
Eric Slud 5/9/16

Stat 650 Sample Final Problems

Instructions. These problems are intended to be roughly of the difficulty and
topic coverage as the problems you will be given on the Final Exam on Monday,
May 16, 2006. although some of the ones given here are slightly more difficult
that what I would give (e.g., # 2, 12). The main topic and idea for each problem
is indicated in italics. The Final Exam will consist of about 5 or 6 problems like
the single-topic problems, and I may include a short-answer (true/false style)
section instwad of one of the problems.

The first five problems relate to the M/M/1 queue with arrival rate λ = 1
and service rate µ = 3, which is the name in applications (operations research
and computer systems) of the Birth-and-Death process on the nonnnegative
integers with transition-rates

Qj,j+1 = λ, Qj,j−1 = µ I[j>0], Qj,j = −λ− µ I[j>0]

(1). (First-step analysis.) Find E0(T2) (the expected time for an empty
queue until the first time there are 2 customers in the system).

(2). (Martingale calculation of hitting probabilities) Find P2(hit 5 before 0)
and E2(time to hit {0, 5}). (Hint: before hitting 0, the Markov Chain Xt is
just a random walk in continuous time. You will need two different martingales
in terms of Xt to solve this problem.)

(3). (Cycles in continuous-time Markov Chains) Find the long-term proportion
of time spent in state 3 with previous state having been 2. (Hint: one way to
do this is to use the fact that the Birth-Death process run in reverse time is the
same birth-death process. But that is not the way I intended the problem to be
done.)

(4). (Cycles in discrete-time Markov Chains) Find the long-term proportion
of transition steps spent in an even-numbered state.

(5). (Conditioning) Suppose that the owner of the service facility experiences a
cost equal to the person-hours which customers have waited before their service
begins. If the initial state of the queue is X(0) = 2 (one customer on line and
one being served), then find the mean of the owner’s accumulated cost up to
the time of the first service completion.

(6). (Stationary distributions of chains with transient states) The continuous-
time Markov chain Xt with time-t transition matrix P (t) has state-space
S = {A, B, 1, 2, 3} and intensity-matrix

Q =


−1.5 1 .5 0 0

1 −1 0 0 0
0 0 −3 2 1
0 0 2 −5 3
0 0 1 3 −4





(a). Find the transition matrix P ∗ of the embedded discrete-time Markov-
chain associated with Q.

(b). Find limn→∞ (P ∗)n and limt→∞ PB1(t).

(7). (Exponential r.v.’s and Poisson process) If N1(t) and N2(t) are
independent Poisson processes with respective rates 3 and 1, then find
P (N1(t) hits 6 before N2(t) hits 3) numerically.

(8). (Exponential r.v.’s) Let T1, . . . , T5 be independent random variables,
Tk ∼ Expon(k). Find P (max(T4, T5) < min(T1, T2, T3)).

(9). (Martingales and hitting probabilities – discrete & continuous-time pro-
cesses; compound Poisson or branching processes) Suppose that ξj for j ≥ 1
are iid random variables such that ξj falls with equal probabilities 1/3 on
each of the values − 1, 0, 1, and suppose N(t) is an independent Poisson
process with rate 2. Define Yn =

∑n
j=1 ξj , X(t) = YN(t).

(a) Show that Yn is a martingale.

(b) Show that X(t) is a martingale in the sense that for each s < t,

E
(
X(t)−X(s) | (N(u), u ≤ s), (ξj , j ≤ N(s))

)
= 0

and also that X2(t) − 4t/3 is a martingale in the same sense.

(c) Find P (X(t) hits -10 before 15) and

E
(

inf{t > 0 : X(t) ∈ {−10, 15} }
)

(10). (Poisson process) Suppose that Xk for k = 1, 2, . . . is an i.i.d.
sequence of random variables equal to 1 with probability 2/3 and equal to 2
with probability 1/3, and let N(t) be a Poisson rate λ process independent
of {Xk}. Show that for each t, the counting processes

Rj(t) =

N(t)∑
k=1

I[Xk=j] , j = 1, 2

are independent Poisson processes, and find their rates.

(11). (Formulation of intensity matrix and MC stationary distributions) Sup-
pose that a continuous-time system is defined with states {0, 1, 2, 3} in terms
of two independent Poisson processes Nj(t) with respective rates 1, 2 by
X(t) = 3N1(t) − N2(t) mod 4 . Show that the system is Markovian, and find
its intensity matrix and its stationary probability of being in state 3.

(12). (Recurrence criterion) Suppose that (Xk, k ≥ 0) is an irreducible
discrete-time homogeneous Markov chain with the nonnegative integers as states
such that, for all i > 10,

∑
j>10 Pij ≤ 1/2 and that Pi,j > 0 for all i, j ≤ 10.



(a) Show that for any state i > 10,

E
(

min{n ≥ 0 : Xn ≤ 10}
)
< ∞

(b) Conclude from (a) that {Xk}k is recurrent.

(13). (Renewal equation). Suppose that X(t) is a Markov chain with states
S = {0, 1} with transition intensity matrix

Q =

(
−2 2

1 −1

)
(a). Let R(t) =

∫ t
0
I[X(s)=0] ds denote the total amount of time spent in state 0

up to t. Show that r(t) = E0R(t) satisfies a continuous-time renewal equation.
(Hint: let π(t) = E1R(t), and use first-step analysis twice to get equations for
each of r(t), π(t) in terms of the other.)

(b). Using either limit theorems for renewal functions or some other method,
find limt→∞ r(t)/t.

(14). (Poisson process on the plane). Let N(A) for A ⊂ [0,∞)2 be a homoge-
neous point process. Say what process characteristics (Markovian ? homogeneous-
transition ? independent increment ? homogeneous or nonhomogeneous Poisson
?) the following two processes possess:

(a) N1(t) = N({(t1, t2) : 0 ≤ max(t1, t2) ≤ t}

(b) N2(t) = N({(t1, t2) : 0 <= t1 ≤ t/2, 0 ≤ t1 ≤ t})

Also, (c) What is the joint distribution of N1(1), N2(1) ? Find
P (N1(1) > 1 |N2(1) > 0).

(15). (Classification of states, periodicity, absorption probabilities.)

(16). (Null-recurrence versus positive recurrence) Consider the discrete-state
Markov chain on S = {0, 1, 2, . . .} with transition probabilities q0,1 = 1, qk,k+1 =
1− qk,0 = (k/(k+ 1))α. For which values of α > 0 is the chain recurrent ? null-
recurrent ? positive-recurrent ?

(17). (Kolmogorov forward and backward equations for continuous-time Markov
chains – solution techniques for small finite-state chains)


