of wrong decisions concerning the direction of drift,
and opportunity costs for correct, but late, decisions. Type I and II error con-
straints are imposed and the data are observed at discrete time-instants, as would
be the case for a group-sequential, Phase III clinical trial. The procedures are
time-adaptive since at each observation time, the time to the next look, or the ter-
minal decision to accept or reject the null hypothesis, can depend on all observed
data.
We prove the existence of optimal behavioral (randomized) procedures for a

more general action space, one which also includes continuous monitoring proce-
dures. For discrete-look procedures, we prove via backward induction the exis-
tence of an optimal procedure which is nonrandomized. Finally, for a hypothetical
two-look clinical trial, we demonstrate how a nonrandomized optimal procedure
may be feasibly computed by reformulating the two-look problem in terms of La-
grange multipliers and solving the reformulated problem to meet the desired size
and power constraints. In particular, we give the resulting stopping and accep-
tance/rejection boundaries.

Key words and phrases: attainable strength (size and power) of an optimal test;

Bayesian decision theory; behavioral decision rule; interval continuation region;

group-sequential test.
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1 Introduction

This paper concerns the general decision theoretic problem of optimally
selecting the observation times of a Wiener process with unknown drift.
Throughout, let W0(t) for t ≥ 0 denote a standard Wiener process on
a probability space (Ω,F , P ) and W (t) = Wθ(t) = W0(t) + θ t (for an
unknown real parameter θ) a process (e.g., a repeatedly calculated statistic)
which can be observed at a finite set of discrete instants τ1, τ2, . . . , τν to
be chosen adaptively by the statistician, with a view toward inference about
the sign of θ. Such inference will be based on adaptively defined stopping,
acceptance, and rejection regions for repeated significance tests of the null
hypothesis θ = 0 against a specific target alternative θ1 > 0, subject to type
I and II error constraints.

1.1 Motivation

The problem setting described above is a natural abstraction of the group
sequential (Phase III) two-sample clinical trial (Pocock 1977, Whitehead
1978, Slud and Wei 1982, Lan and DeMets 1983, Fleming, Harrington, and
O’Brien 1984), based on a repeatedly calculated two-sample censored-data
rank statistic such as the logrank (Tsiatis 1982, Slud 1984). The Wiener
process approximation arises naturally from the large sample asymptotics
under information time (Sellke and Siegmund 1983, Slud 1984, Gu and Lai
1992, Tsiatis 1998) for normalized weighted logrank statistics under contigu-
ous alternatives to the null hypothesis of no treatment effect. Several other
applications of the Wiener process structure described above are given in the
recent book by Jennison and Turnbull (2000).
Our specific motivation for studying decision theoretically a clinical trial

inference problem under very general loss structures stems from the unpub-
lished Fisher Lecture of Herbert Robbins (delivered at the 1993 Joint Sta-
tistical Meeetings). Robbins followed the earlier formulations by Anscombe
(1963) and Colton (1963) of clinical trial inference as a sequential decision
problem and found a large mismatch between optimal decision procedures of
the Anscombe and Colton formulations and (group) sequential clinical trials
in actual practice. Motivated by these authors, we find it very reasonable to
view clinical trials as an enterprise in which correct, but late, decisions incur
high costs, to be weighed against costs of a wrong decision. A medical paper
urging greater generality in loss structures is Ciampi and Till (1980).
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In the fully sequential setting with independent and identically distributed
observations from a general class of distributions including those with Mono-
tone Likelihood Ratio, Sobel (1953), Brown, Cohen, and Strawderman (1979,
1980), and Brown and Greenshtein (1992) have considered loss functions with
alternative-dependent costs of wrong decision. In the Phase II setting with
binomial data, Stallard (1998) considered a loss function with costs due to a
correct, but late, decision to proceed to a Phase III trial. To our knowledge,
no authors have combined costs of wrong decisions and of correct, but late,
decision costs in hypothesis testing.
In the normal data setting, several authors have made important compu-

tational contributions to decision problems similar to ours. Hald (1975) com-
puted two-look Bayes procedures, subject to type I and II error constraints,
that minimized expected trial duration with respect to a prior distribution on
alternatives (drift). However, his procedures were restricted so that neither
the second look-time nor the rejection critical value would depend on the ob-
served data at the first look. With the restriction that look-times be equally
spaced and fixed, and critical values not depend on earlier observed data, Jen-
nison (1987) used a grid search to compute optimal decision procedures in
the multi-look setting. Other papers in the group sequential literature (Eales
and Jennison 1992, Pampallona and Tsiatis 1994, Chang 1996) optimize ex-
pected trial duration over parametric classes of group sequential boundaries.
Therneau, Wieand, and Chang (1990) performed analogous computations in
the setting where data between looks are independent and binomial.
Our computational implementation, like that of Hald (1975) and Th-

erneau et al. (1990), depends upon the Lagrange multiplier reformulation of
constrained decision problems to find optimal procedures satisfying type I
and II error constraints. Such an approach is well-described in the books
of Ferguson (1967) and Berger (1985), who formulate general problems of
sequential decision theory. This approach is also used in the general decision
theoretic formulation of a multi-look adaptive design given by Slud (1994).

1.2 Problem Formulation

Let τ1 ≥ 0 be nonrandom, and 0 only if a decision is made in the absence
of data; but τj for j ≥ 2 may be random, and for all j ≥ 1,

τj ≤ τj+1 <∞ a.s., and τj+1 ∈ σ(W (τi) : 1 ≤ i ≤ j). (1)
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The (random) number ν of looks at the data is defined in terms of {τj}j≥1

by ν = inf{k ≥ 1 : τk = τk+1}, and is required to be finite.
The statistician is to choose, without knowledge of the parameter θ,

{τj}j≥1 together with a measurable function h mapping the observed data
({τj}, {W (τj)}) to {0, 1}, with the interpretation

h({τj}, {W (τj)}) =
{

1 means rejection
0 means acceptance

of the null hypothesis H0 : θ ≤ 0 versus the alternative H1 : θ > 0.

Thus the action space is the set of choices

A = { ({tj}j≥1, z) : 0 ≤ tj ≤ tj+1, tj+1 − tj > 0 finitely often, z = 0, 1}

and the set D of (nonrandomized) decision procedures is comprised of ele-
ments

δ =
(

{τj}j≥1, h({τj}, {W (τj)})
)

regarded as measurable functions (subject to the restrictions (1) above) on
(Ω,F , P ). The statistician may, instead of choosing an element δ ∈ D,
choose a randomized decision procedure either by specifying a probability
law δ∗ in the set D∗ of Borel probability measures on D, or by specifying
a behavioral decision procedure

δ̃ = ({ηj}j≥1, χ) .

The random elements δ̃, the set of which will be denoted by D̃, are defined
on the product probability space

(Ω′, F ′, P ′) ≡ (Ω, F , P ) × ([0, 1], B, λ)

where B, λ are respectively the Borel sets and Lebesgue measure on the
unit interval. As was assumed for the nonrandomized variables above,

0 ≤ ηj ≤ ηj+1 <∞ a.s., χ ∈ {0, 1} .

We define the number of looks at the data in terms of {ηj}j≥1 by

ρ = inf{k ≥ 1 : ηk+1 = ηk}. (2)
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For k ≥ 1, it follows from (1) that

[ρ ≥ k], ηk ∈ σ (B, {W (ηj) : 1 ≤ j < k}) , [χ = 1] ∈ σ (B, ρ, {W (ηj) : j ≤ ρ}) .

In the foregoing definitions, the expression W (ηj) evaluated at ω
′ = (ω, v) ∈

Ω′ is W (ηj(ω
′), ω), where W (t) ≡ W (t, ω). The distinction between the

variables ({τj}j≥1, h({τj}, {W (τj)})) of δ ∈ D and ({ηj}j≥1, χ) of δ̃ ∈ D̃ is
that the latter component variables can depend not only on the observation
history of the process W (·), but also on the variable v reflecting ‘auxil-
iary randomizations’ beyond the random generating mechanism of the data.
Generally, denote expectations with respect to P ′ as E ′. Also, let

Sj ≡
√

ηj − ηj−1, Xj ≡ I[Sj>0]
W (ηj)−W (ηj−1)

Sj

, Uj ≡ I[η1>0]
W (ηj)√

ηj
.

Therefore, in a natural way a nonrandomized procedure can be regarded
as the special case of a behavioral procedure in which η1 is deterministic; for
k ≥ 2, ηk is a Borel-measurable function of W (η1), . . . , W (ηk−1) alone;
and χ is of the form h({ηj}, {W (ηj)}) for a Borel measurable function h.
There is a standard construction (Ferguson 1967) which says, for complete
separable data spaces, specifying randomized decision procedures as laws δ∗

or as behavioral procedures δ̃ is completely equivalent. For these reasons,
we define risk functions below in terms of expectations only for behavioral
decision procedures δ̃.

Let π denote a prior probability measure on R , and let ϑ : R → R be a
random variable with distribution π. Define the product probability space

(Ωπ, Fπ, P π) ≡ (Ω′, F ′, P ′) × (R, B(R), π)

where B(R) is the collection of Borel sets in R. Generally, denote expectations
with respect to P π as Eπ, and conditional probabilities and expectations
calculated under a specific fixed value ϑ = θ respectively by Pθ and Eθ.
Let θ1 > 0 be a fixed positive drift which we particularly desire to dis-

criminate from θ = 0. Define the type I and type II error probabilities
associated with a behavioral decision procedure δ̃ = ({ηj}j≥1, χ) respec-
tively by

α(δ̃) = P0(χ = 1) , β(δ̃) = Pθ1(χ = 0). (3)

We refer to the pair (α(δ̃), β(δ̃)) as the strength of the procedure δ̃.
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The final ingredient of a properly specified decision problem is a loss
function measuring costs of selecting a particular decision procedure. The
losses we consider depend only upon the triple (t, z, θ) consisting of the
terminal observation time t = ηρ, the terminal decision z = χ, and the
unknown parameter θ. The form of the loss function L(t, z, θ) is assumed
to be as follows:

L(t, z, θ) =

{

c1(t, θ) + z c2(θ) + (1− z) c3(t, θ), if θ ≤ 0;
c1(t, θ) + (1− z) c2(θ) + z c3(t, θ), if θ > 0.

(4)

The functions c1, c2, and c3 represent, respectively, the costs of trial duration;
incorrect terminal decision; and correct, but late, terminal decision. They
are assumed to satisfy:

Assumption 1.1. For each t ≥ 0, the functions cj(t, ·) are π-integrable,
for j = 1, 2, 3, and there exists a partition of R into finitely many intervals
or singletons A1, . . . , Ak such that each cj is jointly continuous in (t, θ)
on each set [0,∞)× Ai, i = 1, . . . , k.

Assumption 1.2. For each θ ∈ R, c1(·, θ) and c3(·, θ) are nondecreasing
functions with c1(0, θ) = c3(0, θ) = 0.

Assumption 1.3. Let R0 =
{

θ ∈ {0, θ1} : π({θ}) = 0
}

, and assume

(1) lim inf
t→∞

inf
θ 6∈R0

inf
s≥0, u≥s+t

(

c1(u, θ)− c1(s, θ)− c2(θ)
)

= ∞;

(2) for all θ0 ∈ R0, ∃ a positive measure νθ0 supported on {θ : 0 <
|θ − θ0| < θ1/4} such that

∫

(θ − θ0)νθ0(dθ) = 0 and

∀ Borel sets G , π(G) ≥ νθ0(G).

Assumption 1.4. c3(t, θ) < c2(θ) for all (t, θ).

The Assumptions are sufficiently general to apply to realistic clinical trial
scenarios. In particular, Assumption 1.3 requires costs of long trials to grow
without bound for π-almost all θ, and requires π to assign positive mass
to neighborhoods of each of θ = 0 and θ = θ1.
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Define the risk for a behavioral procedure δ̃ (which may, as indicated
above, be a nonrandomized procedure) with respect to a particular drift
parameter θ as

R(δ̃, L, θ) ≡ Eθ (L(ηρ, χ, ϑ)) .

The problem addressed in this paper is

Problem P. Fix positive α0, β0 with α0 + β0 ≤ 1. Find a
behavioral δ̃ or preferably a nonrandomized decision procedure
δ to minimize

r(δ̃, L) ≡
∫

R
R(δ̃, L, θ)π(dθ) (5)

over D̃, subject to the constraints

α(δ̃) ≤ α0 , β(δ̃) ≤ β0. (6)

Such a decision procedure will be referred to as optimal. The notation of (5)
suppresses the dependence of r on π , but not on L, because r is later
evaluated at another, related loss function Lλ0,λ1 .
We note that the assumptions α0, β0 > 0 and α0 + β0 ≤ 1 in Problem

P (and in the sequel) are made without loss of generality. Indeed, α0 < 0
or β0 < 0 has no meaning, while α0 = 0 implies β0 = 1 in which case
the optimal procedure is the one that accepts H0 without taking any data,
making Problem P vacuous. However, it is not immediate that α0 + β0 ≤ 1
without loss of generality; this will be shown in Remark 4.2.

1.3 Organization of the paper

The remainder of the paper is organized as follows. In Section 2, we give a
Lagrange multiplier reformulation of Problem P, and establish several general
lemmas regarding its solution. Section 3, specifically Theorem 3.1, proves the
existence of an optimal behavioral procedure for a quite general action space,
which accomodates the discrete-look procedures studied in this paper as well
as continuous-monitoring procedures. When the number of looks is bounded,
Section 4 proves that a nonrandomized optimal procedure can be constructed
using backward induction. In Section 5, we give an example of an optimal
two-look procedure for a hypothetical clinical trial, and graphically show
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the stopping and acceptance/rejection boundaries. Next, in Section 6, we
discuss conditions under which the continuation region at each look can be
proven to be an interval, while in Section 7 we give necessary and sufficient
conditions for the type I and II error constraints to be met with equality.
Finally, in Section 8, we exhibit features of conditional risk functions arising
in numerical calculations of optimal two-look procedures, and discuss their
implications.

2 Lagrange multiplier reformulation

This section contains a standard reformulation of the constrained Problem P,
by virtue of the Separating Hyperplane Theorem, to an unconstrained Prob-
lem L involving Lagrange multipliers. We begin with a reduction allowing
us to assume that {0} and {θ1} have positive prior weight.

Remark 2.1. Without loss of generality, π0 ≡ π({0}) and π1 ≡ π({θ1})
are > 0. To establish this assertion, fix ε ∈ (0, 1/2) arbitrarily and recall
the definition of R0 in Assumption 1.3. Then

for θ ∈ R0, i = 1, 2, 3, put ci(t, θ) ≡ 0;
for θ /∈ R0, i = 1, 2, 3, replace ci(t, θ) with (1+εI[0∈R0]+εI[θ1∈R0])ci(t, θ);

finally, replace π by

(π + ε I[0∈R0] 10 + ε I[θ1∈R0] 1θ1)/(1 + ε(I[0∈R0] + I[θ1∈R0]))

where 1u denotes a point mass measure at u. It is obvious that under
the new definitions, for any δ̃ ∈ D̃, the risk r(δ̃, L) is exactly the same
as before the changes made in this Remark. Moreover, it is obvious that the
changes do not alter the validity of Assumptions 1.1–1.4. 2

Assuming from now on that π0, π1 > 0 by virtue of Remark 2.1, define
for arbitrary λ0, λ1 ≥ 0 the auxiliary loss function Lλ0,λ1 by

Lλ0,λ1(t, z, θ) = L(t, z, θ) +
λ0

π0

I[θ=0, z=1] +
λ1

π1

I[θ=θ1, z=0] . (7)

Then, for any δ̃ ∈ D̃,
r(δ̃, Lλ0,λ1) = r(δ̃, L) + λ0 α(δ̃) + λ1 β(δ̃). (8)
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Proposition 2.1. The set of probability laws on D corresponding to elements
of D̃ is convex, as is the set

R∗ ≡
{

(x, y, w) ∈ (0, 1)× (0, 1)× (0,∞) : x = α(δ̃), y = β(δ̃),

w = r(δ̃, L), for some δ̃ ∈ D̃
}

.

Proof. If δ̃1, δ̃2 are arbitrary behavioral decision procedures in D̃, define
the procedure δ̃ in terms of these and an auxiliary Binomial(1, p) variable
ξ (for any fixed p ∈ (0, 1)) independent of (δ̃1, δ̃2, W (·), V ) , by

δ̃ =

{

δ̃1, if ξ = 0;

δ̃2, if ξ = 1.

Then δ̃ is evidently also in D̃ with probability 1. Thus the set of laws on
D corresponding to elements of D̃ is convex. Taking expectations over ξ
first, the definitions imply that

(α(δ̃), β(δ̃), r(δ̃, L)) = (1−p) (α(δ̃1), β(δ̃1), r(δ̃1, L))+ p (α(δ̃2), β(δ̃2), r(δ̃2, L)) .

Therefore R∗ is convex. 2

A point (α, β, r) ∈ R∗ (the closure of R∗) will be called a lower boundary
point of R∗ if there is no other point (α1, β1, r1) ∈ R∗ which lies below
(α, β, r), i.e., which satisfies α1 ≤ α, β1 ≤ β, r1 ≤ r. By Proposition 2.1,
R∗ ⊂ R3 is convex, and by nonnegativity of the ci functions, R∗ is also
bounded from below.

Remark 2.2. For α+β < 1, there is a nonrandomized procedure δα,β ∈ D
with ρ = ν = 1 of strength exactly (α, β). Indeed, the procedure that stops
at η1 = τ1 = (zα + zβ)

2/θ2
1 and for which χ is the indicator of the event

[X1 ≥ zα] has strength (α, β). Here zα is the upper 100α
th percentile of

the standard normal distribution. For α+ β = 1, the randomized procedure
that takes no data and rejects H0 with probability α has strength (α, β). 2

Lemma 2.1. Let (α, β, r) be a lower boundary point of R∗. Then there
exist Lagrange multipliers λ0, λ1 ≥ 0 such that the hyperplane of points
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(x, y, w) ∈ R3 satisfying λ0(x − α) + λ1(y − β) + w = r separates the
disjoint convex sets R∗ and

U(α, β, r) = {(x, y, w) ∈ R3 : x ≤ α, y ≤ β, w ≤ r, x+y+w < α+β+r} .

That is, if (x1, y1, w1) ∈ R∗ and (x2, y2, w2) ∈ U(α, β, r),

λ0 x1 + λ1 y1 + w1 > λ0 x2 + λ1 y2 + w2. (9)

Proof. By the Separating Hyperplane Theorem (Berger 1985, p.342, The-
orem 13), there exists (λ0, λ1, λ2) 6= 0 such that for all (x1, y1, w1) ∈ R∗
and (x2, y2, w2) ∈ U(α, β, r),

λ0x1 + λ1y1 + λ2w1 > λ0x2 + λ1y2 + λ2w2 . (10)

Since U(α, β, r) is unbounded below, (10) clearly implies λ0, λ1, λ2 ≥ 0.
In fact, it must be true that λ2 > 0. To see this, for 0 < ε < min{α, β},

define the nonrandomized single-look procedure δ1 ≡ δα−ε,β−ε ∈ D2 as in
Remark 2.2 to achieve strength (α−ε, β−ε). If λ2 = 0, then since λ0, λ1 ≥
0 with λ0 + λ1 > 0, the triples (x1, y1, w1) ≡ (α(δ1), β(δ1), r(δ1, L)) =
(α − ε, β − ε, r(δ1, L)) ∈ R∗ and (x2, y2, w2) ≡ (α, β, r − ε) ∈ U(α, β, r)
contradict (10).

Now (9) follows immediately from (10), with λi = λi/λ2 for i = 0, 1. 2

Corollary 2.1. If δ̃ ∈ D̃ is a solution of Problem P, then for (λ0, λ1)
given by Lemma 2.1 for the lower boundary point (α(δ̃), β(δ̃), r(δ̃, L)), δ̃ is
also a minimizer of r(·, Lλ0,λ1) over D̃.

This Corollary justifies, as a means for finding a solution of Problem P,
successively fixing pairs (λ0, λ1) and searching for a solution δ̃ ∈ D̃ of

Problem L. For fixed λ0, λ1 ≥ 0, find δ̃ ∈ D̃ minimizing r(δ̃, Lλ0,λ1)

which has the auxiliary property of strength ≤ (α0, β0), i.e., property
(6). Any such δ̃ automatically solves Problem P. The Lagrange multipliers
λ0, λ1 found in Corollary 2.1 can be further restricted, i.e., bounded below,
under some conditions on the cost functions.

10



Lemma 2.2. Suppose δ̃ ∈ D̃ is a solution to Problem P with α(δ̃)+β(δ̃) < 1
for which

∆ ≡ r(δ̃, L) − max
{

∫

[θ>0]

c2(θ)π(dθ),

∫

[θ≤0]

c2(θ)π(dθ)
}

> 0.

Then for (λ0, λ1) of Lemma 2.1 for the boundary point (α(δ̃), β(δ̃), r(δ̃, L)),

min{λ0, λ1} ≥ ∆/(1− α(δ̃)− β(δ̃)) ≥ ∆.

Proof. By Corollary 2.1, δ̃ minimizes r(·, Lλ0,λ1) over elements of D̃. In
particular, if δr is the nonrandomized procedure which takes no data and
always rejects (i.e., has χr ≡ 1), and if δa takes no data and always accepts
(χa ≡ 0), then by Assumption 1.2,

r(δ̃, Lλ0,λ1) ≤ min
{

r(δr, Lλ0,λ1), r(δa, Lλ0,λ1)
}

= min
{

λ0 +

∫

[θ≤0]

c2(θ)π(dθ), λ1 +

∫

[θ>0]

c2(θ)π(dθ)
}

which implies
λ0α(δ̃) + λ1β(δ̃) + ∆ ≤ min{λ0, λ1}.

A little algebra yields the result, with α(δ̃) + β(δ̃) < 1 by assumption. 2

Remark 2.3. Lemma 2.2 applies in particular when c2(θ) ≡ 0 and c1(t, θ)+
c3(t, θ) > 0 for all (t, θ) ∈ (0,∞)× R . 2

3 Optimal Behavioral Procedures

The main theorem of this section, Theorem 3.1, asserts that all lower bound-
ary points of R∗ correspond to behavioral decision procedures, thus estab-
lishing the existence of optimal procedures. This theorem applies to a more
general space of procedures than D̃, and is possible since the loss function
(4) depends only on the final look-time and the final binary decision. We
begin with a lemma and its corollary, proofs of which are given in Appendix
A.1, that show in the determination of a solution of Problem L there is no
loss in generality in restricting attention to procedures for which the total
trial time ηρ is essentially bounded.
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Lemma 3.1. There exists a positive constant t# < ∞ depending on
(λ0, λ1) such that any solution δ̃ = ({ηj}j≥1, χ) ∈ D̃ of Problem L satisfies
ηρ ≤ t# a.s.

Remark 3.1. The proof of Lemma 3.1 shows that the same value t# can
be used for all (λ0, λ1) in a compact set. 2

Corollary 3.1. Let (α0, β0, r0) be a lower boundary point of R∗. Then there
exists a positive constant t# <∞ such that (α0, β0, r0) is a limit point of

{

(x, y, w) ∈ (0, 1)× (0, 1)× R+ : x = α(δ̃), y = β(δ̃), w = r(δ̃, L)

for some δ̃ = ({ηj}j≥1, χ) ∈ D̃ with ess.sup. ηρ < t#

}

. (11)

It will be convenient to have the notation W ≡
(

W (t), 0 ≤ t ≤ t#
)

.

Theorem 3.1. Define D̃a# as the class of behavioral decision procedures
δ̃ = (τ, χ), in terms of the Uniform[0, 1] auxiliary randomization variable
V and (Ω′,F ′, P ′) as above, where t# <∞ is a fixed constant, τ ∈ [0, t#]
is any stopping-time with respect to the filtration σ(V,FW

t ), and χ ∈ {0, 1}
is an arbitrary binary-valued random variable on Ω′ measurable with respect
to σ(V,FW

τ ). Let π, L be as above, and define r, R∗ analogously as
above, but with respect to the augmented class D̃a# of decision procedures.
Then R∗ contains its lower boundary points, that is, if (α0, β0, r0) is a
lower boundary point of R∗ , then there exists δ̃ = (τ, χ) ∈ D̃a# of strength
(α0, β0) such that r(δ̃, L) = r0, hence δ̃ is optimal.

Proof. Let (α0, β0, r0) be a lower boundary point of R∗ . Then by
hypothesis, there exists a sequence {δ̃n}∞n=1 = {(τn, χn)}∞n=1 in D̃a# with
τn ≤ t# a.s., such that

lim
n→∞

(α(δ̃n), β(δ̃n), r(δ̃n, L)) = (α0, β0, r0). (12)

The idea of the proof is to establish that a subsequence of the random ele-
ments defining the decision procedures δ̃n must have a distributional limit
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corresponding to a decision procedure δ̃0 = (τ0, χ0) such that

τ0 is a stopping time with respect to the filtration σ(V,FW
t ); (13)

χ0 is measurable with respect to σ(V,FW
τ0
); (14)

(α(δ̃0), β(δ̃0), r(δ̃0, L)) = (α0, β0, r0). (15)

The distributions of the random elements (τn, χn, W (τn)) are tight under
P π. Indeed, (τn, χn) are compactly supported by definition, while for
nonrandom K > 0,

P π(|W (τn)| ≥ K) =

∫

Pθ(|W (τn)| ≥ K)π(dθ)

≤ π
(

[− K

2t#
,
K

2t#
]c
)

+ 2
(

1 − Φ
( K

2
√
t#

))

,

where the last inequality is a standard estimate for the supremum of a Wiener
process on an interval, based on the Reflection Principle (Billingsley 1968,
p.71). Consequently, by Helly’s Theorem (Billingsley 1968, Theorem 6.1),
there is an infinite subsequence of integers n along which the P π conver-
gence in distribution holds:

(ϑ, τn, χn, W, V )
d−→ (ϑ, τ0, χ0, W, V ) . (16)

Throughout the rest of this proof, let sequence elements with subscripts n
be understood to include only subscripts in the subsequence just chosen.

Properties (13) and (14) follow since (τn, χn) have the corresponding prop-
erty with respect to (V,W ). Indeed, since (τn, χn,W, V ) converge in dis-
tribution to (τ0, χ0,W, V ) , the Skorohod embedding theorem for separable
metric spaces (van der Vaart and Wellner 1996, p. 58) implies that on some
other probability space, random-element quadruples (τ ′n, χ

′
n,W

′, V ′), for
n ≥ 1, as well as (τ ′0, χ′0,W ′, V ′) can be defined simultaneously such that:
(τ ′n, χ

′
n,W

′, V ′) has the same distribution as (τn, χn,W, V ); (τ
′
0, χ

′
0,W

′, V ′)
has the same distribution as (τ0, χ0,W, V ); and almost surely, (τ

′
n, χ

′
n,W

′, V ′)
→ (τ ′0, χ

′
0,W

′, V ′). The FW
t stopping-time property (13) of τn implies the

corresponding FW ′

t property for τ ′n, and, as an a.s. limit of σ(V ′,FW ′

t )
stopping times, τ ′0 is also a stopping time (Lipster and Shiryaev 1977,
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vol. 1, Lemma 1.4); note that we assume without loss of generality that all
σ-algebras under discussion are complete. Thus, τ0 satisfies (13). Similarly,
χ0 satisfies the measurability property (14).
For property (15), note first that for each set Ai from Assumption 1.1

with π(Ai) > 0, we may define a probability measure P
Ai on (Ω′,F ′, P ′) ×

(Ai,B(Ai), π), where B(Ai) is the collection of Borel subsets of Ai, by

PAi(B) ≡ P π
(

B ∩ (Ω′ × Ai)
)

π(Ai)
for B ∈ F ′ × B(Ai). (17)

Then the same convergence in distribution in (16) (along the same subse-
quence of n) takes place with respect to PAi . Also, since π has atoms at 0
and θ1, following Remark 2.1, we may similarly define measures P

0 and P θ1

with {0}, respectively {θ1}, in place of Ai in (17), for which property (16)
persists. Let EAi , E0, andEθ1 be the corresponding expectations.
Now, to see α(δ̃0) = α0, note that the function z is a bounded, continuous

function of z ∈ {0, 1}. Thus, using the first component of (12),

α0 = lim
n
α(δ̃n) ≡ lim

n
E0(χn) = lim

n
E0(χn) = E0(χ0) = E0(χ0) ≡ α(δ̃0).

We similarly deduce β(δ̃0) = β0 using the function 1− z which is bounded
and continuous in z ∈ {0, 1}.
Finally, we show r(δ̃0, L) = r0. Recall by the third component of (12), as

well as the definitions of r(δ̃n, L) and r(δ̃0, L),

r0 = lim
n

r(δ̃n, L) = lim
n

Eπ
(

L(τn, χn, ϑ)
)

and r(δ̃0, L) = Eπ
(

L(τ0, χ0, ϑ)
)

.

(18)
Moreover, since τn ≤ t# a.s., {L(τn, χn, ϑ)} is uniformly integrable since
by Assumption 1.2, 0 ≤ L(τn, χn, θ) ≤ c1(t#, θ) + c2(θ) + c3(t#, θ), and
c1(t#, θ)+ c2(θ)+ c3(t#, θ) is π-integrable by Assumption 1.1. Since L(t, z, θ)
is continuous in (t, z, θ) ∈ [0, t#]× {0, 1} × Ai,

lim
n
Eπ
(

I[ϑ∈Ai] · L(τn, χn, ϑ)
)

= π(Ai) lim
n
EAi

(

L(τn, χn, ϑ)
)

= π(Ai)E
Ai
(

L(τ0, χ0, ϑ)
)

= Eπ
(

I[ϑ∈Ai] · L(τ0, χ0, ϑ)
)

. (19)

Summing (19) over the sets Ai, we conclude by (18) that r(δ̃0, L) = r0. 2
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Remark 3.2. It is clear how continuous-time behavioral monitoring pro-
cedures naturally fall within the stopping-time framework of Theorem 3.1.
However, the primary interest of this paper is in D̃, which consists of discrete-
look procedures (and we assume, without loss of generality by Lemma 3.1,
that those procedures have total sampling time bounded by t# < ∞). We
now show why Theorem 3.1 remains true with D̃ in place of D̃a#.
Corresponding to δ̃ = ({ηj}j≥1, χ) ∈ D̃, we may write

τ ≡ ηρ =
∞
∑

j=1

(ηj − ηj−1) , where ηj ∈ σ(V,W (ηi) : i ≤ j − 1). (20)

To establish that Theorem 3.1 is true for D̃, the only item which requires addi-
tional proof, beyond what was proved in Theorem 3.1, is that the distributional-
limiting stopping-time τ0 in (16) has the discrete-time filtration stopping-
time structure (20). But if all τn stopping-times have the structure (20),
then after a Shorokhod-embedding argument like that used in the Theo-
rem, it suffices to observe that the a.s. limits of r.v.’s η ′jn which are
σ(V ′, (W ′(ηi), i ≤ j − 1)) measurable will also have the structure (20).

4 Nonrandomized Optimal Procedures

In this section, we prove that when the number of looks is bounded, say
ρ ≤M <∞ withM nonrandom, backward induction can be implemented to
yield a nonrandomized solution to Problem L. We first show in Subsection 4.1
that the terminal-time rejection region for a Problem L solution is necessarily
a half-line. Then in Subsection 4.2, we prove results for the one-look problem,
i.e., M = 1, that will be needed for the multi-look case, which is discussed
in Subsection 4.3.
By virtue of Lemma 3.1, we continue to assume that total trial time is

bounded by t# < ∞. Thus, by Assumptions 1.1 and 1.2, the cost functions
cj(t, θ), j = 1, 2, 3, are bounded by π-integrable functions cj(t#, θ). We will
repeatedly apply this fact through the Dominated Convergence Theorem in
Subsections 4.2 and 4.3.

4.1 Terminal-time rejection regions

The following lemma shows that the terminal-time rejection region for a
behavioral solution of Problem L solution is a half-line.
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Lemma 4.1. Suppose that δ̃ = ({ηj}j≥1, χ) ∈ D̃ is a solution of Problem
L. Then on the event [ρ = k], k ≥ 1, the rejection indicator χ may be
expressed as a function of (ηk, W (ηk)) a.s. of the form χ = I[W (ηk)≥w(ηk)]

for a real-valued function w : R → R.

Proof. Let φ(·) denote the standard normal density and Φ(·) the standard
normal distribution function. The conditional expected loss on the event
[ρ = k] given {(Sj, Xj) : j ≤ k} is equal to

Eπ(Lλ0,λ1(ηk, χ, ϑ) | {(Sj , Xj) : j ≤ k}) =
{

∫ k
∏

j=1

φ(Xj − θSj)π(dθ)
}−1

·

∫

{

c1(ηk, θ) + c3(ηk, θ) I[θ≤0] + c2(θ) I[θ>0] + (λ1/π1) I[θ=θ1] +

E ′(χ | {(Sj, Xj) : j ≤ k})
[

(λ0/π0) I[θ=0] − (λ1/π1) I[θ=θ1]+ (21)

(c2(θ)− c3(ηk, θ)) (2I[θ≤0] − 1)
]}

k
∏

j=1

φ(Xj − θSj)π(dθ). (22)

Here E ′(χ | {(Sj, Xj) : j ≤ k}) corresponds to the regular conditional
probability distribution of χ given {(Sj, Xj) : j ≤ k}, and thus, by definition
of D̃, is almost surely equal to Eπ(χ|ϑ, {(Sj, Xj) : j ≤ k}). It follows
immediately that the terminal decision χ can be replaced by one at least as
good with respect to Bayes risk for loss Lλ0,λ1 if E

′(χ | {(Sj, Xj) : j ≤ k})
does not already minimize the sum of the lines (21) and (22). That is, for
a solution of Problem L, no better choice for χ exists than one which is
almost surely equal to the indicator of the event that the θ integral of the
square-bracketed integrand in (21)–(22) is ≤ 0, that is,

χ = 1 iff λ0 ≤ λ1 e
θ1W (ηk)−θ21ηk/2 −

∫

{

(c2(θ)− c3(ηk, θ)) (2I[θ≤0] − 1)
}

eθW (ηk)−θ2ηk/2π(dθ) (23)

and otherwise χ = 0. But by Assumption 1.4, the right-hand side of the
inequality in (23) is either a strictly increasing function of W (ηk), which
implies that χ = I[W (ηk)≥w(ηk)] for w(ηk) defined as the unique value of
W (ηk) achieving equality in the inequality of (23), or is constant (when
λ1 = 0 and c2(ϑ) = c3(ηk, ϑ) a.s.), and w(ηk) can be chosen arbitrarily. 2
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Remark 4.1. On [ρ = k] and for 1 ≤ j < k, χ may be written as

χ = I
[(W (ηk)−W (ηj))/

√
ηk−ηj ≥ b(ηj ,Uj ,

√
ηk−ηj)]

where b(η, u, s) ≡ (w(η + s2)−√η u)/s. Thus, the conditional expected loss
on the event [Sj > 0] given {(Si, Xi) : i ≤ j} of taking a final look at
ηj + s

2 (s2 ≥ 0) is a function of (ηj, Uj, s) given by

Eπ[Lλ0,λ1(ηj + s
2, χ, ϑ)|{(Si, Xi) : i ≤ j}] =

∏j
i=1 φ(Xi)

∫
∏j

i=1 φ(Xi − θSi)π(dθ)
· r2(ηj, Uj, s) =

1
∫

exp(θ
√
ηjUj − θ2ηj/2)π(dθ)

· r2(ηj, Uj, s). (24)

Here, r2 : (0, t#]× R× [0, t#]→ [0,∞) is defined by

r2(η, u, s) ≡
{

c̃1(η, u, s) +
∫

c̃2(η + s
2, θ)

[

1− Φ(b− θs)
]

eθ
√
ηu−θ2η/2π(dθ), if s > 0;

c̃1(η, u, 0) + min
{ ∫

c̃2(η, θ)e
θ
√
ηu−θ2η/2π(dθ), 0

}

, if s = 0.

(25)
where b ≡ b(η, u, s),

c̃1(η, u, s) ≡
∫

{c1(η + s2, θ) + c2(θ)I[θ>0] + (λ1/π1)I[θ=θ1]+

c3(η + s
2, θ)I[θ≤0]}eθ

√
ηu−θ2η/2π(dθ),

and

c̃2(t, θ) ≡
{

c2(θ) + (λ0/π0) I[θ=0] − c3(t, θ), if θ ≤ 0,
c3(t, θ)− c2(θ)− (λ1/π1) I[θ=θ1], if θ > 0.

Also note that when a final decision is made without taking any looks at the
data, i.e., η1 = 0,

χ = 1
χ = 0

}

if λ0 − λ1 +

∫

c2(θ) (2I[θ≤0] − 1)π(dθ)
{

≤ 0
> 0

(26)

and the Bayes risk is

Eπ
(

Lλ0,λ1(0, χ, ϑ)
)

= min
{

λ1 +

∫

[θ>0]

c2(θ)π(dθ), λ0 +

∫

[θ≤0]

c2(θ)π(dθ)
}

.

(27)
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Remark 4.2. The form of χ established in Lemma 4.1 implies that a Prob-
lem L solution δ̃ ∈ D̃ necessarily satisfies α(δ̃) + β(δ̃) ≤ 1, with equality if
and only if δ̃ observes no data. Indeed, conditionally given ηρ, the Neyman-
Pearson Lemma implies that χ defines a conditionally uniformly most pow-
erful test. Hence, the sum of the conditional power at θ = θ1 > 0 and the
conditional size at θ = 0 is less than or equal to one, with equality if and
only if no data is observed at the final look (Lehmann 1986, p.76, Corollary
1). Unconditioning then justifies that without loss of generality, α0 + β0 ≤ 1
in Problem P. 2

4.2 One-look case

In the one-look case, i.e., ρ ≤ 1, the problem is to choose a single look-time
τ ∈ [0, t#] which minimizes over t the Bayes risk

r1(t) ≡ Eπ{Lλ0,λ1(t, χ, ϑ)}

where χ = I[U1≥b(0,0,
√
t)] and b are as defined in Remark 4.1. We see r1(t) is

more explicitly written for t > 0 as

r1(t) = c̃1(0, 0,
√
t) +

∫

c̃2(t, θ){1− Φ(b(0, 0,
√
t)− θ

√
t)}π(dθ). (28)

Lemma 4.2. r1 is a bounded, continuous function on [0, t#] with lim
t→0+

r1(t) =

r1(0), the Bayes risk for the zero-look (no data) case (27). That is,

lim
t→0+

r1(t) = r1(0) ≡
{

λ1 +
∫

c2(θ)I[θ>0]π(dθ), if ζ0 ≥ 0;
λ0 +

∫

c2(θ)I[θ≤0]π(dθ), if ζ0 ≤ 0,
(29)

where ζ0 ≡ λ0− λ1+
∫

c2(θ) (2I[θ≤0]− 1)π(dθ). Thus, an optimal single look-
time η1 ≡ τ is given by

τ ≡ min{t̃ ∈ [0, t#] : r1(t̃) = min
t∈[0,t#]

r1(t)}.

Proof. By Assumptions 1.1 and 1.2, r1 is clearly bounded on [0, t#]. Next,
for t ∈ (0, t#], the rejection-threshold b(0, 0,

√
t) is determined as in Remark

4.1 by solving for b in the equation

F (t, b) = 0, (30)
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obtained from the equation − {φ(b)}−1 ∂
∂b
r1(t) = 0, where

F (t, b) ≡ λ0−λ1 e
θ1b
√
t−θ21t/2 +

∫

(c2(θ)−c3(t, θ)) (2I[θ≤0]−1) eθb
√
t−θ2t/2 π(dθ).

(31)
Note that for t ∈ (0, t#], b(0, 0,

√
t) is well-defined by the Intermediate Value

Theorem. This is because by Assumption 1.1, F is a continuous func-
tion, and, by Assumption 1.4, θ{c2(θ) − c3(t, θ)} · (2I[θ≤0] − 1) < 0 for all
θ 6= 0, so F (t, ·) is strictly decreasing with F (t,−∞) ≥ λ0 +

∫

(c2(θ) −
c3(t, θ))I[θ≤0]π(dθ) > 0 and F (t,∞) = −∞.
We next show that r1 is continuous on (0, t#] which, by Assumption 1.1,

only requires showing b(0, 0,
√
t) is continuous on (0, t#]. Let t̃ ∈ (0, t#], b̃ =

b(0, 0,
√
t̃ ), tn → t̃, and bn = b(0, 0,

√
tn). We want to conclude bn → b̃.

Since {tn} is in a compact subset of (0, t#], {bn} is a bounded sequence.
By the Bolzano-Weierstrass Theorem (Apostol 1974, p.54), there exists a
subsequence {b′n} of {bn} and b′ such that b′n → b′. Let {t′n} be the subse-
quence of {tn} corresponding to {b′n}, i.e., b′n = b(0, 0,

√
t′n). Then, using the

continuity of F and F (t′n, b
′
n) = 0,

F (t̃, b̃) = 0 = lim
n→∞

F (t′n, b
′
n) = F (t̃, b′).

Thus b′ = b̃, establishing the continuity of b(0, 0,
√
t) on (0, t#].

It remains to establish (29). For this, observe from equation (28) that
when tn ↘ 0, c̃1(0, 0, 0) = λ1 +

∫

c2(θ) I[θ>0] π(dθ) = lim
n→∞

c̃1(0, 0,
√
tn)

and
r1(tn) − c̃1(0, 0, 0)−

(

1− Φ(b(0, 0,
√
tn))

)

ζ0 −→ 0.

Since F (0, b) = ζ0 for each b, equation (30) implies for such sequences tn
that

√
tn b(0, 0,

√
tn) remains bounded away from 0 when ζ0 6= 0 and has

asymptotically the same sign as ζ0. Thus ζ0 (1−Φ(b(0, 0,
√
tn))→ ζ0I[ζ0≤0],

so r1(0+) = c̃1(0, 0, 0) + ζ0 I[ζ0≤0] = r1(0) , as was to be shown. 2

4.3 Multi-look case

In this section, we assume the total number of looks ρ ≤ M < ∞. From
Remark 4.1, to minimize Eπ[Lλ0,λ1(ηj + s2, χ, θ)|{(Si, Xi) : i ≤ j}] with
respect to s, it suffices to minimize r2(ηj, Uj, s) in s.
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Lemma 4.3. r2 is a bounded, continuous function of (η, u, s) ∈ (0, t#]×R×
[0, t#]. Thus for (ηj, Uj) = (η, u), a minimizer of (24) with respect to s2 can
be defined by

σ2(η, u) ≡ min{s̃2 ∈ [0, t# − η] : r2(η, u, s̃) = min
s2∈[0,t#−η]

r2(η, u, s)}, (32)

and r2(·, ·, σ(·, ·)) is a bounded, continuous function of (η, u) ∈ (0, t#]× R.

Proof. r2 is seen to be a bounded, continuous function of (s, η, u) ∈ (0, t#]×
R× [0, t#] in a completely analogous fashion to the proof that r1 is bounded
and continuous on [0, t#]. Here, the measure π2(dθ|η, u) ≡ eθ

√
ηu−θ2η/2π(dθ)

in the integrals for r2(η, u, s) plays the same role which π(dθ) did for r1(t).
2

We next introduce some additional notation for our backward induction,
which is similar to that of Brown et al. (1979). For 0 ≤ j ≤ M − 1, let
β̃M
j (η, u, s) be the conditional expected loss given (ηj, Uj) = (η, u) and given
that at least one more look is taken at time η + s2 if s > 0, or that the
trial stops if s = 0. Let βM

j (η, u) ≡ inf
{

β̃M
j (η, u, s) : 0 ≤ s2 ≤ t# − η

}

.

Since β̃M
j (η, u, s) is bounded and nonnegative for all 0 ≤ s2 ≤ t# − η, βM

j

is well-defined, bounded, and nonnegative.

Lemma 4.4. For 0 ≤ j ≤M − 2, (ηj, Uj) = (η, u), and s > 0,

β̃M
j (η, u, s) =

∫ ∫

βM
j+1

(

η+s2,

√
ηu+ sxj+1
√

η + s2

)

φ(xj+1−θs)π(dθ)dxj+1. (33)

Moreover, β̃M
j is a bounded, continuous function of (η, u, s) ∈ (0, t#] × R ×

[0, t#] and βM
j is a bounded, continuous function of (η, u) ∈ (0, t#] × R.

Finally, for 1 ≤ j ≤ M − 1 and Sj > 0, an optimal (j + 1)st look-time
increment S2

j+1 may be defined by

σ2
j+1,M (ηj, Uj) ≡ min{s̃2 ∈ [0, t#−ηj] : β̃M

j (ηj, Uj, s̃) = min
s2∈[0,t#−ηj ]

β̃M
j (ηj, Uj, s)}.

(34)
If instead Sj = 0, then σ

2
j+1,M (ηj, Uj) = 0, by definition.

Proof. Equation (33) is true by definition. To show β̃M
j and βM

j are con-
tinuous, we use backward induction on j. First, let j = M − 2. By Lemma
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4.3,
∫

exp
(

θ(
√
ηM−2UM−2 + sxM−1)− θ2(ηM−2 + s

2)
)

π(dθ)·

βM
M−1

(

ηM−2 + s
2,

√
ηM−2UM−2 + sxM−1
√

ηM−2 + s2

)

= inf
{

r2

(

ηM−2 + s
2,

√
ηM−2UM−2 + sxM−1
√

ηM−2 + s2
, sM

)

: 0 ≤ s2
M ≤ t# − ηM−2 − s2

}

is a continuous function of (ηM−2, UM−2, s), hence the same is true for β̃
M
M−2.

Consequently, βM
M−2 is also continuous. But then the continuity of β̃

M
j and

βM
j for 0 ≤ j ≤ M − 2 follow by the inductive hypothesis. Equation (34)
then follows immediately for 1 ≤ j ≤ M − 2, and for j = M − 1 by Lemma
4.3. 2

Since σ2
2,M , . . . , σ

2
M,M can be chosen in an optimal nonrandom fashion,

to obtain a fully nonrandomized optimal procedure, it remains to choose a
single look-time η1 ≡ τ1,M ≥ 0 which minimizes

rM0 (t1) ≡ β̃M
0 (0, 0,

√
t1) =

{

∫

βM
1 (t1, x1)φ(x1 − θ

√
t1)π(dθ)dx1, if t1 > 0;

r1(0), if t1 = 0.

By Lemma 4.4, rM0 is a bounded, continuous function on (0, t#].Moreover,

Lemma 4.5. A nonrandom solution to Problem L is given by

(

(τ1,M , σ
2
2,M , . . . , σ

2
M,M ), χ) (35)

where τ1,M ≡ min{t̃1 ∈ [0, t#] : rM0 (t̃1) = min
t1∈[0,t#]

rM0 (t1)}; (σ2
2,M , . . . , σ

2
M,M)

are as defined in (34); and χ is defined as in Lemma 4.1.

Proof. The proof is by induction on M . When M = 1, the lemma is true
by Lemma 4.2.
Next, suppose the lemma is true for M = m. Let

(

(τ1,m, σ
2
2,m, . . . , σ

2
m,m), χ) (36)

be an optimalm look procedure of the type described in this lemma. Suppose
there is a sequence of minimizers t1n ↘ 0 of minimizers of rm+1

0 . By Lemma
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4.4 and the Dominated Convergence Theorem, for all (x1, s
2) ∈ R× (0, t#],

β̃m+1
1 (t1n, x1, s) =

∫ ∫

βm+1
2

(

t1n + s
2,

√
t1nx1 + sx2√
t1n + s2

)

φ(x2 − θs)π(dθ)dx2

−→
∫ ∫

βm+1
2 (s2, x2)φ(x2 − θs)π(dθ)dx2

=

∫ ∫

βm
1 (s

2, x1)φ(x1 − θs)π(dθ)dx1

= rm0 (s
2) ≥ rm0 (τ1,m).

Thus by the continuity of β̃m+1
1 ,

lim inf
n→∞

rm+1
0 (t1n) = lim inf

n→∞

∫ ∫

βm+1
1 (t1n, x1)φ(x1 − θ

√
t1n)π(dθ)dx1

≥
∫ ∫

rm0 (τ1,m)φ(x1 − θ
√
t1n)π(dθ)dx1 = rm0 (τ1,m).

Hence, an optimal m + 1 look procedure is given by the m look procedure
(36).
Next, if such a sequence t1n ↘ 0 does not exist, then by the continuity of

rm+1
0 on compact subsets of (0, t#], it follows that τ

∗
1,m+1 = min{t̃1 ∈ (0, t#] :

rm+1
0 (t̃1) = mint1∈(0,t#] r

m+1
0 (t1)} > 0. If the Bayes risk for the zero-look

(no-data) procedure (given in (26)) r1(0) ≤ rm+1
0 (τ ∗1,m+1), then an optimal

first look-time is τ1,m+1 = 0, which is equivalent to saying that an optimal
m + 1 look procedure is the zero-look procedure and (36) is again optimal.
Otherwise, take τ1,m+1 = τ ∗1,m+1 in (35). 2

5 Example of an Optimal Two-Look Proce-

dure

We now give an example of a nonrandomized, optimal, two-look (i.e., ρ = ν ≤
2) procedure in a hypothetical two-armed (control vs. new treatment) clinical
trial with a time-to-event endpoint using the logrank statistic. In particular,
we give the resulting stopping and acceptance/rejection boundaries.
We wish to test, at one-sided significance level α0 = 0.025, and power

1− β0 = 0.9 versus θ1 = log(1.5),

H0 : θ ≤ 0 vs. H1 : θ > 0 (37)
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where θ is the log-hazard ratio of the control treatment to the new treatment.
Based on this parametrization for θ, the ‘usual’ single-look test of (37) with
the same (α0, β0) = (0.025, 0.1) (i.e., with single critical value 1.96) has trial
time τfix = 63.9. For the logrank statistic, this corresponds to information
time 4 · τfix = 4 · (63.9) ≈ 256 events.
The discrete prior distribution and loss function with respect to which we

determine the Problem P solution are given in Table 1. The discrete prior
masses π({θ}) are most heavily concentrated around the point null hypothesis
(hazard ratio eθ = 1.0) of no treatment difference between the two treatment
arms. This is quite appropriate for many chronic disease trials (Freedman,
Spiegelhalter, and Parmar 1994). The c1(t, θ) trial time costs are equal costs
of patient accrual. The c2(θ) costs due to wrong terminal decision are largest
under the most distant alternatives. Here we take c3(t, θ) ≡ 0.

Table 1: Prior distribution and elements of the loss function L(t, z, θ).

eθ = hazard ratio 0.9 1.0 1.25 1.5 1.75
1.51 · π({θ}) 0.2 1.0 0.2 0.1 0.01

c1(t, θ) t t t t t
c2(θ) 200 100 50 250 500

The description of the nonrandomized optimal procedure δ is completely
given in Figures 1 and 2 below. Figure 1 is the graph of the total trial
time as a function of the first-look statistic U1 = W (τ1)/

√
τ1. The first look

time is τ1 = 0.42 τfix. If at this time U1 ≤ 0.56, the trial is terminated
and H0 is accepted; similarly, if U1 ≥ 2.56, the trial is also terminated with
rejection of H0. Otherwise, on the continuation region 0.56 < U1 < 2.56,
the trial continues to a second look at time given by the ordinate value for
U1 in Figure 1. The corresponding critical value at the second look for
the normalized statistic W (τ2)/

√
τ2 is the ordinate value in Figure 2. For

instance, the maximum trial time occurs when U1 = 1.78, and when this
happens the second look is taken at τ2 = 1.31 τfix. The corresponding second-
look critical value for W (τ2)/

√
τ2 is 2.01. As a basis for comparison with

Figure 2, recall that the usual single-look test of (37) with the same strength
(α0, β0) = (0.025, 0.1) has critical value 1.96.
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Figures 1 and 2 here; they’re currently at the end.

6 Interval Continuation Regions

It is important for the common-sense appeal of a Problem L solution δ̃ =
({ηj}j≥1, χ) ∈ D̃ that it have interval continuation regions. That is, on the
event [Sj > 0] (i.e., a j

th-look has been taken) and given ηj, the continuation
region {u ∈ R : Uj = u and Sj+1 > 0} should be an interval. As in the
Example from Section 5, this has been the case in our numerical experience
with nonrandomized two-look designs. However, because of the generality of
the loss function L(t, z, θ), a theoretical result valid for all α, β in Problem
P is difficult to obtain.
In the fully sequential setting with independent and identically distributed

observations from a general class of distributions including those with Mono-
tone Likelihood Ratio, Sobel (1953) and Brown et al. (1979) showed that
Bayes sequential tests have interval continuation regions. However, their loss
functions had the same, linear sampling time costs across all alternatives
(i.e., c1(t, θ) = t), and costs of wrong terminal decision (i.e., c2(θ)) which
were increasing in |θ| on each of (−∞, 0] and (0,∞). Those authors did
not consider c3(t, θ) costs. An important difference between their work and
this paper, and a key barrier to generalizing their results, is that their Bayes
procedures did not satisfy prespecified constraints on type I and II error
probabilities, while we solve the constrained optimization problem Problem
P. Since we introduce Lagrange multipliers to solve Problem P, the loss func-
tion Lλ0,λ1(t, z, θ) has a component, c2(θ) + I[θ=0]λ0/π0+ I[θ=θ1]λ1/π1, which
is often not increasing in |θ| on each of (−∞, 0] and (0,∞). When this
component is increasing in |θ| on each of (−∞, 0] and (0,∞) (as could be
the case when π has discrete support), and when c1(t, θ) = γ1(t) does not
depend on θ and c3(t, θ) = 0, their proof can be adapted to our set-up to
show that the continuation regions are intervals. For the general loss func-
tion (4), it is straightforward to adapt the results from Section 4 of Kiefer
and Weiss (1957) to show that the continuation regions are intervals when
support(π) ⊂ [0, θ1]. For the more interesting case when support(π) * [0, θ1],
we supply a lemma applicable to the loss functions considered by Hald (1975)
and Jennison (1987), i.e., L(t, z, θ) = γ1(t)c0(θ).
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In preparation for the lemma, define the functions

g0(η, u) ≡
∫

c0(θ)e
θ
√
ηu−θ2η/2π(dθ) (38)

and

g1(η, u) ≡
∫

c0(θ)e
(θ−θ1)

√
ηu−(θ2−θ21)η/2π(dθ). (39)

Since g0(η, ·) is a convex function, it has a unique local, hence global, min-
imum u0(η) if support(π) * [0,∞); otherwise, it is strictly increasing for
all u. Similarly, if support(π) * (−∞, θ1], g1(η, ·) has a unique local, hence
global, minimum u1(η); otherwise, it is strictly decreasing for all u.

Lemma 6.1. Suppose L(t, z, θ) = γ1(t)c0(θ) and let δ̃ = ({ηj}j≥1, χ) be a
solution of Problem L. On the event [Sj > 0] (i.e., a j

th look has been taken)
and given ηj, the j

th-look continuation region is an interval if

support(π) ⊂ [0,∞) or u0(ηj) ≤
w(ηj)√
ηj

(40)

and

support(π) ⊂ (−∞, θ1] or
w(ηj)√
ηj

≤ u1(ηj), (41)

where w(ηj) is as defined in Lemma 4.1.

Proof. First recall from Remark 4.1 that on [Sj > 0], the conditional ex-
pected loss of taking a final look at ηj + s

2 given {(Si, Xi) : i ≤ j} depends
only on (ηj, Uj, s).
Now for (u, s) ∈ R× (0,∞), define

f0(ηj, u, s) ≡
∫

φ(u− θ
√
ηj)π(dθ)

φ(u)
Eπ{L(ηj + s2, χ, ϑ)− L(ηj, 1, ϑ)}|ηj, Uj = u}

= −λ0Φ(b) + λ1Φ(b− θ1s)e
θ1
√
ηju−θ21ηj/2 + (γ1(ηj + s

2)− γ1(ηj))g0(ηj, u),

where b = b(ηj, u, s) is as defined in Remark 4.1. Since g0(ηj, ·) strictly
increases on R if support(π) ⊂ [0,∞), or on [u0(ηj),∞) if support(π) *
[0,∞), the jth look rejection region is ‘to the right’ of the continuation region,
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i.e., f0(ηj, u, s) > 0 implies f0(ηj, u
′, s) > 0 for u′ ≥ u ≥ w(ηj)/

√
ηj. Similarly,

for (u, s) ∈ R× (0,∞), define

f1(ηj, u, s) ≡
∫

φ(u− θ
√
ηj)π(dθ)

φ(u− θ1
√
ηj)

Eπ{L(ηj + s2, χ, ϑ)− L(ηj, 0, ϑ)}|ηj, Uj = u}

= λ0(1− Φ(b)) e−θ1
√
ηju+θ21ηj/2 + λ1

(

Φ(b− θ1s)− 1
)

+ (γ1(ηj + s
2)− γ1(ηj))g1(ηj, u).

Since g1(ηj, ·) strictly decreases on R if support(π) ⊂ (−∞, θ1], or on (−∞,
u1(ηj)] if support(π) * (−∞, θ1], the acceptance region at the j

th look is ‘to
the left’ of the continuation region, i.e., f1(ηj, u, s) < 0 implies f0(ηj, u

′, s) <
0 for u ≤ u′ ≤ w(ηj)/

√
ηj. Thus the continuation region at the j

th look must
be an interval. 2

For the general loss function (4) with c1(t, θ) = γ1(t)c0(θ), it can similarly
be shown that (40) implies the jth look rejection region is to the right of the
continuation region . However, (41) does not imply the acceptance region is
to the left of the continuation region , because θ = θ1 is in the interior of the
alternative hypothesis parameter set.

7 Attainable Strengths via Lagrange Multi-

pliers

Because of the generality of loss functions (4), the strength
(

(α(δ̃), β(δ̃)
)

for any δ̃ ∈ D̃ solving Problem P may have one or both components less
than the corresponding values α0, β0. In fact, it is possible that an optimal
unconstrained procedure, that is, a procedure δ̃ which minimizes r(·, L) over
all procedures in D̃, has both components less than the corresponding α0,
β0. This phenomenon occurs, for example, if all the c2(θ) quantities in Table
1 are increased by a multiple of 10. In such an instance, the magnitudes of
the wrong decision costs c2(θ) are sufficiently larger than the trial time costs
c1(t, θ) so as to force the unconstrained optimal procedure to have strength
(0.011, 0.03). Consequently, in this example it would not be desirable (from
a decision theoretic standpoint) to use a procedure of strength (0.025, 0.1).
We refer to (α0, β0) in Problem P as an attainable strength if there exists

a minimizer of r(·, L) over all δ̃ ∈ D̃ satisfying α(δ̃) = α0 and β(δ̃) = β0. The
following lemma, proved in Appendix A.3, provides necessary and sufficient
conditions for (α0, β0) to be an attainable strength.
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Lemma 7.1. Suppose (α0, β0) in Problem P satisfies α0 + β0 < 1. Then
(α0, β0) is an attainable strength if and only if there exists δ̃ ∈ D̃ satisfying

α(δ̃) ≤ α0 and β(δ̃) ≤ β0 (42)

along with the two conditions

α ≥ α0 ∀ (α, β, r) ∈ R∗ : r = rβ0 ≡ inf{r(δ̃, L) : δ̃ ∈ D̃, β(δ̃) = β0} (43)
β ≥ β0 ∀ (α, β, r) ∈ R∗ : r = rα0 ≡ inf{r(δ̃, L) : δ̃ ∈ D̃, α(δ̃) = α0} (44)

Remark 7.1. The sets of allowed δ̃ in (43) and (44) are nonempty by
Remark 2.2. Also, (43) and (44) hold automatically when c2(θ) ≡ 0. To
see this, note by Assumption 1.2 that the no-data procedure δ̃0 ∈ D̃ with
acceptance probability β0 (i.e., β(δ̃0) = β0) satisfies

δ̃0 = arg min
{

r(δ̃, L) : δ̃ ∈ D̃, β(δ̃) = β0

}

.

Then α(δ̃0) = 1 − β(δ̃0) = 1 − β0 > α0, so (43) holds. Similarly, (44) holds.
2

8 Computation of Optimal Two-Look Proce-

dures and Concluding Remarks

The computation of an optimal two-look procedure of strength (α0, β0) pro-
ceeds in two stages. In the first stage, we determine for given τ1 > 0 a
minimizer δτ1,α0,β0 ∈ D of r(·, L) among those two-look procedures with first
look-time τ1 and strength (α0, β0). This first stage is theoretically validated
by successively fixing pairs (λ0, λ1) and applying Lemma 4.3, until the de-
sired strength (α0, β0) is attained. Then, in the second stage, we compute
the optimal first look-time argminτ1>0 r(δτ1,α0,β0 , L).
When the loss function is of the form L(t, z, θ) = c1(t, θ) where c1(t, θ) =

γ1(t)c0(θ) and λ0, λ1 > 0, the qualitative behavior of r2(τ1, u1, s) (as a func-
tion of s) which determines σ(τ1, u1) is established rigorously in Appendix
A.2. For more interesting loss functions such as the one in Table 1, such
qualitative behavior has been intractable to prove. However, we can describe
our numerical experience with two-look procedures in terms of the quantities

c−(t) ≡
∫

(−∞,0]
c2(θ)π(dθ)

∫

(−∞,0]

[

c1(t, θ) + c3(t, θ)
]

π(dθ)
, c+(t) ≡

∫

(0,∞)
c2(θ)π(dθ)

∫

(0,∞)

[

c1(t, θ) + c3(t, θ)
]

π(dθ)
,
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and of the notation O2 denoting ‘order of magnitude’ in the sense that for
two positive quantities a and b, and j an integer,

O2

(a

b

)

≡ 10j if
1

2
· 10j < a

b
≤ 2 · 10j.

When

O2

(c+(t)

c−(t)

)

= 10j, j ∈ {−1, 0, 1} (45)

and
O2(t c+(t)), O2(t c−(t)) = 10

k, k ∈ {1, 2, 3}, (46)

our numerical experience has been that for (λ0, λ1) corresponding to (α, β) ∈
(0.01, 0.1]× (0.05, 0.2] :
1. The function r2(τ1, u1, ·) either has a single local, or is bounded below
by r2(τ1, u1, 0); see Figure 3. The first case corresponds to ν = 2,
the second to ν = 1. Under some additional assumptions on the
loss function, which are satisfied by the example in Table 1, it can be
shown that r2(τ1, u1, ·) is strictly increasing in a neighborhood of 0; see
Appendix A.4.

2. The function r(δτ1,α0,β0 , L) has a unique local minimum in τ1 ∈ (0,∞)
which is also a global minimum; see Figure 4.

3. O2

(

λ0t/c−(t)
)

, O2

(

λ1t/c+(t)
)

= 10k, k ∈ {−1, 0, 1}.
Moreover, when j /∈ {−1, 0, 1} in (45), or k > 3 in (46), (α, β) ∈ (0.01, 0.1]×
(0.05, 0.2] is not an attainable strength.

Figures 3 and 4 here; they’re currently at the end.

The first paragraph of this section described the algorithm used for com-
puting an optimal time-adaptive two-look procedure. Such an algorithm is
needed, as opposed to a two-dimensional grid search, since both the second
look-time and corresponding critical value can depend on the first-look statis-
tic W (τ1)/

√
τ1 in a completely unrestricted manner. It is a consequence of

Items 1 and 2 above that this algorithm may be feasibly implemented. More-
over, these Items suggest time-adaptive optimal procedures with more than
two looks may be computed, a topic we are currently investigating.
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A Appendix

A.1 Proofs of Lemma 3.1 and Corollary 3.1

Proof of Lemma 3.1. By Assumption 1.3 and Remark 2.1, a nonrandom
constant t# <∞ can be found so large that for θ1

√
t# ≥ 4 , all nonnegative

s, u such that u− s ≥ t#/4, and all θ 6∈ R0 :

c1(u, θ)− c1(s, θ)− c2(θ) ≥ K1/γ, (47)

where

K1 ≡ 2 ·
{

c2(0) + c2(θ1) +
λ0

π0

+
λ1

π1

+ 1
}

and

γ ≡
{

inf
θ0∈R0

νθ0
(

(θ0 − θ1
4
, θ0 +

θ1
4
)
)

, if R0 6= ∅;
1, otherwise.

Now let δ̃ ∈ D̃ be arbitrary. We define a modified element δ̃alt =

({ηj,alt}j≥1, χalt) ∈ D̃ for which ηρalt ≤ t#/2 a.s., as follows: on the event
[ηρ > t#/2],

ηj,alt ≡ min{ηj, t#/2} , χalt ≡ I[Uρalt
≥θ1
√

t#/4];

on the event [ηρ ≤ t#/2], δ̃alt ≡ δ̃. For notational simplicity, define B ≡
[ηρ > t#] and note that ηρalt ≤ t#/2. We will prove under the hypotheses of
the Lemma that the modified procedure δ̃alt, with total trial time bounded
in this way, has Bayes risk with respect to Lλ0,λ1 strictly smaller than
δ̃ unless Pθ(B) = 0 π-a.e., in which case δ̃alt = δ̃ a.s. This will complete
the proof.

Since ηρalt ≡ t#/2 on the event B,

P0(Uρalt ≥ θ1

√

t#/4
∣

∣ B) ≤ 1− Φ(θ1

√

t#/4) ≤ exp(−
1

32
θ2
1t#),

and similarly

Pθ1(Uρalt < θ1

√

t#/4
∣

∣ B) ≤ 1− Φ(θ1

√

t#/4) ≤ exp(−
1

32
θ2
1t#);
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the last two displays both rely on the standard inequality (Feller 1968, p.175)

for z ≥ 1 , 1− Φ(z) ≤ e−z2/2

z
√
2π

≤ e−z2/2.

Now, by Assumption 1.4 and the nonnegativity of c3, we bound c2 − c3
costs below by 0 under δ̃, and c3 costs below by 0 under δ̃alt, to find
that

r(δ̃, Lλ0,λ1)−r(δ̃alt, Lλ0,λ1) ≥
∫

Rc
0

Eθ

(

IB
(

c1(η1, θ)−c1(t#/2, θ)−c2(θ)
)

)

π(dθ)

−
∫

R0

Eθ

(

IB ·
[

I[θ=θ1]

{

c2(θ)+
λ1

π1

}

(1−χalt) + I[θ=0]

{

c2(θ)+
λ0

π0

}

χalt

])

π(dθ).

By (47) and the estimates given above for conditional error probabilities,

r(δ̃, Lλ0,λ1)− r(δ̃alt, Lλ0,λ1) ≥
K1

γ

∫

Rc
0

Pθ(B)π(dθ) −

exp(− 1

32
θ2
1t#) ·

(

[

π1c2(θ1)+λ1

]

Pθ1(B) I[θ1∈R0]+
[

π0c2(0)+λ0

]

P0(B) I[0∈R0]

)

.

(48)

We require one further idea to complete the proof. The Radon-Nikodym
derivative of the law Pθ on Ω

′ with respect to Pθ0 when both are restricted
to Ft# ≡ σ

(

(Ws, s ≤ t#), V
)

is (Liptser and Shiryayev 1977)

dPθ

dPθ0

∣

∣

∣

Ft#
(w) = exp

(

(θ − θ0)(w − t#θ0) −
1

2
(θ − θ0)

2 t#

)

. (49)

We apply this result on the event B ∈ Ft# , to obtain for each θ0 ∈ R0, via
Assumption 1.3(2)

∫

0<|θ−θ0|<θ1/4

Pθ(B)π(dθ) ≥
∫

R

∫

B

dPθ

dPθ0

∣

∣

∣

Ft#
(w) Pθ0(dw) νθ0(dθ)

which by (49) and the Fubini theorem is

≥
∫

B

∫

R
exp

(

(θ − θ0)(w − t# θ0)−
θ2
1t#
8

)

νθ0(dθ) Pθ0(dw).
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Finally, by Jensen’s inequality applied to the inner integral with its convex
integrand as a function of θ, and using Assumption 1.3(2) to give

∫

(θ −
θ0)νθ0(dθ) = 0,
∫

0<|θ−θ0|<θ1/4

Pθ(B)π(dθ) ≥ e− θ21t#/32

∫

B

νθ0
(

(θ0−θ1/4, θ0+θ1/4)
)

Pθ0(dw).

Since Assumption 1.3(2) and (48) also say that νϑ0
(

(ϑ0−ϑ1/4, ϑ0+ϑ1/4)
)

≥
γ > 0, we have shown

∫

Rc
0

Pθ(B)π(dθ) ≥ γ exp(− 1

32
θ2
1t#)

∑

θ∈R0

Pθ(B).

Substitute this bound into (48) and recall the definition of K1 in (47) to
find

r(δ̃, Lλ0,λ1)− r(δ̃alt, Lλ0,λ1) ≥ K1

{1

γ

∫

Rc
0

Pθ(B)π(dθ)−
1

2
e− θ21t#/32

∑

θ∈R0

Pθ(B)
}

≥ K1

2γ

∫

Rc
0

Pθ(B)π(dθ) ≥ 0 , (50)

with the last inequality strict, unless Pθ(B) = 0 π-a.e. 2

Proof of Corollary 3.1. For (α0, β0, r0) a lower boundary point of R∗,
Lemma 2.1 implies that there exist λ0, λ1 ≥ 0 such that (α0, β0, r0) lies
on a hyperplane λ0x+λ1y+w = λ0α0+λ1β0+ r0 which separates R∗ and
U(α0, β0, r0).

By the definition of lower boundary points and the convexity ofR∗, there
exists a sequence {δ̃n}∞n=1 = {({ηj,n}j≥1, χn)}∞n=1 ⊂ D̃ such that the triplets
(α(δ̃n), β(δ̃n), r(δ̃n, L)) ∈ R∗ converge as n → ∞ to (α0, β0, r0), and
there does not exist any other element (α1, β1, r1) ∈ R∗ which lies below
(α0, β0, r0). Arguing as in the proof of Lemma 3.1, there exists a positive
constant t# < ∞ and a sequence {δ̃n,alt}∞n=1 ⊂ D̃ such that δ̃n,alt = δ̃n
on the complementary event Bc

n where Bn ≡ [ηρn,n > t#/2] and such that
r(δ̃n,alt, Lλ0,λ1) ≤ r(δ̃n, Lλ0,λ1).

Since lim
n→∞

r(δ̃n, Lλ0,λ1) = λ0α0 + λ1β0 + r0,

lim sup
n→∞

(

λ0α(δ̃n,alt) + λ1β(δ̃n,alt) + r(δ̃n,alt, L)
)

≤ λ0α0 + λ1β0 + r0.
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Also, since (α0, β0, r0) lies on the separating hyperplane defined in the first
paragraph of the proof,

r(δ̃n,alt, Lλ0,λ1) ≥ λ0α0 + λ1β0 + r0 for all n. (51)

Consequently,

lim
n→∞

r(δ̃n, Lλ0,λ1) = lim
n→∞

r(δ̃n,alt, Lλ0,λ1) = λ0α0 + λ1β0 + r0.

But then the lower bound in (50) in the proof of Lemma 3.1 implies

0 = lim sup
n→∞

[

r(δ̃n, Lλ0,λ1)−r(δ̃n,alt, Lλ0,λ1)
]

≥ lim sup
n→∞

K1

2

∫

Rc
0

Pθ(Bn)π(dθ) ≥ 0.

In particular, as n→ ∞, P0(Bn), Pθ1(Bn) −→ 0, and so
∫

Pθ(δ̃n,alt 6= δ̃n)π(dθ) ≤
∫

Pθ(Bn)π(dθ) −→ 0 .

Thus, α(δ̃n,alt)−α(δ̃n)→ 0, β(δ̃n,alt)−β(δ̃n)→ 0, and r(δ̃n,alt, L)−r(δ̃n, L)→
0 as n→∞. Hence

(α(δ̃n,alt), β(δ̃n,alt), r(δ̃n,alt, L)) −→ (α0, β0, r0),

and the assertion is proved. 2

A.2 Loss functions with only trial time costs

In this section, we assume the loss function L(t, z, θ) = c1(t, θ) and λ0, λ1 > 0
(recall Remark 2.3).

Lemma A.1. Suppose the loss function L(t, z, θ) = c1(t, θ) and δ̃ =
({ηj}j≥1, χ) ∈ D̃ is a solution of Problem L with λ0, λ1 > 0. Then

b(η, u, s) =
log[λ0/(λ1 e

θ1
√
ηu−θ21η/2)]

θ1s
+
θ1s

2
. (52)

Proof. By Remark 4.1 with b = b(η, u, s),

r2(η, u, s) =

{
∫

φ(u− θ
√
η)π(dθ)

}−1

·
{

λ0 (1− Φ(b))φ(u) +

λ1Φ(b− θ1s)φ(u− θ1
√
η) +

∫

c1(η + s
2, θ)φ(u− θ

√
η)π(dθ)

}

. (53)
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As a function of b, r2(η, u, s) has the same minimum as the function

ψ(η, u, s, b) ≡
∫

φ(u− θ
√
η)π(dθ)

φ(u)
r2(η, u, s) =

λ0 [1− Φ(b)] + λ1Φ(b− θ1s) e
θ1
√
ηu−θ21η/2 +

∫

c1(η + s
2, θ)eθ

√
ηu−θ2η/2 π(dθ).

The equation

0 = − ∂ψ

∂b
(b, η, u, s) = λ0φ(b)− λ1φ(b− θ1s)e

θ1
√
ηu−θ21η/2

has a unique solution in b given by (52). 2

The explicit form of b = b(η, u, s) in (52) allows (53) to be written as an
explicit function of (η, u, s):

r2(η, u, s) =
1

2
q · (η + s2) + C eθ1

√
ηuΦ

(

− θ1s

2
− κ

θ1s

)

+ λ
[

1 − Φ
(θ1s

2
− κ

θ1s

)]

where

q = q(η, u) ≡ 2
∫

c1(η, θ)e
θ
√
ηu−θ2η/2π(dθ)

∫

eθ
√
ηu−θ2η/2π(dθ)

κ = κ(η, u) ≡ log λ1e
θ1
√
ηu−θ21η/2

λ0

C = C(η, u) ≡ λ1e
−θ21η/2

∫

eθ
√
ηu−θ2η/2π(dθ)

λ = λ(η, u) ≡ λ0
∫

eθ
√
ηu−θ2η/2π(dθ)

.

This leads to the following result (where we use notation from Lemmas 4.1
and 4.3).

Lemma A.2. Let L(t, z, θ) = c0(θ)t, and λ0, λ1 > 0. Suppose Sk >
0 and (ηk, Uk) = (η, u). Then for u 6= w(η)/

√
η, σ(η, u) > 0 only if

∂2

∂s2
r2(s|η, u)

∣

∣

∣

s=s(η,u)
< 0, where s(η, u) ≡ {2(

√

1 + κ2(η, u)− 1)}1/2/θ1. In
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this case, σ(η, u) is the unique root s̃ of
∂

∂s
r2(s|η, u) in (s(η, u),∞) only if

r2(η, u, 0) > r2(η, u, s̃). Otherwise, σ(η, u) = 0, and H0 is accepted (respec-
tively, rejected) if and only if u < w(η)/

√
η (respectively, u > w(η)/

√
η).

Proof. By equation (23) and since c2 = c3 ≡ 0, u 6= w(η)/
√
η if and only

if κ = κ(η, u) 6= 0. Now
∂

∂s
r2(s|η, u) = qs+ Ceθ1

√
ηuφ
(

− θ1s

2
− κ

θ1s

)(

− θ1

2
+

κ

θ1s2

)

− λφ
(θ1s

2
− κ

θ1s

)(θ1

2
+

κ

θ1s2

)

= qs− λφ
(θ1s

2
− κ

θ1s

)[θ1

2
+

κ

θ1s2
− C

λ
eθ1u

√
η−κ
(

− θ1

2
+

κ

θ1s2

)]

= qs− λθ1φ
(θ1s

2
− κ

θ1s

)

(54)

which is zero only when

qs = λθ1φ(
θ1s

2
− κ

θ1s
). (55)

At any point s satisfying
∂

∂s
r2(s|η, u) = 0, by substitution from (55),

∂2

∂s2
r2(s|η, u) = q + qs

(θ1s

2
− κ

θ1s

)(θ1

2
+

κ

θ1s2

)

= q
[

1 +
(θ1s

2

)2

−
( κ

θ1s

)2]

.

Now for all u 6= w(η)/
√
η, q(η, u)

[

1 +
(θ1s

2

)2

−
(κ(η, u)

θ1s

)2]

is strictly

increasing in s on (0,∞) and has unique root

s(η, u) =
1

θ1

{2(
√

1 + κ2(η, u)− 1)}1/2.

Since r2(η, u, s) −→ ∞ as s → ∞, r2(η, u, ·) has a unique local minimum
in (0,∞) if and only if ∂

∂s
r2(η, u, s)

∣

∣

∣

s=s(η,u)
< 0, in which case the local

minimum is the unique root s̃ of
∂

∂s
r2(η, u, s) in (s(η, u),∞). Otherwise, if
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∂

∂s
r2(η, u, s)

∣

∣

∣

s=s(η,u)
≥ 0, so r2(s|η, u) is nondecreasing in s for all s > 0,

or if r2(η, u, 0) ≤ r2(η, u, s̃), σ(η, u) = 0, with H0 accepted (respectively,
rejected) if and only if u < w(η)/

√
η (respectively, u > w(η)/

√
η). 2

Remark A.1. Since Uk has Pθ conditional distribution N (θ√ηk, 1) given
ηk, Pθ{Uk = w(ηk)/

√
ηk
∣

∣ ηk} = 0. Thus, on [Sk > 0], σ(ηk, w(ηk)/
√
ηk) may

be defined arbitrarily without affecting r(·, Lλ0,λ1). 2

A.3 Proof of Lemma 7.1

Proof of Lemma 7.1. The necessity of (43) and (44) are clear. For suffi-
ciency, suppose (43) and (44) are true. It suffices to show that if δ̃1 ∈ D̃
has strength (γ, µ) with

0 < γ ≤ α0 < 1− β0 ≤ 1− µ < 1 and γ + µ < α0 + β0, (56)

then there exists δ̃2 ∈ D̃ of strength (α0, β0) such that

r(δ̃2, L) < r(δ̃1, L).

For δ̃1 as above, if α(δ̃1) = α0, then also r(δ̃1, L) > rα0 , while if
β(δ̃1) = β0, then r(δ̃1, L) > rβ0 . By definition of the infima and Remark
2.2, there exists a procedure δ∗1 ∈ D̃ for which either

β(δ∗1) = β0, α(δ
∗
1) ≥ α0 > α(δ̃1), and r(δ∗1, L) < r(δ̃1, L), (57)

or

α(δ∗1) = α0, β(δ
∗
1) ≥ β0 > β(δ̃1), and r(δ∗1, L) < r(δ̃1, L), (58)

or both. If both hold, then we are done. Otherwise, define a Binom(1, λ)
random variable ξ1, independent of all other random variables defined so
far, with

λ =







α(δ∗1)−α0

α(δ∗1)−α(δ̃1)
if (57) holds, but not (58);

β(δ∗1)−β0

β(δ∗1)−β(δ̃1)
if (58) holds, but not (57).

(59)

Then define a procedure δ̃′1 ∈ D̃ by

δ̃′1 ≡ δ̃1 if ξ1 = 1 , else δ̃′1 = δ∗1.
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As a consequence, the identities

α(δ̃′1) = λα(δ̃1)+ (1−λ)α(δ∗1) ≤ α0 , β(δ̃′1) = λβ(δ̃1)+ (1−λ) β(δ∗1) ≤ β0

result in

α(δ̃′1) = α0 or β(δ̃′1) = β0 , r(δ̃′1, L) < r(δ̃1, L). (60)

If both equalities hold in (60), then putting δ̃2 = δ̃′1 completes the argument.
If only one of the equalities holds, then repeating the argument with δ̃′1 in
place of δ̃1 results in a new procedure δ̃2 ≡ δ̃′′1 of strength (α0, β0) such
that r(δ̃2, L) < r(δ̃1, L). 2

A.4 Behavior of the Bayes risk for small sampling times

In this section, we prove under some additional assumptions on the loss
function that r1(·) is increasing in a neighborhood of 0. The same reasoning
will apply to r2(η, u, ·), since the measure π2(dθ|η, u) ≡ eθ

√
ηu−θ2η/2π(dθ) in

the integrals for r2(η, u, s) plays the same role which π(dθ) does for r1(t). In
addition to Assumptions 1.1–1.4, we assume the following for the remainder
of this section:

Assumption A.1. lim inf
t→0+

t−1
∫

c1(t, θ)π(dθ) > 0.

Assumption A.2.
∫

θ4c2(θ)π(dθ) <∞.

Assumption A.3. lim sup
t→0+

t−1
∫

c3(t, θ)π(dθ) <∞.

Lemma A.3. Let

ξ0 ≡
λ0 − λ1 +

∫

c2(θ) (2I[θ≤0] − 1)π(dθ)
θ1λ1 −

∫

θc2(θ)(2I[θ≤0] − 1)π(dθ)
. (61)

Then as t→ 0+,

b(0, 0,
√
t) =

ξ0√
t
+O(

√
t). (62)
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Proof. First we note that −θ(2I[θ≤0]−1) ≥ 0 for all θ implies the denomina-
tor of (61) is positive. Using Taylor’s formula with remainder (Apostol 1974,
p.113) and Assumptions A.2 and A.3, there exist t1, t2, t1,θ, t2,θ ∈ [0, t/2] such
that as t→ 0+, (30) may be rewritten as, for b = b(0, 0,

√
t),

λ0 =λ1{1 + θ1b
√
t+ (θ1b)

2t1}(1− θ2
1t2)−

∫

{c2(θ)−O(t)}(2I[θ≤0] − 1){1 + θb
√
t+ (θb)2t1,θ}(1− θ2t2,θ)π(dθ).

Thus

λ0 =λ1 +

∫

c2(θ)(2I[θ≤0] − 1)π(dθ)+

b
√
t
{

λ1θ1 −
∫

θc2(θ)(2I[θ≤0] − 1)π(dθ)
}

+O(t),

establishing (62). 2

Lemma A.4. There exists ε > 0 such that r1 is increasing on [0, ε].

Proof. Assume ξ0 = 0 so

r1(0) = 1/2
{

λ1 +

∫

c2(θ)I[θ>0]π(dθ) + λ0 +

∫

c2(θ)I[θ≤0]π(dθ)
}

.

(The case when ξ0 6= 0 is even more straightforward than the following
argument.) Now, for t near 0,

r1(t)− r1(0)

t
≥ 1
t

[

∫

{

c1(t, θ) + c2(θ)I[θ>0] + λ1/π1I[θ=θ1]}π(dθ)+
∫

I[θ≤0]

{

c2(θ) + λ0/π0 I[θ=θ0]

}{

1− Φ(ξ0/
√
t− θ

√
t+O(

√
t))
}

π(dθ)−
∫

I[θ>0]

{

c2(θ) + λ1/π1 I[θ=θ1]

}{

1− Φ(ξ0/
√
t− θ

√
t+O(

√
t))
}

π(dθ)−

1/2
[

∫

c2(θ)π(dθ) + λ0 + λ1

]

.

Thus by Assumption A.1,

lim inf
t→0+

r1(t)− r1(0)

t
≥ lim inf

t→0+

1

t

∫

c1(t, θ)π(dθ) > 0. (63)
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Total Trial Time

normalized first-look statistic U 1

0 1 2 3

0.4

0.6

0.8

1

0.56 2.56

Figure 1: Total trial time for the optimal procedure of strength (0.025, 0.1)
with respect to the prior distribution and loss function in Table 1. The
ordinate value is the total trial time graphed as a function of the first-look
statistic U1 = W (τ1)/

√
τ1. Time units have been scaled so that τfix = 1.0.

The continuation region is 0.56 < U1 < 2.56.
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Second Look Critical Value

normalized first-look statistic U 1
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Figure 2: Terminal-time second-look critical value for the optimal proce-
dure of strength (0.025, 0.1) with respect to the prior distribution and loss
function in Table 1. The ordinate value is the second-look critical value for
W (τ2)/

√
τ2, graphed as a function of the first-look statistic U1 =W (τ1)/

√
τ1.
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Figure 3: Graphs of r2(τ1, u1, ·) for the optimal procedure corresponding to
Table 1, for various u1. The optimal procedure has first look-time τ1 = 0.42.
Time units have been scaled so that τfix = 1.0. The Lagrange multipliers are
λ0 = 388, λ1 = 210 corresponding to α = 0.025, β = 0.1. For each u1, the
global minimum of r2(τ1, u1, ·) is greater than zero if and only if u1 is in the
continuation region, i.e., 0.56 < u1 < 2.56.
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Figure 4: Graph of the Bayes risk, corresponding to Table 1, of r(δτ1,α0,β0 , L)
for various values of the first look-time τ1. Time units have been scaled so
that τfix = 1.0. The dashed line is a smooth interpolating spline.
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