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Handout on Unique Solution of Kolmogoroff DE’s

This handout is intended to clear up some question about the existence and
unique determination of continuous-time HMC’s with specified transition inten-
sity matrices Q. We have seen in class that regular jump HMC’s always have
transition probability matrices that satisfy the Backward Kolmogoroff differen-
tial equation P ′(t) = QP (t), and the Brémaud book showed that when

λ ≡ sup
i∈S

qi < ∞ (1)

the forward equations are also satisfied. Let us take those results as given, along
with the book’s later justification for all regular jump HMC’s the properties of
stability (non-explosiveness, which says supn τn = ∞ with probability 1, where
τn is the time of the HMC’s n’th state-transition) and conservativeness ( i.e.,
∑

j∈S:,j 6=i qij = qi for all i ∈ S).

The primary remaining question is how to connect the analytical object of
our study, the transition probability semigroup P (t), with the probabilistic
embedded-chain and waiting-time picture we have discussed in class. Both of
those constructions lead to local intensities, small-time limits of difference quo-
tients of transition probabilities, summarized in the Q matrix. To know that
they lead to exactly the same description, we must establish that the transition
probabilities Pij(t) for all times t are uniquely determined by the Kolmogoroff
differential equations.

It is actually very easy to prove uniqueness of solutions of the forward and
backward equations under the condition (1). The method is a lot like the ‘Gron-
wall’s Inequality’ proofs you have probably seen in undergraduate-level treat-
ments of the uniquness of ODE solutions. The main additional wrinkle here
is that the Kolmogoroff forward and backward equations are each systems of
infinitely many equations if S is infinite.

As a preliminary step, check by induction under (1) that supi

∑

j |(Qn)ij | ≤

(2λ)n for all n ≥ 1, and therefore that eQt ≡
∑∞

n=0
tn

n! Qn converges ab-
solutely uniformly on bounded intervals of t, and is thus differentiable and a
solution of both the forward and backward equations.

Consider the backward equations first, and suppose that P (t) and L(t)
are both solutions of the system P ′(t) = QP (t), L′(t) = QL(t), with L(0) =
P (0) = I and

∑

j∈S Pij(t),
∑

j∈S Lij(t) bounded uniformly in i for suffi-
ciently small t. Recall that the backward equations

P ′
ij(t) = −qi Pij(t) +

∑

k∈S: k 6=i

qik Pkj(t)
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along with their initial conditions P (0) = I imply that

eqit Pij(t) − δij =

∫ t

0

d

ds
(eqisPij(s)) ds =

∫ t

0

eqis
∑

k∈S: k 6=i

qik Pkj(s) ds (2)

and similarly for Lij(t) − δij in terms of Lik(t) with k 6= i. Note that the
right-hand summation converges and is integrable because of the conservative
property of the intensities. It follows from (2) that m(t) ≡ supi mi(t) where
mi(t) ≡

∑

j∈S Pij(t) satisfy

eqit mi(t) ≤ 1 +

∫ t

0

λm(s)ds

and similarly for analogous quantities with P replaced by L, and

K(t) = sup
i

∣

∣

∣

∑

j∈S

(Pij(t) − Lij(t))
∣

∣

∣

is continuous and satisfies K(0) = 0 and

K(t) ≤ sup
i

∫ t

0

eqi(s−t)
∑

k:k 6=i

qikK(s) ds ≤ λK(s) ds

Thus K(t) is identically 0, from which we conclude for all i that
∑

j∈S Pij(t) ≡
∑

j∈S Lij(t) ≡ 1. Now fix an arbitrary i ∈ S, and let

r(t) ≡
∑

j∈S

|Pij(t) − Lij(t)| (3)

It follows by subtracting the integral equations (2) for Pij(t) and Lij(t) that

r(t) ≤
∑

j∈S

∣

∣

∣

∫ t

0

eqi(s−t)
∑

k∈S: k 6=i

qik (Pkj(s) − Lkj(s)) ds

∣

∣

∣
≤

≤

∫ t

0

eqi(s−t)
∑

k: k 6=i

qik r(s) ds ≤ λ

∫ t

0

r(s) ds

which again implies that r(t) is identically 0. This proves the uniquess of the
solution exp(tQ) for the backward equation.

A similar idea works for the forward equation. Now the integral equation
becomes

eqjt Pij(t) − δij =

∫ t

0

eqjs
∑

k: k 6=j

Pik(s) qkj ds (4)

Arguing exactly as before in terms of a function like K(t) above, we find that
for any two systems of solutions Pij(t), Lij(t) of (4), for each of which the
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quantities supi

∑

j Pij(t), supi

∑

j Lij(t) are bounded for small t, for all
t,

∑

j Pij(t) ≡
∑

j Lij(t) ≡ 1. Again using r(t) as defined in (3) for arbitrary
fixed i, we now reason using (4) that

r(t) ≤
∑

j∈S

∣

∣

∣

∫ t

0

eqj(s−t)
∑

k∈S: k 6=j

qkj (Pik(s) − Lik(s)) ds

∣

∣

∣
≤

≤

∫ t

0

∑

j

eqj(s−t)
∑

k: k 6=j

|Pik(s) − Lik(s)| qkj ds

≤

∫ t

0

∑

k

|Pik(s) − Lik(s)|
∑

j: j 6=k

qkj ds ≤ λ

∫ t

0

r(s) ds

which again implies r(t) ≡ 0 because r(0) = 0.
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