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(8.1) Lemma. If there is a stationary distribution, then all states y that have
w(y) > 0 are recurrent.

Proof. (3.11) telis us that E,N{(y) = Yoo P, y), so

S w(@)EN(y) =y w(z) ) »"(#v)
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Interchanging the order of summation and using 7p™ = 7, the above
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since w{y) > 0. Using (3.8) now gives E N(1) = pay/(1 = pyy), 0

Py
oo = gy ——— < —
; ( }1*91121 L = pyy

the second inequality following from the facts that pyy < landwisa probability
measure. This shows that py, = 1, 1.¢., ¥y is recurrent. |

With (8.1) in hand we are ready to tackle the proof of:

(4.5) Convergence theorem, Suppose p is irreducible, aperiodic, and has
stationary distribution m. Then as n — oo, p" (z,y) — 7(y).

Proof. Let 52 = S x S. Define a transition probability p on S x .5 by

B((z1,11), (2, %2)) = pla1, ©2)p{ys, Y2)

In words, each coordinate moves independently. Our first step is to check shat
# is irreducible. This may seem like a gilly thing to do first, but this is the only
step that requires aperiodicity. Since p is irteducible, there arc X, L, so that
pf(z1,z2) > 0 and pE{y1,y2) > 0. Since o and yz have period 1, it follows
from (4.2) that if M is large, then LM (g5, 32) > 0 and pX ¥ (1o, y3) > 0, s0

pEHEAM ((2,90), (w2, 2)) > 0

Our second step is to observe that since the two coordinates are inde-
pendent #(a,b) = w(a)m(h) defines a stationary distribution for p, and (8.1)
implies that all states are recurrent for p. Let (X,,Y,) denote the chain on
8§ % 8, and let T be the first time that the two coordinates arc equal, i.e.,
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T =min{n > 0: X, =Y.} Let Vip oy = min{n > 0: X, =Y, = z} be the
time of the first visit to (z,z). Since p is irreducible and recurrent, Vi, ) < oo
with probability one. Since ' < Viz e for our favorite © we must have T' < oo,

The third and somewhat magical step is to prove that on {T" < n}, the two
coordinates X, and Y, have the same distribution. By considering the time
and place of the first intersection and then using the Markov property we have

P(X,=y,T<n)= zﬂ: ZP(T: m, Xm =2, Xn = Y)

m=1 =

3 P =, X = 2)P(X = 9K = )
m=1 «

= 3 NPT = m, Yo = @) P(Yo = ylYin = )
m=1 u
:P(Yn:y,TS’ﬂ)
% To finish up we observe that using the last equality we have

P(X, =y) = P(Xp =y, T <n)+ P(Xn=9T>n)
:P(KL:y:Tgﬂ)%P(Xn:y1T>n)
PY,=y)+ P(Xn=y,T >n)

A

and similarly P(Y,, =) < P(Xp =y) + PYa =4, T > n). So
LP(XT,,:y)—P(Yn:y)L SP(any,T>n)+P(Yn =y, T >n)

and summing over y gives

S \P(Xy =y) - P(Ya =) < 2P(T > 7)
y
If we let Xp = x and let ¥p have the stationary distribution 7, then Y, has
& distribution 7, and it follows that
St y) — aly)| £ 2P(T > n) 0
y

' proving the desired result. |

Next on our list is the equivalence of positive recurrence and the existence
of a stationary distribution, (7.2), the first piece of which is:
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(8.2) Theovem. Let x be a positive recurrent state, let T, = inf{n > 1: X, = ' Summing f
z}, and let |

ZP n=1Tr >n)

ince F,
Then w(y) = p(y)/ E.T, defines a stationary distribution. , sinee Fo(T
? With
To prepare for the proof of {6.5) note that p(z) = 1so n(z) = 1/E,T.. Another ‘
useful bit of trivia that explains the norming constant is that the definition and ‘
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Why is this true? This is called the “cycle trick.” u(y) is the expected number J' Let y € 5.
of visits to y in {0,..., Ty —~ 1}. Multiplying by p moves us forward one unit ‘_ ie., BT,
in time so pp(y) is the expected number of visits to y in {1,...,Ty}. Since there is a .
X(T,) = Xo = z it follows that u = up. Since 7 is just p divided a constant to : re St <
make the sum 1, # is a stationary distribution. lermma (3.
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Summing from n = 0 to co we have

ZZﬁn(m,y)p(y,m) = Z:P,,;(T53 =n+1) =1=p(z)

n=0 y n=0
since P (T =0) =0. O

With (8.2) established we can now easily prove:

(4.7) Theorem. Ifthe state space § is finite then there is at least one stationary
distribution.

Proof. By (3.5) we can restrict our attention to a closed irreducible subset of
S, and hence suppose without loss of generality that the chain is irreducible.
Let y € S. In view of (8.2) it is enough to prove that y is positive recurrent,
ie., BT, < co. To do this we note that irreducibility itnplies that for each z
there is a k(z) so that Po(Ty < k{z}) > 0. Since S is finite, K = max{k(z) :
z € §} < oo, and there is an o > 0 so that Po(Ty < K) > a. The pedestrian
lemma (3.3) now implies that Po(T}, > nK) < (1 — a)?, so EzTy < oo for all
z € S and in particular B,T), < co. 0

To prepare for the second piece of (7.2) we now prove:

(8.3) Theorem. Suppose p is irreducible. Then foranyz € §, agn — o0

Na(v) 1
— _._> ——
e ET,

Proof. Consider the first the case in which y is transient. (3.10) implies that
EN,(y) < oo so Np{y) < oo and hence Nn(y)/n — 0 as n — co. On the other
hand transience implies P,(T, = oc) > 0, so BTy, = o0 and 1/E, T, = 0C.
Turning to the recurrent case, suppose that we start at y. Let R(k) =
min{n > 1: N.(y) = &k} be the time of the kth return to y. Let R(0) =0
and for k& > 1 let t = R(k) — R(k — 1). Since we have assumed X = y, the
times between returns, ty,tz, ... are independent and identically distributed so
the strong law of large numbers for nonnegative random variables implies that

R(k)/k — EyTy < 00

From the definition of R(k) it follows that R{(Nn(y)) < n < R(Na(y}+1).
Dividing everything by N,(y) and then multiplying and dividing on the end by

N, {y) + 1, we have
R(No(y)) . 7 R(Na(y) +1) Naly) +1

Nn(y) - Nn(y) Nn(y) +1 Nn(y)
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Letting n — oo, we have n/N,(y) trapped between two things that converge to Proof (8.2
E,T,, so 0 for all y
n D) imolie
—— > E,T : (iii} implie
N'n (y) oy . :
To generalize now to z # y, observe that the stzong Markov property implies - We ar
that conditional on {7, < oo}, ts,#3,... are independent and identically dis- :
tributed and have P.(ty = n) = P, (T, = n) so : (4.7) Stro
Let r(z) b
Rlk)/k=t1/k + (ta + -+ +1p)/k — O+ E, T, : Then asn
and we have the conclusion in general. O
From (8.3) we can easily get:
(6.5) Theorem. If p is an irreducible transition probability and has stationary Proof. L
distribution =, then g Markev pr
w(y) = 1/E,T,
Why is this true? From (8.3) it follows that
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Taking expected value and using the fact that N, (y) < n, it can be shown that
this implies
ENaly) _, ElT
_ " vy E where the
By the reasoning that led to (3.11), we have E,N,(y) = .. _, p™(z,y). The The |
convergence theorem implies p™(z,y) — 7(y), so we have
EyNul(y
_..m“....._.(_) — Tl'(y)
n
Comparing the last two results gives the desired conclusion. white whi
saw that
We are now ready to put the pieces together. of the Y,
of a sum
(7.2) Theorem. For an irreducible chain the following are equivalent:
(i} Some x is positive recurrent.
(if) There is a stationary distribution. Again the
remaining

(iii) All states are positive recurrent.




