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10.2 Limit theorems
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418 10.2  Renewals

and probabilistic, and uses ‘coupling’ arguments related to those in the proof of the ergodic
theorem for discrete-time Markov chains. This method requires some results which appear
later in this chapter, and so we defer a sketch of the argument unti] Example (10.4.21). In
the case of arithmetic interarrival times, (3) is essentially the same as Theorem (5.2.24), a
result about integer-valued random variables. There 13 an apparently more general form of
{5) which is deducible from (5). Tt is called the ‘key renewal theorem’ because of its many
applications.
Tn the rest of this chapter we shall commonly assume that the interarrival times are not arith-
metic. Similar results often hold in the arithmetic case, but they are usually more complicated
to state. - . Apr
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whenever X | Is not arithmetic.

In order to deduce this theorem from the tenewal theorem (5), first prove it for indicator:,
functions of intervals, then for step functions, and finally for limits of increasing sequences
of step functions. We omit the details. '

Proof of (1). This is easy. Just note that
(8) Tve =t < Twen+ for all 7.

Therefore, if N(z) > 0,
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Proof of (2). This is Problem (10.5.3).

In preparation for the proof of (3); we recall an important definition. Let M be a rando,
variable taking values in the set {1, 2, ...}. We call the random variable M a stopping i
with respect to the sequence X; of interarrival times if, for all m > 1, the event [M <1
belongs to the o-field of events generated by X1, X2,..., X,.. Note that M = N{&) + !
stopping time for the X;, since '
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