Non-Markovian Example

As indicated in class, this is an exampled of a lumped-state random sequence constructed from a Homogeneous Markov Chain, and we supply calculations to show the lumped-state chain is non-Markovian.

Let $\left\{X_{k}: k \geq 0\right\}$ be a homogeneous Markov Chain with state-space $S=\{0,1,2\}$ defined by $X_{0}=1$ and transition probability matrix

$$
\mathbf{P}=\left(P\left(X_{k+1}=j \mid X_{k}=i\right)\right)_{i, j=0,1,2}=\left(\begin{array}{ccc}
.8 & .1 & .1 \\
.2 & .7 & .1 \\
0 & .1 & .9
\end{array}\right)
$$

Define a binary-valued random sequence

$$
Y_{k}=I_{\left[X_{k} \geq 1\right]}=\left\{\begin{array}{lll}
1 & \text { if } & X_{k}=1,2 \\
0 & \text { if } & X_{k}=0
\end{array}\right.
$$

Then one easily calculates $P\left(Y_{1}=1\right)=P\left(X_{1} \geq 1\right)=.8$ and

$$
\begin{gathered}
P\left(Y_{2}=1, Y_{1}=1\right)=P\left(Y_{2}=1, Y_{1}=1, X_{1}=1\right)+P\left(Y_{2}=1, Y_{1}=1, X_{1}=2\right) \\
=(.7)(.8)+(.1)(1)=.66
\end{gathered}
$$

Next, it is easy to see that

$$
P\left(Y_{2}=1, Y_{1}=0\right)=P\left(X_{1}=0, X_{2} \geq 1\right)=(.2)(.2)=.04
$$

so that $P\left(Y_{2}=1\right)=P\left(Y_{2}=1, Y_{1}=1\right)+P\left(Y_{2}=1, Y_{1}=0\right)=.7$. Now

$$
\begin{aligned}
& P\left(Y_{3}=1, Y_{2}=1, Y_{1}=0\right)=P\left(X_{1}=0, X_{2}=1, X_{3} \geq 1\right)+ \\
& \quad+P\left(X_{1}=0, X_{2}=2, X_{3} \geq 1\right)=(.2)(.1)(.8)+(.2)(.1)(1)=.036
\end{aligned}
$$

and

$$
P\left(Y_{3}=1, Y_{2}=1, Y_{1}=1\right)=P\left(X_{1}=1, X_{2}=1, Y_{3}=1\right)
$$

$$
+P\left(X_{1}=1, X_{2}=2, Y_{3}=1\right)+P\left(X_{1}=2, X_{2}=1, Y_{3}=1\right)+P\left(X_{1}=2, X_{2}=2, Y_{3}=1\right)
$$

$$
=(.7)(.7)(.8)+(.7)(.1)(1)+(.1)(.1)(.8)+(.1)(.9)(1)=.56
$$

Finally, pulling these results together we have

$$
P\left(Y_{3}=1, Y_{2}=1\right)=.56+.036=.596
$$

so that
$P\left(Y_{3}=1 \mid Y_{2}=1\right)=\frac{.596}{.7}=.8514 \neq P\left(Y_{3}=1 \mid Y_{2}=1, Y_{1}=1\right)=\frac{.56}{.66}=.8485$
which shows that $\left\{Y_{k}: k \geq 0\right\}$ is not Markovian.

