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Explaining the Gibbs Sampler 
GEORGE CASELLA and EDWARD I. GEORGE* 

Computer-intensive algorithms, such as the Gibbs sam- 
pler, have become increasingly popular statistical tools, 
both in applied and theoretical work. The properties of 
such algorithms, however, may sometimes not be ob- 
vious. Here we give a simple explanation of how and 
why the Gibbs sampler works. We analytically establish 
its properties in a simple case and provide insight for 
more complicated cases. There are also a number of 
examples. 

KEY WORDS: Data augmentation; Markov chains; 
Monte Carlo methods; Resampling techniques. 

1. INTRODUCTION 

The continuing availability of inexpensive, high-speed 
computing has already reshaped many approaches to 
statistics. Much work has been done on algorithmic 
approaches (such as the EM algorithm; Dempster, Laird, 
and Rubin 1977), or resampling techniques (such as the 
bootstrap; Efron 1982). Here we focus on a different 
type of computer-intensive statistical method, the Gibbs 
sampler. 

The Gibbs sampler enjoyed an initial surge of pop- 
ularity starting with the paper of Geman and Geman 
(1984), who studied image-processing models. The roots 
of the method, however, can be traced back to at least 
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 
(1953), with further development by Hastings (1970). 
More recently, Gelfand and Smith (1990) generated 
new interest in the Gibbs sampler by revealing its po- 
tential in a wide variety of conventional statistical 
problems. 

The Gibbs sampler is a technique for generating ran- 
dom variables from a (marginal) distribution indirectly, 
without having to calculate the density. Although 
straightforward to describe, the mechanism that drives 
this scheme may seem mysterious. The purpose of this 
article is to demystify the workings of these algorithms 
by exploring simple cases. In such cases, it is easy to 
see that Gibbs sampling is based only on elementary 
properties of Markov chains. 

Through the use of techniques like the Gibbs sam- 
pler, we are able to avoid difficult calculations, replac- 
ing them instead with a sequence of easier calculations. 
These methodologies have had a wide impact on prac- 
tical problems, as discussed in Section 6. Although most 

applications of the Gibbs sampler have been in Bayesian 
models, it is also extremely useful in classical (likeli- 
hood) calculations [see Tanner (1991) for many ex- 
amples]. Furthermore, these calculational methodolo- 
gies have also had an impact on theory. By freeing 
statisticians from dealing with complicated calculations, 
the statistical aspects of a problem can become the main 
focus. This point is wonderfully illustrated by Smith and 
Gelfand (1992). 

In the next section we describe and illustrate the ap- 
plication of the Gibbs sampler in bivariate situations. 
Section 3 is a detailed development of the underlying 
theory, given in the simple case of a 2 x 2 table with 
multinomial sampling. From this detailed development, 
the theory underlying general situations is more easily 
understood, and is also outlined. Section 4 elaborates 
the role of the Gibbs sampler in relating conditional 
and marginal distributions and illustrates some higher 
dimensional generalizations. Section 5 describes many 
of the implementation issues surrounding the Gibbs 
sampler, and Section 6 contains a discussion and de- 
scribes many applications. 

2. ILLUSTRATING THE GIBBS SAMPLER 

Suppose we are given a joint density f(x, Yi, .. 

yp), and are interested in obtaining characteristics of 
the marginal density 

f(x) = J. f(x, Yi, , yp) dyi... dyp, (2. 1) 

such as the mean or variance. Perhaps the most natural 
and straightforward approach would be to calculate f(x) 
and use it to obtain the desired characteristic. However, 
there are many cases where the integrations in (2.1) are 
extremely difficult to perform, either analytically or nu- 
merically. In such cases the Gibbs sampler provides an 
alternative method for obtaining f(x). 

Rather than compute or approximate f(x) directly, 
the Gibbs sampler allows us effectively to generate a 
sample X1, . . . , Xi, - f(x) without requiring f(x). By 
simulating a large enough sample, the mean, variance, 
or any other characteristic of f(x) can be calculated to 
the desired degree of accuracy. 

It is important to realize that, in effect, the end result 
of any calculations, although based on simulations, are 
the population quantities. For example, to calculate the 
mean of f(x), we could use (1/m)Lm=1 Xi, and the fact 
that 

1 m 

lim- X- xf(x) dx = EX. (2.2) 
in- m - =1 Mx 
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Thus, by taking m large enough, any population char- 
acteristic, even the density itself, can be obtained to 
any degree of accuracy. 

To understand the workings of the Gibbs sampler, 
we first explore it in the two-variable case. Starting with 
a pair of random variables (X, Y), the Gibbs sampler 
generates a sample from f(x) by sampling instead from 
the conditional distributions f(x I y) and f(y I x), dis- 
tributions that are often known in statistical models. 
This is done by generating a "Gibbs sequence" of ran- 
dom variables 

YO, XO, Yl, Xl, Y2, X2, . .. , Yk, Xk. (2.3) 

The initial value YO = y' is specified, and the rest of 
(2.3) is obtained iteratively by alternately generating 
values from 

Xji, f (x Y, = y l) 

yi,+ 1 f (Y Xi, = xi,). (2.4) 

We refer to this generation of (2.3) as Gibbs sampling. 
It turns out that under reasonably general conditions, 
the distribution of Xk converges to f(x) (the true mar- 
ginal of X) as k -- oo. Thus, for k large enough, the 
final observation in (2.3), namely Xk = xk, is effec- 
tively a sample point from f(x). 

The convergence (in distribution) of the Gibbs se- 
quence (2.3) can be exploited in a variety of ways to 
obtain an approximate sample from f(x). For example, 
Gelfand and Smith (1990) suggest generating m inde- 
pendent Gibbs sequences of length k, and then using 
the final value of Xk from each sequence. If k is chosen 
large enough, this yields an approximate iid sample 
from f(x). Methods for choosing such k, as well as 
alternative approaches to extracting information from 
the Gibbs sequence, are discussed in Section 5. For the 
sake of clarity and consistency, we have used only the 
preceding approach in all of the illustrative examples 
that follow. 

Example 1. For the following joint distribution of 
X and Y, 

f(x, y) o(f)yx+al(l - y)n-x+f3l, 

x = 0, 1, ...,n O? y 1, (2.5) 

suppose we are interested in calculating some charac- 
teristics of the marginal distribution f(x) of X. The Gibbs 
sampler allows us to generate a sample from this mar- 
ginal as follows. From (2.5) it follows (suppressing the 
overall dependence on n, a, and ,3) that 

f(x I y) is Binomial (n, y) (2.6a) 

f(y I x) is Beta (x + a, n - x + /8). (2.6b) 

If we now apply the iterative scheme (2.4) to the dis- 
tributions (2.6), we can generate a sample X1, X2, . . . 

Xm fromf(x) and use this sample to estimate any desired 
characteristic. 

As the reader may have already noticed, Gibbs sam- 
pling is actually not needed in this example, since f(x) 

can be obtained analytically from (2.5) as 

f(x) = (naF(a + /3) r(x + a)r(n - x + /3) 
\x Fr(a)r(,/3) rF(a + 3 + n) 

x = 0, 1, . . ., n, (2.7) 

the beta-binomial distribution. Here, characteristics of 
f(x) can be directly obtained from (2.7), either analyt- 
ically or by generating a sample from the marginal and 
not fussing with the conditional distributions. However, 
this simple situation is useful for illustrative purposes. 
Figure 1 displays histograms of two samples x1, . 

xm of size m = 500 from the beta-binomial distribution 
of (2.7) with n = 16, a = 2, and /3 = 4. 

The two histograms are very similar, giving credence 
to the claim that the Gibbs scheme for random variable 
generation is indeed generating variables from the mar- 
ginal distribution. 

One feature brought out by Example -1 is that the 
Gibbs sampler is really not needed in any bivariate 
situation where the joint distribution f(x, y) can be 
calculated, since f(x) = f(x, y)If(y I x). However, as 
the next example shows, Gibbs sampling may be indis- 
pensable in situations wheref(x, y),f(x), orf(y) cannot 
be calculated. 

Example 2. Suppose X and Y have conditional dis- 
tributions that are exponential distributions restricted 
to the interval (0, B), that is, 

f(x y) oc ye Yx, 0 < x < B < oo (2.8a) 

f(y x) oxxex-Y, 0< y < B < oo, (2.8b) 

where B is a known positive constant. The restriction 
to the interval (0, B) ensures that the marginal f(x) 
exists. Although the form of this marginal is not easily 
calculable, by applying the Gibbs sampler to the con- 
ditionals in (2.8) any characteristic of f(x) can be ob- 
tained. 

70 
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Figure 1. Comparison of Two Histograms of Samples of Size 
m = 500 From the Beta-Binomial Distribution With n = 16, a = 2, 
and ,8 = 4. The black histogram sample was obtained using Gibbs 
sampling with k = 10. The white histogram sample was generated 
directly from the beta-binomial distribution. 
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In Figure 2 we display a histogram of a sample of 
size m = 500 from f(x) obtained by using the final 
values from Gibbs sequences of length k = 15. 

In Section 4 we see that if B is not finite, then the 
densities in (2.8) are not a valid pair of conditional 
densities in the sense that there is no joint density 
f(x, y) to which they correspond, and the Gibbs se- 
quence fails to converge. 

Gibbs sampling can be used to estimate the density 
itself by averaging the final conditional densities from 
each Gibbs sequence. From (2.3), just as the values 
Xk = x4 yield a realization of X1, , -X f(x), the 
values Yk = yk yield a realization of Y1, Y Y, - 
f(y). Moreover, the average of the conditional densities 
f(x I Yk = yk) will be a close approximation to f(x), 
and we can estimate f(x) with 

I 1 m29 
f(x) =-E f(x I yi), (2.9) 

where Yl, , ym is the sequence of realized values of 
final Y observations from each Gibbs sequence. The 
theory behind the calculation in (2.9) is that the ex- 
pected value of the conditional density is 

E[f(x I Y)] = ff(x I y)f(y) dy = f(x), (2.10) 

a calculation mimicked by (2.9), since Yi, , ym ap- 
proximate a sample from f(y). For the densities in (2.8), 
this estimate of f(x) is shown in Figure 2. 

Example 1 (continued): The density estimate meth- 
odology of (2.9) can also be used in discrete distribu- 
tions, which we illustrate for the beta-binomial of Ex- 
ample 1. Using the observations generated to construct 
Figure 1, we can, analogous to (2.9), estimate the mar- 
ginal probabilities of X using 

m1 m 
P(X = x) = - E P(X = x I Y, = yi). (2.11) m i=1 

0 

04 

6 

0 

00 
0 

0 

(0 

0 
0 

6 0.4 0.8 1.2 1.6 2.0 2.4 

Figure 2. Histogram for x of a Sample of Size m = 500 From 
the Pair of Conditional Distributions in (2.8), With B = 5, Obtained 
Using Gibbs Sampling With k = 15 Along With an Estimate of the 
Marginal Density Obtained From Equation (2.9) (solid line). The 
dashed line is the true marginal density, as explained in Section 
4.1. 
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Figure 3. Comparison of Two Probability Histograms of the Beta- 
Binomial Distribution With n = 16, ct = 2, and f3 = 4. The black 
histogram represents estimates of the marginal distribution of X 
using Equation (2.11), based on a sample of Size m = 500 from 
the pair of conditional distributions in (2.6). The Gibbs sequence 
had length k = 10. The white histogram represents the exact beta- 
binomial probabilities. 

Figure 3 displays these probability estimates overlayed 
with the exact beta-binomial probabilities for compar- 
ison. 

The density estimates (2.9) and (2.11) illustrate an 
important aspect of using the Gibbs sampler to evaluate 
characteristics of f(x). The quantities f(x I Yl), 
f(x I ym), calculated using the simulated values Yl, 

y y,m carry more information about f(x) than x1, . 

xm alone, and will yield better estimates. For example, 
an estimate of the mean of f(x) is (1/m) IT 1 xi, but a 
better estimate is (1/m) ET l E(X I yi), as long as these 
conditional expectations are obtainable. The intuition 
behind this feature is the Rao-Blackwell theorem (il- 
lustrated by Gelfand and Smith 1990), and established 
analytically by Liu, Wong, and Kong (1991). 

3. A SIMPLE CONVERGENCE PROOF 

It is not immediately obvious that a random variable 
with distribution f(x) can be produced by the Gibbs 
sequence of (2.3) or that the sequence even converges. 
That this is so relies on the Markovian nature of the 
iterations, which we now develop in detail for the simple 
case of a 2 x 2 table with multinomial sampling. 

Suppose X and Y are each (marginally) Bernoulli 
random variables with joint distribution 

x 
0 1 

0 Pi P2 

y 

1 P3 P4 

Pi 0, Pi + P2 + P3 + P4 1, 
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or, in terms of the joint probability function, 

pfxy(0,0) fx,y(1,0)] _ [P1 P2] 
fx,y(0,1) fx,y(11)] LP3 P42 

For this distribution, the marginal distribution of x is 
given by 

fx = [fx(0) fL(1)] = [Pl + P3 P2 + P4], (3.1) 
a Bernoulli distribution with success probability P2 + 

P4. 
The conditional distributions of X I Y = y and Y I X 

= x are straightforward to calculate. For example the 
distribution of X I Y = 1 is Bernoulli with success prob- 
ability P41P3 + p4). All of the conditional probabilities 
can be expressed in two matrices, 

Pi P3 

A Pl1+P3 Pl1+P31 
-l P2 P4 

P2 + P4 P2 + P4 
and 

[ Pi P2 

Axly P + P2 Pl + P2 

P3 + P4 P3 + P4_ 

where Aylx has the conditional probabilities of Y given 
X = x, and Aylx has the conditional probabilities of X 
given Y = y. 

The iterative sampling scheme applied to this distri- 
bution yields (2.3) as a sequence of O's and l's. The 
matrices AXIY and Aylx may be thought of as transition 
matrices giving the probabilities of getting to x states 
from y states and vice versa, that is, P(X = x Y = 

y) = probability of going from state y to state x. 
If we are only interested in generating the marginal 

distribution of X, we are mainly concerned with the X' 
sequence from (2.3). To go from XO -> X1 we have to 
go through Yl, so the iteration sequence is 
XO -> Y-> X, and XO -> X1 forms a Markov chain 
with transition probability 

P(X1 = Xi I Xo = xo) = > 
P(X1 = Xi I Y1 = Y) 

y 

x P(Yi = y I XO = xo). (3.2) 

The transition probability matrix of the X' sequence, 
AXIX, is given by 

AXIX = Ay,xAxly, 

and now we can easily calculate the probability distri- 
bution of any Xk in the sequence. That is, the transition 
matrix that gives P(Xk, = Xk I XO = xo) is (Axlx)k. Fur- 
thermore, if we write 

fk = [fk(O) fk(1)] 

to denote the marginal probability distribution of Xk, 
then for any k, 

fk = fAx = (f0Ax1;')Ax1x = fk _lAXIX. (3 .3) 

It is well known (see, for example, Hoel, Port, and 

Stone 1972), that as long as all the entries of AXIX are 
positive, then (3.3) implies that for any initial proba- 
bility fo, as k -> ??, fk converges to the unique distri- 
bution f that is a stationary point of (3.3), and satisfies 

fAxlx = f. (3.4) 

Thus, if the Gibbs sequence converges, the f that 
satisfies (3.4) must be the marginal distribution of X. 
Intuitively, there is nowhere else for this iteration to 
go; in the long run we will get X's in the proportion 
dictated by the marginal distribution. However, it is 
straightforward to check that (3.4) is satisfied by fx of 
(3.1), that is, 

fxAxlx = fxAYIXAXIY = fx 

As k -> oo, the distribution of Xk gets closer to fx, so if 
we stop the iteration scheme (2.3) at a large enough 
value of k, we can assume that the distribution of Xk 
is approximately fx. Moreover, the larger the value of 
k, the better the approximation. This topic is discussed 
further in Section 5. 

The algebra for the 2 x 2 case immediately works 
for any n X m joint distribution of X's and Y's. We 
can analogously define the n X n transition matrix 
AXIX whose stationary distribution will be the marginal 
distribution of X. If either (or both) of X and Y are 
continuous, then the finite dimensional arguments will 
not work. However, with suitable assumptions, all of 
the theory still goes through, so the Gibbs sampler still 
produces a sample from the marginal distribution of X. 
Equation (3.2) would now represent the conditional 
density of X1 given X0, and could be written 

fxilxb(xl I xo) = f fX&1yj(x1 I y)fYi1XJ(Y I xo) dy. 

(Sometimes it is helpful to use subscripts to denote the 
density.) Then, step by step, we could write the con- 
ditional densities of X21X6, X3IX6, X4|X6, * * . Similar to 
the k-step transition matrix (Axlx)k, we derive an "in- 
finite transition matrix" with entries that satisfy the 
relationship 

fxkixA(x Ixo) = fXklXk_c(X I t)fxk-Ix0(t I xo) dt, (3.5) 

which is the continuous version of (3.3). The density 
fx-klxkl represents a one-step transition, and the other 
two densities play the role of fk and fk- 1. As k -> oo, it 
again follows that the stationary point of (3.5) is the 
marginal density of X, the density to which fxklxk, con- 
verges. 

4. CONDITIONALS DETERMINE MARGINALS 

Gibbs sampling can be thought of as a practical im- 
plementation of the fact that knowledge of the condi- 
tional distributions is sufficient to determine a joint 
distribution (if it exists!). In the bivariate case, the de- 
rivation of the marginal from the conditionals is fairly 
straightforward. Complexities in the multivariate case, 
however, make these connections more obscure. We 
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begin with some illustrations in the bivariate case and 
then investigate higher dimensional cases. 

4.1 The Bivariate Case 

Suppose that, for two random variables X and Y, we 
know the conditional densities fxly(x I y) and 

fylx(y I x). We can determine the marginal density of 
X, fx(x), and hence the joint density of X and Y, through 
the following argument. By definition, 

fx(x) = fxy(x, y) dy, 

where fxy(x, y) is the (unknown) joint density. Now 
using the fact that fxy(x, y) = fxly(x I y)fy(y), we have 

fx(x) = f fxly(x I y)fy(y) dy, 

and if we similarly substitute for fy(y), we have 

fx(x) = f fxly(x I y) f fyix(y | t)fx(t) dt dy 

= f [f fxly(x I y Ix(y t) dylfx(t) dt 

= f h(x, t)fx(t) dt, (4.1) 

where h(x, t) = [f fxly(x I y)fyIx(y I t) dy]. Equation 
(4.1) defines a fixed point integral equation for which 

fx(x) is a solution. The fact that it is a unique solution 
is explained by Gelfand and Smith (1990). 

Equation (4.1) is the limiting form of the Gibbs it- 
eration scheme, illustrating how sampling from condi- 
tionals produces a marginal distribution. As k -- oo in 
(3.5), 

fX|IXJ(X I xo) -- fx(x) 

and 

fxkixi_1 (x I t) --h (x, t), (4.2) 

and thus (4.1) is the limiting form of (3.5). 
Although the joint distribution of X and Y determines 

all of the conditionals and marginals, it is not always 
the case that a set of proper conditional distributions 
will determine a proper marginal distribution (and hence 
a proper joint distribution). The next example shows 
this. 

Example 2 (continued): Suppose that B =oo in (2.8), 
so that X and Y have the conditional densities 

f(x l y) = ye Yx, O < x < o? (4.3a) 

f(yI x) = xex-Yx, 0 <y <0 (4.3b) 

Applying (4.1), the marginal distribution of X is the 
solution to 

fx(x) = [I ye-Yxte-Y dyjfx(t) dt 

= I[(x + t)21fx(t) dt. (4.4) 

Substituting fx(t) = lit into (4.4) yields 

1 1 X [ t) 2 dt 

solving (4.4). Although this is a solution, llx is not a 
density function. When the Gibbs sampler is applied to 
the conditional densities in (4.3), convergence breaks 
down. It does not give an approximation to llx, in fact, 
we do not get a sample of random variables from a 
marginal distribution. A histogram of such random vari- 
ables is given in Figure 4, which vaguely mimics a graph 
of f(x) = 1/x. 

It was pointed out by Trevor Sweeting (personal com- 
munication) that Equation (4.1) can be solved-using the 
truncated exponential densities in (2.8). Evaluating the 
constant in the conditional densities gives f(xly) = 
ye-Yxl(l - e-BY), 0 < x < B, with a similar expression 
for f(ylx). Substituting these functions into (4.1) yields 
the solution f(x) oc (1 - e - Bx)lx. This density (properly 
normalized) is the dashed line in Figure 2. 

The Gibbs sampler fails when B = o? above because 
f fx(x)dx = 00, and there is no convergence as described 
in (4.2). In a sense, we can say that a sufficient condition 
for the convergence in (4.2) to occur is that fx(x) is a 
proper density, that is f fx(x)dx < oo. One way to guar- 
antee this is to restrict the conditional densities to lie 
in a compact interval, as was done in (2.8). General 
convergence conditions needed for the Gibbs sampler 
(and other algorithms) are explored in detail by Scher- 
vish and Carlin (1990), and rates of convergence are 
also discussed by Roberts and Polson (1990). 

4.2 More Than Two Variables 

As the number of variables in a problem increase, 
the relationship between conditionals, marginals, and 
joint distributions becomes more complex. For exam- 
ple, the relationship conditional x marginal = joint 
does not hold for all of the conditionals and marginals. 
This means that there are many ways to set up a fixed- 
point equation like (4.1), and it is possible to use dif- 
ferent sets of conditional distributions to calculate the 

a 

0 

(0 

4 8 1 2 1 6 20 24 

Figure 4. Histogram of a Sample of Size m = 500 From the Pair 
of Conditional Distributions in (4.3), Obtained Using Gibbs Sampling 
With k = 10. 
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marginal of interest. Such methodologies are part of 
the general techniques of substitution sampling (see 
Gelfand and Smith 1990, for an explanation). Here we 
merely illustrate two versions of this technique. 

In the case of two variables, all substitution sampling 
algorithms are the same. The three variable case, how- 
ever, is sufficiently complex to illustrate the differences 
between algorithms, yet sufficiently simple to allow us 
to write things out in detail. Generalizing to cases of 
more than three variables is reasonably straightforward. 

Suppose we would like to calculate the marginal dis- 
tribution fx(x) in a problem with random variables X, 
Y, and Z. A fixed-point integral equation like (4.1) can 
be derived if we consider the pair (Y, Z) as a single 
random variable. We have 

fx(x) = fffx1yz(xIY,z)fYz1x(Y,zIt)dydzlfx(t)dt, (4.5) 

analogous to (4.1). Cycling between fxlyz and fyzlx would 
again result in a sequence of random variables con- 
verging in distribution to fx(x). This is the idea behind 
the Data Augmentation Algorithm of Tanner and Wong 
(1987). By sampling iteratively from fxlyz and fyzlx, 
they show how to obtain successively better approxi- 
mations to fx(x). 

In contrast, the Gibbs sampler would sample itera- 
tively from fxlyz, ftyxz, and fzlxy. That is, the jth it- 
eration would be 

X, ~f(x I Yi- yi,, Z, = Z,' 

Y,'+ f(y I =xix'Z, =z1') 

Z>+1 ~'f(z I Xi' =x,, Y?+i = Y;,+1) (4.6) 

The iteration scheme of (4.6) produces a Gibbs se- 
quence 

YO', Z', XO', Yl, Z', X1', Y2, Z', X2, . ,(4-7) 

with the property that, for large k, Xk= x, is effec- 
tively a sample point from f(x). Although it is not im- 
mediately evident, the iteration in (4.6) will also solve 
the fixed-point equation (4.5). In fact, a defining char- 
acteristic of the Gibbs sampler is that it always uses the 
full set of univariate conditionals to define the iteration. 
Besag (1974) established that this set is sufficient to 
determine the joint (and any marginal) distribution, and 
hence can be used to solve (4.5). 

As an example of a three-variable Gibbs problem, 
we look at a generalization of the distribution examined 
in Example 1. 

Example 3. In the distribution (2.5), we now let n 
be the realization of a Poisson random variable with 
mean A, yielding the joint distribution 

f(x, y, n) o ( X+a-10 - V)nx+13- e- A 

x ,1 ., ,O<y<1 n =1, 2,... (4.8) 

Again, suppose we are interested in the marginal dis- 
tribution of X. Unlike Example 1, here we cannot cal- 
culate the marginal distribution of X in closed form. 

However, from (4.8) it is reasonably straightforward to 
calculate the three conditional densities. Suppressing 
dependence on A, a, and f3, 

f(x y, n) is binomial (n, y) 

f(y x, n) is beta (x + a, n - x + 13) 

f(n I x, y) oc e-(l)A [(1 - y 
.v 

n = x,x + 1, . (4.9) 

If we now apply the iterative scheme (4.6) to the dis- 
tributions in (4.9), we can generate a sequence X1, X2, 
. . ., Xm from f(x) and use this sequence to estimate 
the desired characteristic. The density estimate of 
P(X = x), using Equation (2.11) can also be con- 
structed. This is done and is given in Figure 5. This 
figure can be compared to Figure 3, but here there is 
a longer right tail from the Poisson variability. 

The model (4.9) can have practical applications. For 
example, conditional on n and y, let x represent the 
number of successful hatchings from n insect eggs, where 
each egg has success probability y. Both n and y fluc- 
tuate across insects, which is modeled in their respective 
distributions, and the resulting marginal distribution of 
X is a typical number of successful hatchings among all 
insects. 

5. EXTRACTING INFORMATION FROM 
GIBBS SEQUENCE 

Some of the more important issues in Gibbs sampling 
surround the implementation and comparison of the 
various approaches to extracting information from the 
Gibbs sequence in (2.3). These issues are currently a 
topic of much debate and research. 

5.1 Detecting Convergence 

As illustrated in Section 3, the Gibbs sampler gen- 
erates a Markov chain of random variables which con- 
verge to the distribution of interest f(x). Many of the 

0 

0 

0 

(0 
0 

? 2 6 10 1 4 1 8 

Figure 5. Estimates of Probabilities of the Marginal Distribution 
of X Using Equation (2. 11), Based on a Sample of Size m = 500 
From the Three Conditional Distributions in (4.9) With A = 16, ae 

2, and:1 = 4. The Gibbs sequences had length k =10. 
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popular approaches to extracting information from the 
Gibbs sequence exploit this property by selecting some 
large value for k, and then treating any X, for j -k as 
a sample from f(x). The problem then becomes that of 
choosing the appropriate value of k. 

A general strategy for choosing such k is to monitor 
the convergence of some aspect of the Gibbs sequence. 
For example, Gelfand and Smith (1990) and Gelfand, 
Hills, Racine-Poor, and Smith (1990) suggest monitor- 
ing density estimates from m independent Gibbs se- 
quences, and choosing k to be the first point at which 
these densities appear to be the same under a "felt-tip 
pen test." Tanner (1991) suggests monitoring a se- 
quence of weights that measure the discrepancy be- 
tween the sampled and the desired distribution. Gew- 
eke (in press) suggests monitoring based on time series 
considerations. Unfortunately, such monitoring ap- 
proaches are not foolproof, illustrated by Gelman and 
Rubin (1991). An alternative may be to choose k based 
on theoretical considerations, as in Raftery and Ban- 
field (1990). M.T. Wells (personal communication) has 
suggested a connection between selecting k and the 
cooling parameter in simulated annealing. 

5.2 Approaches to Sampling the Gibbs Sequence 

A natural alternative to sampling the kth or final 
value from many independent repetitions of the Gibbs 
sequence, as we did in Section 2, is to generate one 
long Gibbs sequence and then extract every rth obser- 
vation (see Geyer, in press). For r large enough, this 
would also yield an approximate iid sample from f(x). 
An advantage of this approach is that it lessens the 
dependence on initial values. A potential disadvantage 
is that the Gibbs sequence may stay in a small subset 
of the sample space for a long time (see Gelman and 
Rubin 1991). 

For large, computationally expensive problems, a less 
wasteful approach to exploiting the Gibbs sequence is 
to use all realizations of Xj' for j < k, as in George and 
McCulloch (1991). Although the resulting data will be 
dependent, it will still be the case that the empirical 
distribution of X, converges to f(x). Note that from this 
point of view one can see that the "efficiency of the 
Gibbs sampler" is determined by the rate of this con- 
vergence. Intuitively, this convergence rate will be fast- 
est when X, moves rapidly through the sample space, 
a characteristic that may be thought of as mixing. Varia- 
tions on these and other approaches to exploiting the 
Gibbs sequence have been suggested by Gelman and 
Rubin (1991), Geyer (in press), Muller (1991), Ritter 
and Tanner (1990), and Tierney (1991). 

6. DISCUSSION 

Both the Gibbs sampler and the Data Augmentation 
Algorithm have found widespread use in practical prob- 
lems and can be used by either the Bayesian or classical 
statisticianl. For the Bayesian, the Gibbs sampler is mainly 
used to generate posterior distributions, whereas for 
the classical statistician a major use is for calculation of 

the likelihood function and characteristics of likelihood 
estimators. 

Although the theory behind Gibbs sampling is taken 
from Markov chain theory, there is also a connection 
to "incomplete data" theory, such as that which forms 
the basis of the EM algorithm. Indeed, both Gibbs 
sampling and the EM algorithm seem to share common 
underlying structure. The recent book by Tanner (1991) 
provides explanations of all these algorithms and gives 
many illustrative examples. 

The usefulness of the Gibbs sampler increases greatly 
as the dimension of a problem increases. This is because 
the Gibbs sampler allows us to avoid calculating inte- 
grals like (2.1), which can be prohibitively difficult in 
high dimensions. Moreover, calculations of the high 
dimensional integral can be replaced by a series of one- 
dimensional random variable generations, as in (4.6). 
Such generations can in many cases be accomplished 
efficiently (see Devroye 1986; Gilks and Wild 1992; 
Ripley 1987). 

The ultimate value of the Gibbs sampler lies in its 
practical potential. Now that the groundwork has been 
laid in the pioneering papers of Geman and Geman 
(1984), Tanner and Wong (1987), and Gelfand and Smith 
(1990), research using the Gibbs sampler is exploding. 
A partial (and incomplete) list includes applications to 
generalized linear models [Dellaportas and Smith (1990), 
who implement the Gilks and Wild methodology, and 
Zeger and Rizaul Karim (1991)]; to mixture models 
(Diebolt and Robert 1990; Robert 1990; to evaluating 
computing algorithms (Eddy and Schervish 1990); to 
general normal data models (Gelfand, Hill, -and Lee 
1992); to DNA sequence modeling (Churchill and 
Casella 1991; Geyer and Thompson, in press); to ap- 
plications in HIV modeling (Lange, Carlin, and Gel- 
fand 1990); to outlier problems (Verdinelli and Was- 
serman 1990); to logistic regression (Albert and Chib 
1991); to supermarket scanner data modeling (Blattberg 
and George 1991); to constrained parameter estimation 
(Gelfand et al. 1992); and to capture-recapture mod- 
eling (George and Robert 1991). 

[Received December 1990. Revised September 1991.] 
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