Stat 798S, Eric Slud

Handout on Marginal and Partial Likelihood

FOLLOWING KALBFLEISCH AND PRENTICE SEC. 4.7.1

As in class, assume that (X_i, C_i, Z_i) are independent triples, with Z_i nontime-dependent k-vector covariates, and X_i , C_i conditionally independent given Z_i , and

$$h_{X_i|Z_i}(t|z) = \lambda_0(t) e^{\beta' z}$$
, all $t > 0, z \in \mathbf{R}^k$

where the unknown parameters are $\beta \in \mathbf{R}^k$ and λ_0 fall in the class of hazard intensity functions strictly positive on some (fixed) interval of support, with $\Lambda_0(t) \equiv \int_0^t \lambda_0(s) \, ds \to \infty$ as $t \to \infty$.

Denote $T_i \equiv X_i \wedge C_i$, $\Delta_i \equiv I_{[X_i \leq C_i]}$, $N(t) \equiv \sum_{i=1}^n \Delta_i I_{[T_i \leq t]}$, and also let t_j , $1 \leq j \leq N(\infty)$, denote the ordered distinct observed death-times, i.e. the jump-points for $N(\cdot)$, and for all j,

 $\mathcal{R}_j \equiv \{i = 1, \dots, n : T_i \ge t_j\}$, $L_j \equiv \text{ index } i \text{ such that } T_i = t_j, \Delta_i = 1$

Denote by \underline{R} the rank-data consisting of all inequalities

 $X_l < X_a$ where $l \in \{L_j : 1 \le j \le N(\infty)\}$, and if $l = L_j, a \in \mathcal{R}_j \setminus \{l\}$

Note that <u>R</u> is less information than we have from $\{(\mathcal{R}_j, L_j), j = 1, ..., N(\infty)\}$ because <u>R</u> drops information about censoring times for \mathcal{R}_j individuals being greater than X_{L_j} , but the \mathcal{R}_j , L_j information does imply the <u>R</u> information.

Proposition. Either regard the covariates Z_i as fixed, or condition on them. Then the likelihood for the data <u>R</u> coincides with the Cox Partial Likelihood $\prod_{j=1}^{N(\infty)} (e^{\beta' Z_{L_j}} / \sum_{k \in \mathcal{R}_j} e^{\beta' Z_k}).$

Proof. Step 1. The rank information <u>R</u> would be unchanged if the time axis (the interval of positivity of λ_0) were transformed by any strictly monotone transformation; and the mapping $t \mapsto \Lambda_0(t)$ provides $X_i^* \equiv \Lambda_0(X_i)$ with hazards $h_{X_i^*|Z_i}(s|z) = e^{\beta' z}$. Thus there is no loss of generality in assuming (conditionally) $X_i \sim \text{Expon}(e^{\beta' Z_i})$.

Step 2. The calculation now relies on the memoryless property of exponentials together with the fact that if $U \sim \operatorname{Expon}(\mu)$, $V \sim \operatorname{Expon}(\nu)$ are independent, then $P(U < V | \min(U, V) = s) = \mu/(\mu + \nu)$. We note that \underline{R} does incorporate knowledge of all \mathcal{R}_j . Since $t_j = \min\{X_a : a \in \mathcal{R}_j\}$ for all j, with $t_0 \equiv 0$ by convention, the memoryless property implies that given t_{j-1} , for all $a \in \mathcal{R}_j$ the r.v.'s $X_a - t_{j-1}$ are independent and $\operatorname{Expon}(e^{\beta' Z_a})$ distributed, so that $\min_{a \in \mathcal{R}_j \setminus \{l\}} (X_a - t_{j-1}) \sim \operatorname{Expon}(\sum_{a \in \mathcal{R}_j \setminus \{l\}} e^{\beta' Z_a})$, and

$$P(X_{l} - t_{j-1} < \min_{a \in \mathcal{R}_{j} \setminus \{l\}} (X_{a} - t_{j-1}) | \mathcal{R}_{j}, t_{j-1}) = e^{\beta' Z_{l}} / \prod_{k \in \mathcal{R}_{j}} e^{\beta' Z_{k}}$$