Two Loose Ends from Stat 650 Class

Here are two comments \& calculations to clear up things I showed in class that may have caused confusion.

(1). Condition for stationary distribution in Birth-Death Chains.

Recall that we showed in class that the Birth-Death chains on $S=\{0,1,2, \ldots\}$ with $P_{k, k+1}=\mu_{k}>0, P_{k, k-1}=\lambda_{k}>0$ for $k \geq 1$ and $P_{0,1}=1$, are

$$
\text { irreducible if and only if } \quad \sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{\lambda_{j}}{\mu_{j}}=\infty
$$

We showed also that the condition $\underline{\pi}^{\mathrm{tr}} P=\underline{\pi}^{\mathrm{tr}}$ for an infinite vector $\underline{\pi}=$ $\left(\pi_{0}, \pi_{1}, \ldots\right)$ implies

$$
\begin{equation*}
\nu_{k+1}-\nu_{k}=\left(\nu_{k}-\nu_{k-1}\right) \frac{\lambda_{k}}{\mu_{k}}, \quad k \geq 1, \quad \text { for } \quad \nu_{k} \equiv\left\{\prod_{j=0}^{k-1} \frac{\lambda_{j+1}}{\mu_{j}}\right\} \pi_{k} \tag{1}
\end{equation*}
$$

It followed by induction from this equation that for $k \geq 1$

$$
\begin{equation*}
\nu_{k+1}-\nu_{k}=\left[\prod_{j=1}^{k} \frac{\lambda_{j}}{\mu_{j}}\right]\left(\nu_{1}-\nu_{0}\right) \quad \Longrightarrow \quad \nu_{k+1}=\nu_{1}+\sum_{j=1}^{k}\left[\prod_{i=1}^{j} \frac{\lambda_{i}}{\mu_{i}}\right]\left(\nu_{1}-\nu_{0}\right) \tag{2}
\end{equation*}
$$

In order for $\underline{\pi}$ to be a stationary distribution, the quantities ν_{k} defined inductively from an initial pair $\left(\nu_{0}, \nu_{1}\right)$ must be nonnegative, not all 0 , and such that the numbers π_{k} related to ν_{k} through (1) are summable. There were two cases. First, suppose $\nu_{1}=\nu_{0}$ is nonzero, necessarily positive. Then it follows that $\nu_{k}=\nu_{0}$ for all k, and

$$
\begin{equation*}
\pi_{k} \text { is summable if and only if } \quad \sum_{k=1}^{\infty}\left[\prod_{j=0}^{k-1} \frac{\mu_{j}}{\lambda_{j+1}}\right]<\infty \tag{3}
\end{equation*}
$$

We wanted to argue that this is actually the only condition for existence of a stationary probability distribution (obtained by dividing $\underline{\pi}$ through by $\sum_{j=0}^{\infty} \pi_{j}$). For this, we needed to exclude, assuming recurrence, the possibility that a solution ν_{k} of (2) with $\nu_{1} \geq 0, \nu_{1} \neq \nu_{0}$ could lead to nonnegative summable π_{k}.

If $\nu_{1} \neq \nu_{0}$ and ν_{k+1} is given by the last part of (2), then the irreducibility condition implies that $\nu_{k+1} \geq 0$ for large k only if $\nu_{1}>\nu_{0}$. With $\nu_{1}-\nu_{0}>0$, summability of π_{k} from (1)-(2) would imply

$$
\sum_{k=0}^{\infty}\left[\prod_{j=0}^{k-1} \frac{\mu_{j}}{\lambda_{j+1}}\right]\left(\sum_{m=1}^{k}\left[\prod_{i=1}^{m} \frac{\lambda_{i}}{\mu_{i}}\right]\right)<\infty
$$

and the summation is only decreased if we restrict the inner sum over m to the single value $m=k$. Thus the summbility condition of the last equation implies

$$
\sum_{k=0}^{\infty}\left[\prod_{j=0}^{k-1} \frac{\mu_{j}}{\lambda_{j+1}}\right]\left[\prod_{i=1}^{k} \frac{\lambda_{i}}{\mu_{i}}\right]<\infty \quad \Longrightarrow \quad \sum_{k=0}^{\infty} \frac{\mu_{0}}{\mu_{k}}<\infty
$$

But this last condition is impossible because $\mu_{k} \leq 1$ for all k. Thus the only way to achieve summable π_{k} from (1) is to have $\nu_{1}=\nu_{0}$, and for recurrent Birth-Death chains, existence of a stationary probability distribution is equivalent to condition (3).

(2). 'Cycle Trick' in Durrett, p. 84.

We considered the irreducible $\mathrm{HMC}\left\{X_{t}\right\}$ on countably infinite state-space S, and assumed $x \in S$ had the property $E_{x}\left(T_{x}\right)<\infty$, which implies that x is recurrent (since the expectation could not be finite without $P_{x}\left(T_{x}<\infty\right)=1$), and therefore all other states are too.

With fixed x, the key definitions were

$$
\mu(y)=E_{x}\left(\sum_{t=1}^{T_{x}} I_{\left[X_{t}=y\right]}\right)=E_{x}\left(\sum_{t=0}^{T_{x}-1} I_{\left[X_{t}=y\right]}\right)=E_{x}\left(\sum_{t=0}^{\infty} I_{\left[T_{x}>t\right]} I_{\left[X_{t}=y\right]}\right)
$$

and changing as in Durrett without the $\bar{p}_{t}(x, y)$ notation,

$$
\begin{equation*}
\mu(y)=\sum_{t=0}^{\infty} P_{x}\left(X_{t}=y, T_{x}>t\right) \tag{4}
\end{equation*}
$$

Then as in Durrett, we calculate first for $k \neq x$,

$$
\sum_{y \in S} \mu(y) P_{y, k}=\sum_{t=0}^{\infty} \sum_{y \in S} P_{x}\left(X_{t}=y, X_{t+1}=k, T_{x}>t\right)
$$

$$
=\sum_{t=0}^{\infty} P_{x}\left(X_{t+1}=k, T_{x}>t+1\right)=\sum_{s=0}^{\infty} P_{x}\left(X_{s}=k, T_{x}>s\right)=\mu(k)
$$

and then, for $k=x$, we know by the definition that $\mu(x)=1$, and

$$
\sum_{y \in S} \mu(y) P_{y, x}=\sum_{t=0}^{\infty} \sum_{y \in S} P_{x}\left(X_{t}=y, X_{t+1}=x, T_{x}>t\right)=\sum_{t=0}^{\infty} P\left(T_{x}=t+1\right)=1
$$

Thus we have shown for all $k \in S$, that $\sum_{y \in S} \mu(y) P_{y, k}=\mu(k)$. Note also from equation (4) that

$$
\sum_{y \in S} \mu(y)=\sum_{t=0}^{\infty} \sum_{y \in S} P_{x}\left(X_{t}=y, T_{x}>t\right)=\sum_{t=0}^{\infty} P_{x}\left(T_{x}>t\right)=E_{x}\left(T_{x}\right)
$$

Thus $\left(\mu(y) / E_{x}\left(T_{x}\right): y \in S\right)$ is a stationary probability vector.
This is our starting point for next class.

