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Partial Solutions to STAT 650 HW3 Problems

Serfozo #27. We discussed essentially this problem (with the two Markov-
chain components sharing the same transition matrix) in connectiuon with the cou-
pling proof of convergence of multistep transition probabilities for aperiodic irre-
ducible positively recurrent chains. The only tricky part (for which I referred you to
Lemma 4.2 of Durrett) was to establish irreducibility of the two-component chain
Zn = (Xn, X))

Serfozo #39. Let Y, ~ Poisson(\) be the number of arrivals at time n (i.e.,
between n and n+ 1), independent of X7, ..., X, and Z,,, where Z,, ~ Binom(X,, p)
given X, is the number of visitors at the site at time n who leave before n+1. Then
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So X, is a homogeneous Markov Chain, obvously irreducible and aperiodic. Note
that for X, to be ergodic, the distribution of X, = X,, — Z,, + Y, and X,, would
both be m, and it is clear that the expectation of Y, — Z,, must be 0, so that
A= pE(X,), and Y ;- km = A/p. So if m were a Poisson distribution, its
parameter must be \/p.

As we will learn in connection with Poisson processes: if X ~ Poisson(S) and
given X, W ~ Binom(X,q), then W ~ Poisson(8q). You can verify this easily
using moment generating functions. Then X,, ~ Poisson(/) implies (with ¢ = 1 —p)
that X, — Z, ~ Poisson((1 — p)B) and X,, — Z, +Y,, ~ Poisson((1 —p)3 + A). It
is easy to see that if 5 = \/p, then X,,11 ~ Poisson(f), verifying stationarity of =
equal to a Poisson(\/p) distribution, assuming no condition other than A,p > 0.

Serfozo #50. This M/M/1 chain is a Birth-Death chain with

Pij = plji=o,j=1) + (1 = p) im0 j=0) + P(1 — @) L0 j=it1]
+q(1 = p) Liis0,j=i—1) + (pq+ (1 =p)(1 = q)) Lji—j>q

Irreducibility and aperiodicity are obvious, and we showed reversibility whenever
the chain is positive-recurrent, which in turn is confirmed when there is an invariant
distribution. The stationary distribution given in the problem statement, whenever
p=p(l—q)/(g(1 —p)) <1 (ie., whenever p < q), is the one determined in class
by the detailed-balance (reversibility) equations, with 7, = m; pF~! for & > 1, and
m1 = pmo/(1 —q).



The cost-structure in the problem can be expressed as a cost assessed at each
discrete time k + 1 for the state of the system between k and k + 1, equal to
h - Xy + slix,>1- The average long-term cost per unit time is the same as the
expected cost on each unit-time interval under the stationary distribution, or

(L—mo)s+h > mmm = ps/q + h(1—p)(p/q) Y mp™"
m=1

m>0

which is equal to ps/q + p(1—p)h/(q—p) and differs in its first term from the answer
given in the problem statement. If there is also a reward R for every customer served,
then the total reward per step in a large number n of steps is approximately R times
the number of times at which a new customer arrives up to n (since arrivals and
service-completions balance out asymptotically), or

R (np)/n = Rp

To check this answer for the reward term, let’s calculate it another way, by counting
service-completions, which occur with probability ¢ at each time-point k£ when there
is at least one person in line. Therefore the long-term reward per unit time is

R(1—mo)ng/n = R(p/q)q = Rp

Lefebvre #38. The long-term proportion of steps that the chain spends in
state j is the j’th entry of an invariant probability distribution, which exists and is
unique even though the chain has period 2. Solving the invariance equations gives
the solution: = = (1,2,2,1)/6. For part (c), let v; = P;(Ty < T3) for j =1,2. Then
the first-step equations are

vy = 0.5(14+wv2), w2 =0.50; = v =2/3

Lefebvre #41. The transition mechanism seems to be that given X,,, the
expected proportion p of A’s in the population after a single randomly chosen indi-
vidual undergoes the ‘mutation’ step is

Xn/N + (Xn/N)(=1+1—-0) + (1 =Xu/N)B = B+ (Xn/N) - 1= —a)
and then X,,y; ~ Binom(NV, p) given X, and p = f+ (1 - —«)X,,/N. This implies
Pij = <Jj> (B+(1-B-a)i/N) (1=~ (1-B~-a)/N)"

When oo =0, g € (0,1), it is easy to see from this last equation that the state N is
absorbing (and so recurrent), and all other states communicate and are transient.



Extra (A). As more than one student mentioned to me, a very reasonable
guess in this problem before doing any work is that the criterion for reversibility is
symmetry of the 3x 3 transition matrix P, i.e. a = b € [0,2/3], and this is the correct
answer for the problem. To prove it, note that when a = b and pgg = p22 = 2/3 —a,
then the matrix P is doubly stochastic (all rows and columns sum to 1, which implies
that the unique invariant distribution is 7; = 1/3 for j = 0,1, 2), and the symmetry
of P then exactly expresses the reversibility condition. Conversely, if the chain with
general P (and poo = 2/3 — a, p22 = 2/3 — b) is reversible, then the reversibility
condition implies po 1/p1,0 = 1 = m /7o and similarly p; 2/p21 = 1 = w3 /7, so that
mj=1/3 forall j =0,1,2. Then 1/3 =7-(2/3 —a,1/3,b) = (1 —a+b)/3 implies
a=b.

Extra (B). It is easy to see that the chain is irreducible, and letting F =
{0,1,...,9},

Pk(TF>TL”TF>TL—1) <1-1/y/E+20(n—-1) forall k>10, n>1

Therefore we complete the proof of (a) by estimating for k& > 10,

n—1 n—1
Pi(tp >n) < H (1-1/Vk+20r) < exp (—Z(k‘—l—QOr)_l/Q) — 0 as n — oo
r=0 r=0

Then part (b) follows easily by (a) together with the remark (by recurrence of finite
irreducible chains) that P;(hit {0,10,11,12,...}) = 1.

Extra (C). (a) This branching process has mean number of offspring u = 1.2,
so the extinction probability is the smallest positive root of s = 0.1 4+ 0.6s + 0.3s2,
or s =1/3. (b) E(X4) = (1.2)*, and Var(X1) = 0.36, while for each k > 0,

Var(Xp11) = E(Var(Xpy1 | X3)) + Var(E(Xpp1 | X)) = (0.36) (1.2)F +1.44 Var(X},)
(C) E(X4‘X3 > 1) = E(X4 — 1.2X3 I[X3:1]>/(1 — P(X3 < 1)) and with gb(s) =

0.14-0.65+0.352, the constant-term and coefficient of s in pogpog(s) are respectively
P(X3=0) and P(X3 = 1), and these are respectively 0.20577, 0.27633.



