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Handout on Sampling with Conjugate Posteriors

The general source of conjugate priors is the (natural, canonical) expo-
nential family structure often assumed for data. Suppose that a data-vector
X (possibly but ot necessarily an iid sample of consituent data-vectors)
follows a density of the form

fX(x|ϑ) = h(x) exp
( k∑
j=1

Tj(x)ϑj − A(ϑ)
)

where the data may fall anywhere that the density factor is positive (a
data-value region not depending on the parameter ϑ), and where the
parameter space Θ is an open subset of the natural parameter space
{ϑ :

∫
h(x) exp(

∑k
j=1 Tj(x)ϑj) dx < ∞}. Then a family of conjugate

priors for this family of data densities is given by

π(ϑ; τ, α) = k(ϑ) exp(ϑ′τ − αA(ϑ))

where τ is a parameter vector of the same dimension as ϑ, and the
word ‘conjugate’ means that for all observed-data vectors X, the posterior
fϑ|X(ϑ|X) is a member of the same density family as π. The conjugate
property is verified immediately by observing that, as functions of ϑ,

fϑ |X(ϑ |x) ∝ fϑ,X(ϑ, x) ∝ k(ϑ) exp
(
ϑ′ {τ + T (x)} − (α+ 1)A(ϑ)

)
so that the posterior density (normalized to integrate to 1 with respect
to ϑ for each fixed x vector) belongs to the same family π(·) , with the
parameters (τ, α) replaced by (τ + T (X), α+ 1).

Important examples of conjugate-prior families created in this way are:

(1). Normal(µ, σ). Here the natural parameters are ϑ = (ν, ρ) ≡=
(µ/σ2, 1/σ2), and the conjugate-prior family is

π(ϑ) = ρa/2−1 e−bρ/2 dnorm(ν, µ0, σ
2
0)

(2). Binomial(n, p). Here the natural parameter is ϑ = log( p
1−p), and

the conjugate prior family is Beta(a, b).

(3). Poisson(λ). The natural parameter is ϑ = log(λ), and the conju-
gate prior family is Gamma(a, b).

1



(4). Gamma(α, λ). The natural parameter is ϑ = (α, λ), and the
conjugate prior has a Gamma(a,b) form if α is fixed and known, but more
generally is of the 3-parameter form

π(ϑ) = k(ϑ) eaα− b λ− c(log Γ(α)−α ln(λ))

These facts are proved and elaborated by computing the parameters of
posterior densities from data, as follows:

(1.) If Yi ∼ N (µ, σ2) for i = 1, . . . , n are iid given ϑ = (ν, ρ) =
(µ/σ2, 1/σ2), then the prior density π(·) treating ρ ∼ Γ(α/2, λ/2) and
ν ∼ N (µ0, σ

2
0) as independent, leads after some algebra to the posterior

density fϑ|Y(ν, ρ |Y)

= C ρ(n+α)/2−1 exp
(
− ρ

2
(λ+

n∑
i=1

Y 2
i ) +

1

2
(nȲ +

µ0

σ2
0

)2/(n/ρ+ 1/σ2
0)

− 1

2
(n/ρ + 1/σ2

0) (ν − nȲ + µ0/σ
2
0

n/ρ+ 1/σ2
0

)2
)

There is an important limiting case of this prior-posterior conjugate family,
corresponding to the fully noninformative (improper) prior with σ2

0 →∞.
In this case, it is easy to check that the (limiting) posterior makes ρ ∼
Γ( 1

2 (n+ α + 1), 1
2 (λ + (n− 1)S2

Y )) and then, given Y, ρ, conditionally
ν ∼ N ( ρ Ȳ , ρ/n).

(2.) Based on Y ∼ Binom(n, p) conditionally given p, with p ∼
Beta(a, b), it is easily checked that the posterior density is

fp|Y (p|Y ) ∼ Beta(a+ Y, b+ n− Y )

(3.) Based on Y ∼ Poisson(nλ) conditionally given λ, with, λ ∼
Γ(a, b), it is easily checked that the posterior density is

fλ|Y (λ|Y ) ∼ Γ(a+ Y, b+ n)

(4.) Finally, based on a sample Yi, 1 ≤ i ≤ n, of iid Gamma(α, λ) vari-
ates conditionally given (α, λ), where π(α, λ) = C(a, b, c) exp(aα− bλ+
c(α ln(λ)− ln Γ(α))), we find the posterior to have the same form with the
parameters (a, b, c) replaced by (a+

∑n
i=1 lnYi, b+ nȲ , c+ n).
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One might hope that these conjugate prior relationships would lead to
tractable posterior densities for linear and generalized-linear regression mod-
els involving the distributional families just discussed, but this hope is only
partially realized.

First, and most satisfactorily, consider the normal example, with k-vector
predictors Xi fixed (with first components 1, in the usual case where
the regression relationship includes an intercept term) for i = 1, . . . , n.
Then assume, conditionally given a p-vector parameter β of regression
coefficients and a variance parameter σ2, that independent scalar responses
are observed, distributed as Yi ∼ N (β′Xi, σ

2). Again take ρ = 1/σ2, and
now define a p-vector transformed parameter by ν = β/σ2. Let the prior
density of ρ, ν make these parameter components independent, with

ρ ∼ Γ(
a

2
,
λ

2
) , ν ∼ NMVN (µ

0
, Σ0)

Then algebra of the same sort required to compute example (1) above, leads
to a closed form posterior density. The general formula for the posterior is:

ρ(n+a−2)/2 exp(
(
− ρ

2
(λ+

n∑
i=1

Y 2
i )
)
· |det(ρ−1

∑
i

X⊗2
i + Σ−1

0 )|−1/2

· exp
( 1

2
(
n∑
i=1

YiXi + Σ−1
0 µ

0
)′(ρ−1

∑
i

X⊗2
i + Σ−1

0 )−1 (
n∑
i=1

YiXi + Σ−1
0 µ

0
)

· NMVN

(
ν , (ρ−1

∑
i

X⊗2
i + Σ−1

0 )−1 (
n∑
i=1

YiXi + Σ−1
0 µ

0
) , (ρ−1

∑
i

X⊗2
i + Σ−1

0 )−1
)

In the noninformative-prior limit, Σ0 →∞ (in the sense that the minimum
eigenvalue converges to +∞), it is readily checked that the posterior density
makes ρ given (Y1, . . . , Yn) distributed as Γ( 1

2 (n+a+ p), 1
2 (λ+RSS) ),

where p is the dimension of the predictors Xi and coefficient vector β,
and where RSS =

∑n
i=1 (Yi −X ′iβ̂)2, with β̂ the least-squares coefficient

estimator based on (Yi, Xi, i = 1, . . . , n). Finally, given the data {Yi}ni=1

and parameter ρ, the posterior conditional density of ν = βρ is found to
be NMVN ( ρ β̂, ρ (XtrX)−1 ), where X is the n × p design matrix with
i’th row Xi, where we have use the fact that XtrX =

∑
i X
⊗2
i .

In the other examples (2)–(4), one might want respectively to take
log(p/(1 − p)), log(λ), and − log(λ), for the i’th observed data value,
to have a regression form β′Xi with fixed explanatory predictor variables
Xi. However, there is no choice of prior density for β in these examples
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that gives the resulting parameters p, λ their conjugate prior-posterior
form described above. For example in (2), the logistic regression model
log(p/(1 − p)) = β′Xi with β ∼ N (µ

0
, diag(σ2

0)) leads to fairly in-
tractable posterior distributions. This does not mean they cannot be used,
only that closed form integrations to calculate posteriors are impossible to
do with reasonable accuracy and speed.

Concluding Steps on Posterior Predictive Sampling

We provide now the computing formulas for posterior and posterior pre-
dictive sampling in our normal-regression example. Here the parameters are
ρ = 1/σ2, ν = β/σ2 = ρβ. The formulas given on the previous page imply
first that (in terms of the n× p design matrix X and n× 1 data vector
Y)

fρ|Y(ρ|Y) = C ρ(n+a−2)/2 exp
(
− ρ

2
(λ+‖Y‖2)

)
· |det(ρ−1 XtrX+ Σ−1

0 )|−1/2

· exp
( 1

2
(XtrY + Σ−1

0 µ
0
)′(ρ−1XtrX + Σ−1

0 )−1 (XtrY + Σ−1
0 µ

0
)
)

where C is determined by the requirement that this density integrate to 1
over ρ ∈ (0,∞). Next, conditionally given ρ,Y, the posterior distribution
for β = ν/ρ is

β ∼ NMVN

(
(XtrX+ ρΣ−1

0 )−1 (XtrY + Σ−1
0 µ

0
) , ρ−2(ρ−1XtrX+ Σ−1

0 )−1
)

For any fixed p-vector x0, this allows us for example to conclude

β′x0 ∼ NMVN

(
x′0 (XtrX+ ρΣ−1

0 )−1 (XtrY + Σ−1
0 µ

0
) , x′0(ρXtrX+ ρ2Σ−1

0 )−1 x0

)
In any case, conditionally given σ2 = 1/ρ, β = ρν, and Y, a new
posterior predictive dataset Y∗ of observations Y ∗i for 1 ≤ i ≤ n
would consist of independent observations depending only on β, σ2 through
Y ∗i ∼ N (β′Xi, σ

2).

To accomplish posterior simulations, the only slightly tricky step is there-
fore to calculate and invert the conditional distribution function of ρ given
Y by calculating and inverting numerically

Fρ|Y(ρ |Y) =

∫ ρ

r=0
fρ|Y(r |Y) dr

All of these steps are implemented in the log PredSamp.LR.
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