
Stat 400, Summer I June 25, 1996
Handout on Simulation

II. COMPUTER SIMULATION OF CONTINUOUS & DISCRETE R.V.’S

A. PSEUDORANDOM NUMBERS

The main idea of this topic is that there are simple and fast algorithms for generating
sequences of numbers U1, U2, . . . on the computer which ‘look random and uniformly
distributed’ in the sense that for any numbers 0 < a < b < 1, for large N

1

N
· #{j = 1, 2, . . . , N : a < Uj < b} ≈ b − a

and also that there is no detectable pattern in the sequence which would allow you to
answer probabilistic questions about later sequence elements Un+k , k ≥ 1 more precisely
with knowledge of U1, U2, . . . , Un than without. Such artificially, but deterministically,
generated numbers are called pseudorandom, and standard routines generating them
are often included in computer languages and packages (including BASIC, FORTRAN,
PASCAL, Mathematica, and all Statistical packages like MINITAB, SAS, . . .). Here are
two types of algorithms used (but there are now several more, less well-established):

Algorithm 1. Linear-Congruential Generator.
Start with a large integer m like the word-size 232. All of the numbers Xk, k = 1, 2, . . .
generated in sequence will be whole numbers ranging from 0 to m − 1, which will look
equally likely to take on any of these values, and we can divide them all by m to get
approximately uniformly distributed numbers Uk = Xk/m. To express the algorithm, fix
integers a, b between 1 and m− 1. (It is important to choose these well: for example b
and m should have no factors in common.) Next take the first number in the sequence
X0 (the seed) more or less arbitrarily between 0 and m− 1. (The clock-time expressed
as an integer number of hundredths of seconds is one way to choose.) The further numbers
in the sequence of X’s follow the rule

Xk = remainder after dividing a + b · Xk−1 by m

Two particular successful choices for b with m = 232 are:

b = 69069 (Marsaglia) b = 1812433253 (Borosh & Niederreiter)

With these choices, the choice of a does not matter much.

Algorithm 2. Additive Shift-register Generator.

Start again with the large integer m, usually a word-size, as above. Start also with an
arbitrarily filled array Z = (Z1, . . . , Z55) of 55 whole numbers between 0 and m − 1.
(These could for example be obtained as the first 55 numbers output by algorithm 1.)
The output of the sequence results from repeating the following pair of operations: next

1

Xk = Z27 + Z55 (and subtract m if the result is m or greater); then replace Z by
the shifted sequence (Xk, Z1, Z2, . . . , Z54) with new first entry.

As in the previous algorithm, we produce a sequence of discrete-Uniform looking
random numbers between 0 and m− 1. To obtain uniform numbers between 0 and 1,
just divide them by m.

The classic computer-science book of D. Knuth, The Art of Computer Program-

ming, vol. 2 on Seminumerical Algorithms is slightly old but still the best reference on
this topic, particularly as regards Algorithm 1, which is still the most used.

B. SIMULATING CONTINUOUSLY DISTRIBUTED RANDOM NUMBERS

We have already seen the idea here, in Example C of the Transformation of Random
Variables handout. Suppose we want to simulate a rv Y with cdf FY = G. Then that
Example showed Y = g(X) = G−1(X) is such a random variable, if X ∼ Unif [0, 1].
For example, if we wanted to simulate an Exponential(λ) r.v., we solve the equation
x = G(y) = 1−e−λ y (since the latter is the Expon(λ) cdf), to find y = g(x) = G−1(x) =
− 1

λ (1 − log(x)). Thus, if X ∼ Unif [0, 1], then Y = − 1

λ (1 − log(X)) ∼ Expon(λ).
Actually, as you can check using the methods (formula (1′)) of the Transformation handout,
if X ∼ Unif [0, 1], then 1−X ∼ Unif [0, 1], so that the random variable Z ∼ − 1

λ log(X)
is also distributed as Expon(λ).

Here is another example. Suppose you wanted to simulate a random variable Y with
the not particularly elegant density

f(y) = 3(1 + y)−4 , y > 0

The method is first to find, and then to invert, the cdf FY , as follows. For y > 0,

FY (y) =

∫ y

0

3

(1 + t)4
dt =

−1

(1 + t)3
∣

∣

y

0
= 1 − (1 + y)−3

Then, putting x = FY (y), we solve for y = g(x) = F−1

Y (x):

g(x) = (1 − x)−1/3 − 1

From this and our previous discussion, it follows that if X is a Unif [0, 1] (pseudorandom)
number, then Y = (1 − X)−1/3 − 1 (or Z = X−1/3 − 1) is a pseudorandom variable
with cdf FY and density f as given.

C. SIMULATING DISCRETE RANDOM NUMBERS

Suppose we want to simulate (as always, from the starting point of a Unif [0, 1]
rv X) a discrete rv Y which takes each of the values 0.1, 9, −3, 17 with respective
probabilities 0.13, 0.45, 0.22, 0.20. The idea is very simple. Since X falls in any specified
subinterval of [0, 1] with probability equal to the subinterval’s length, just subdivide [0, 1)
into the four non-overlapping intervals [0, 0.13), [0.13, 0.58), [0.58, 0.80), [0.80, 1). You

2

see that what this does is just to lay the four probabilities for Y values ‘end-to-end’ as
lengths: the lengths have to cover the interval exactly because the probabilities must sum
up exactly to 1. So a good rule for generating the rv Y is:

respectively if X ∈ [0, 0.13) , [0.13, 0.58) , [0.58, 0.80) , [0.80, 1)
put Y = 0.1 , 9 , −3 , 17

It is easy to see that this discrete rv has precisely the prescribed values and probability
mass function. The idea is easy to generalize to any discrete pmf with finitely many values,
and even — after a little thought — to countable-valued discrete rv’s like the Poisson.

D. SIMULATING MORE COMPLICATED FUNCTIONS OF MORE (INDEP.) RV’S

One important reason for simulating at all is that we want to understand operationally
how certain combinations or functions of many independent random variables behave,
but that we cannot calculate the relevant probabilities easily. It is easy and quick to
create on the computer many large batches of random variables with prescribed probability
distributions. Therefore we simulate in order to answer interesting probability questions
through relative frequencies. (Remember the relative-frequency interpretation of
probabilities ?) Here is a simple example: suppose we want to verify the (true) fact that
a sum of two indpendent N (0, 1) rv’s has a N (0, 2) probability distribution. This
statement can be made into a prediction about (large numbers of pairs of) simulated
variables, as follows: simulate 2000 independent N(0, 1) rv’s, and arrange them into
pairs (Z1,1, Z1,2), (Z2,1, Z2,2), . . . , (Z1000,1, Z1000,2). Then our prediction is that, for
any fixed number r, 1

1000
times the number of pairs (Zj,1, Zj,2) such that Zj,1+Zj,2 ≤ r

will be aproximately Φ(r/
√

2). Let us try this out and test it. I simulated just such a
batch of rv’s and, as a function of r plotted

1

1000
× #{j = 1, . . . , 1000 : Zj,1 + Zj,2 ≤ r} vs. Φ

(r√
2

)

The plot is attached for your inspection (solid line theoretical, dots for relative-frequencies).

We will see several more interesting simulation examples within the Histogram and
Central Limit Theorem handouts.

PROBLEMS ON SIMULATION OF RANDOM VARIABLES

Sim.1. Explain how you would simulate 3 independent Weibull distributed random
variables with density f(w) = 10w4 exp(−2w5) , w > 0, starting from a sequence of
pseudorandom Unif [0, 1] variables U1, U2, . . . Your description should be specific enough
so that you can give your numerical simulated values if U1 = 0.7432, U2 = 0.6545, U3 =
0.2110.

Sim.2. Explain how you would simulate 5 independent Binomial(10, 0.25) distributed
discrete random variable values, starting from a sequence U1, U2, . . . of pseudorandom
Uniform[0, 1] variables. Again your description should be specific enough to give numer-
ical simulated values if numerical Uk values are given.

3

Sim.3. Suppose that uniform [0, 1] random numbers U1, U2, . . . , U1000 are generated on
the computer. Let N be the number of the variables Ui, i = 1, . . . , 1000, for which
Ui ≥ 0.6, and let A =

∑1000

i=1
e−Ui .

(a) What is the probability distribution of N ?
(b) To what number would you expect N/1000 to be close ?
(c) To what number would you expect A/1000 to be close ?
(d) What is the probability distribution or density of each of the r.v.’s exp(−Ui) ?

4

