10/23/2021

## Eric Slud

## STAT 702 Sample Problems for In-Class Test.

The test will consist of 3 problems, each no longer than the ones given here.

(1). Suppose that the death and censoring variables for each subject in a randomly right-censored survival study have joint probability density

$$f_{X,C}(x,y) = \begin{cases} (21/2) (1+x)^{-5} (1+y)^{-4} & \text{if } x < y \\ 14 (1+x)^{-5} (1+y)^{-4} & \text{if } x \ge y \end{cases}$$

(a) Find  $S_X(t)$ .

- (b) Find P(X < C).
- (c) Find  $f_1(t)$  and  $S_T(t)$ .

(d) Find the limit of the Kaplan-Meier survival function estimator for large n in a survival study based on right-censored data with underlying death and censoring joint density  $f_{X,C}(x, y)$ .

(2). Consider the following data derived from a cohort life table constructed from right-censored survival data  $(T_i, \Delta_i, i = 1, ..., 110)$ . In this table,  $t_j$  are the sorted increasing distinct event (death or censoring) times,  $l_j$  the number at risk (alive and uncensored) at time  $t_j$ , and  $d_j$  the number of observed failures at time  $t_j$ .

| j     | $t_{j}$ | $l_j$ | $d_j$ | $\sum_{k=1}^{j} d_k / l_k$ | $\sum_{k=1}^{j} d_k / (l_k (l_k - d_k))$ | $\prod_{j=1}^{k} (1 - d_k/l_k)$ |
|-------|---------|-------|-------|----------------------------|------------------------------------------|---------------------------------|
| •••   |         |       |       |                            |                                          |                                 |
| 52    | 1.737   | 59    | 0     | 0.488                      | 0.077                                    | 0.612                           |
| 53    | 1.743   | 58    | 1     | 0.506                      | 0.079                                    | 0.601                           |
| 54    | 1.747   | 57    | 0     | 0.506                      | 0.079                                    | 0.601                           |
| 55    | 1.749   | 56    | 1     | 0.524                      | 0.081                                    | 0.590                           |
| 56    | 1.791   | 55    | 1     | 0.542                      | 0.083                                    | 0.580                           |
| 57    | 1.796   | 54    | 1     | 0.560                      | 0.085                                    | 0.569                           |
| 58    | 1.798   | 53    | 1     | 0.579                      | 0.087                                    | 0.558                           |
| 59    | 1.809   | 52    | 0     | 0.579                      | 0.087                                    | 0.558                           |
| • • • |         |       |       |                            |                                          |                                 |

(a) Find  $\hat{H}(1.78)$  (Nelson-Aalen Estimator) and  $\hat{S}^{KM}(1.78)$ .

(b) Test the null hypothesis  $H_0$  that the median survival time is 1.80 (i.e., that  $S_X(1.80) = 0.5$ ) at significance level 0.05, against the two-sided alternative.

(c) Find a 95% two-sided confidence interval for  $S_X(1.75)$  based on transforming the one for  $\hat{H}(1.75)$  or for  $-\log(\hat{S}^{KM}(1.75))$ , and compare it with the symmetric CI around  $\hat{S}^{KM}(1.75)$ .

(d) Estimate the standard error of  $\hat{H}(1.8) - \hat{H}(1.737)$ .

(3)\*. Based on large samples of *iid* right-censored survival data  $\{(T_i, \Delta_i)\}_{i=1}^n$ , without the assumption of independence of death and censoring,

(a) Is it possible to estimate  $F_1(t) = P(X_i \le \min(t, C_i))$  consistently? If so, what estimator has this property?

(b) What information if any can be obtained from identifiable functions of the right-censored survival data about the conditional density  $f_{X|X\geq C,C=y}(x|y)$ ? What does that suggest to you about the possibility of identifying  $S_X(t)$  from right-censored survival data, even if  $f_C(y)$  is known in advance?

(4). Suppose right-censored survival data, with independent death and censoring variables, are given in the form

| $t_j$ | 11 | 13 | 15 | 16 | 18 | 21 | 24 | 27 |
|-------|----|----|----|----|----|----|----|----|
| $d_j$ | 1  | 0  | 1  | 1  | 1  | 0  | 0  | 1  |
| $c_j$ | 0  | 1  | 0  |    | 0  | 1  |    |    |

(a) Find the likelihood and MLE for the parameter  $\lambda$  if the failure-time random variables  $X_i$  are Weibull $(2, \lambda)$  with density  $2\lambda x e^{-2\lambda x^2}$ .

(b) Find the likelihood (but do not solve for the MLE) with these same data if you are told that the data were left-truncated at time 10, i.e. that the *iid* data sample omits any data for subjects with  $X_i < 10$ .

## See next page for a list of the most important topics to study for the test.

## List of Most Important Topics for STAT 702 in-class Test

(I) Format of right-censored survival data, and definitions and relationships of functons  $S_X$ ,  $S_T$ ,  $F_1$ ,  $f_X$ ,  $h_X$ ,  $S_C$ ,  $f_C$ , in general and under the assumption of independent random right-censoring.

(II) Functions identifiable (without assumption of independent death and censoring) from right-censored survival data

(III) Definitions of Cohort Life Tables

(IV) Definitions of Right-Censoring, Left Truncation, Double Censoring

(V) Kaplan-Meier Estimator of  $S_X$ , Definition and Characterization as "Product Limit" estimator, as nonparametric Maximum Likelihood estimator, and as selfconstistent estimator

(VI) Parametric Model Likelihoods for Right-censored survival data with and without left-truncation under assumption of independent death and censoring variables

(VII) Greenwood Formula and variance Estimates for Kaplan-Meier Estimator, Confidence Intervals for  $S_X(t)$  and  $H_X(t)$ , Large-sample limit (under independent death and censoring) for Kaplan-Maier Estimator and Greenwood formula

(VIII) Martingale property of random functions  $N(t) - \int_0^t Y(x)h_X(x) dx$ ,  $\hat{H} - H_X$ and  $\hat{S}(t \wedge t_r)/S(t \wedge t_r) - 1$ , and large-sample CLT and random-function distributional limits, with particular attention to independent increments property. Definition of Confidence Bands