Sample Test Problems, Stat 798L Spring 2008

The problems from the 2005 sample test are still appropriate except for #4 since we have not covered anything about kernel (smoothed) hazard intensitiy estimators this Spring. Here are some others.

1. Suppose that a subject population consists of two population subgroups, respectively correcponding to 40% and 60% of the total. In the first group, death X and censoring C times are independent exponential random variables with respective hazards 3 and 2; in the second group, X and C are independent exponential random variables with respective hazards 2 and 4. Assume that a random sample of subjects is drawn and their right-censored survival data $T = \min(X, C)$ and $\Delta = I_{[X \leq C]}$ are observed, but that one cannot observe which of the two population subgroups each patient comes from. Find the net and crude hazard rates for the mortality random variable X.

2. Consider the following life-table constructed from a right-censored survival dataset of size 18:

time	0.1	0.3	0.6	1.2	1.8	3.0	3.3	4.2	5
deaths	1	1	1	1	1	0	1	1	0
at-risk	18	17	16	15	14	13	12	11	10

and that all patient observations are administratively censored at t = 5.0. (Assume that right-censorship is independent of survival.)

(a). Find the Kaplan-Meier estimator and the Greenwood-formula standard error for $S_X(5)$.

(b). Suppose that observations with T < 0.5 are dropped because they are deemed unreliable, i.e., the observations at times 0.1, 0.3 are simply omitted, so that only 16 observations are used. Write the Likelihood for this 16-element left-truncated and right-censored dataset based on hazard-parameter λ under the assumption that the failure time random variables X_i are $Weibull(\lambda, 2)$ distributed.

(c) Re-calculate the likelihood in (b) if the observations from the two subjects with event-times 0.1, 0.3 are not left-truncated but rather left-censored at time t = 0.5. (That is, the dataset now has 18 elements, and the observations 0.1 and 0.3 now become left-censored observations .5-).

3. Give an estimator and the delta-method based standard error for the median survival time in the dataset of problem 2 based on the $Weibull(\lambda, 2)$ survival distribution.

4. The **R** dataset **rats** contains *time, status, rx* data for 150 rats, all of which were injected with a carcinogen and 50 (randomly chosen to be the rx = 1 group) were given a drug. The observed times are waiting times until either a tumor developed or the followup on the rat was right-censored. Selected output from a survival analysis of these data is as follows:

	Ν	Observed	Expected	S^(80)	SE(S^(80))
rx=0	100	19	27.5	.8733	0.0343
rx=1	50	21	12.5	.8102	0.0572

The \hat{S} values are Kaplan-Meier estimators, and the standard errors are based on the Greenwood formula. The 'expected' number of failures in each treatment group is based on the formula $\int (Y_z/Y) dN$ associated with the centering for the logrank statistic.

Perform two different (approximate, large-sample-based) hypothesis tests at significance level $\alpha = .05$ of difference between survival for the rx=1 and rx=0 groups based on these data. Explain clearly what each of the two null hypotheses is and (roughly) how strongly, if at all, you can reject it. Use the facts that $z_{.025} = 1.96$, $\chi^2_{1,.05} = 3.84$, $\chi^2_{1,.02} = 5.41$. Would your answer to either test change if you were given the additional information that $\int (Y_1(t) Y_0(t)/Y^2(t)) dN(t) = 8.491$?

Other problem types that might be asked: Wald and Likelihood Ratio tests of significance of coefficients from survival regression (based on *parametric or Cox-model* survreg outputs).