
Statistical Computing with R

Eric Slud, Math. Dept., UMCP

October 21, 2009

Overview of Course

This course was originally developed jointly with Benjamin Kedem and
Paul Smith. It consists of modules as indicated on the Course Syllabus.
These fall roughly into three main headings:

(A). R (& SAS) language elements and functionality, including computer-
science ideas;

(B). Numerical analysis ideas and implementation of statistical algorithms,
primarily in R; and

(C). Data analysis and statistical applications of (A)-(B).

The object of the course is to reach a point where students have some
facility in generating statistically meaningful models and outputs. Wher-
ever possible, the use of R and numerical-analysis concepts is illustrated in
the context of analysis of real or simulated data. The assigned homework
problems will have the same flavor.

The course formerly introduced Splus, where now we emphasize the use
of R. The syntax is very much the same for the two packages, but R costs
nothing and by now has much greater capabilities. Also, in past terms SAS
has been introduced primarily in the context of linear and generalized-linear
models, to contrast its treatment of those models with the treatment in
R. Students in this course have often had a separate and more detailed
introduction to SAS in some other course, so in the present term we will

not present details about SAS, in order to leave time for interesting data-
analytic topics such as Markov Chain Monte Carlo (MCMC) and multi-level
modeling in R.

Various public datasets will be made available for illustration, homework
problems and data analysis projects, as indicated on the course web-page.

The contents of these notes, not all of which are posted currently, and
which will be augmented as the term progresses, are:

1. Introduction to R

Unix and R preliminaries, R language basics, inputting data, lists and
data-frames, factors, functions.

2. Random Number Generation & Simulation

Pseudo-random number generators, shuffling, goodness of fit testing.

3. Graphics

4. Simulation Speedup Methods

5. Numerical Maximization & Root-finding

(respectively for log-likelihoods and estimating equations)

6. Commands for Subsetting

Manipulating Arrays and Data Frames

7. Spline Smoothing Methods

8. EM Algorithm

9. The Bootstrap Idea

10. Markov Chain Monte Carlo

Metropolis and Gibbs Sampling Algorithms
Convergence Diagnostics for MCMC
Bayesian Data Analysis applications using WinBugs

11. Multi-level Model Data Analysis

Linear and Generalized Linear Model Fitting and Interpretation

A few Exercises are contained in these notes, but all formal Homework as-
signments are posted separately in the course web-page Homework directory.

2

3 Introductory Graphics

We discussed in class the commands plot, points, lines, legend, along with
the graphical parameters type (= ”p” points, ”n” none, ”l” lines, ”b” both),
xlab, ylab, main, xlim, ylim, pch, lty. These and lots more can be studied
by invoking the help window on “par” once the R help is started.

An extended example, for you to repeat and study, is given in the Rlogs
directory of the course web-page

http://www.math.umd.edu/∼evs/s705/Rlogs

as Rlog2.txt.

4 Simulation Speed-up Methods

We have already discussed the mechanics of (Uniform) pseudo-random num-
ber generation. Most interesting applications of Simulation or the ‘Monte
Carlo Method’ in applied probability and statistics concern evaluation of
expectations of combinations of random variables and stochastic-process tra-
jectories

E (f((Z(t), t > 0), Y1, Y2, . . .)) (1)

which are (much) too complicated to evaluate or approximate analytically.
The function f will often be an indicator for occurrence of a particular
event within a single realization of a data structure. In useful statistical and
probabilistic simulations, there is usually need to simulate complicated data
structures or large batches with a view to tabulating relative frequencies of
occurrence, sometimes of relatively rare events such as those associated with
type I and type II errors in statistical hypothesis tests. This can be slow,
not only because of the need for looping in R, but because of complicated
dependencies among data or nontrivial analyses for each simulated batch of
data.

There are several well-recognized methods for speeding up generation of
random data, especially with respect to specific purposes involving uncom-
mon events. Two good general references (the first of which is much longer
and more detailed, and the second of which will serve us later as a reference

45

for more elaborate Monte Carlo methods) are:

Devroye, L., Non-Uniform Random Variate Generation.
Springer, 1986.

Robert, C. & Casella, G. , Monte-Carlo Statistical Methods.
Springer, 1999.

There are also many texts on ‘Discrete-Event Simulation’, concerning the
methodology of designing and programming (in some high-level languages
especially suited to the purpose) simulations which arise in queueing, inven-
tory, finance, and operations research generally. One major author who has
written several well-regarded texts is George Fishman. Our resident expert
on this at UMCP is Dr. Michael Fu of BMGT.

We concentrate our attention on defining and giving brief examples of
three general simulation speed-up methods:

(1). Rejection Methods

(2). Control-Variate Methods

(3). Importance-sampling Methods

Of these methods, the first and third involve directly simulating something
different from data with the desired behavior: we simulate something easier,
and then discard or modify certain cases systematically, using a theoretical
idea to justify that the expectation in formula (1) is obtained from what is
actually simulated. The second method is a pure variance-reducer: it is essen-
tially a regression of a difficult-to-obtain quantity (the integrand in Equation
(1)) on one or several related quantities whose corresponding expectations are
known from some other (typically theoretical) considerations.

4.1 Rejection Methods

An example of this method — generation of Normal deviates from Cacuhy
— has already been covered in class. Here we give an abstract description.
Suppose that we know how to generate a random vector W from a specified
probability density g and that we define a modified variable Y as being

46

equal to W when the latter falls in a pre-specified region D (discarding or
‘rejecting’ any simulated values W 6∈ D. Then it is easy to calculate that
the density of Y is

P (Y ∈ (y, y + dy)) = P (W ∈ (y, y + dy)) ID(y)
/ ∫

D
fW (w) dw

or
fY (y) = fW (y) ID(y)

/ ∫
D

fW (w) dw

The case considered in class is where W = (X, U), with X an easily
generated type of random variable and U an independent Uniform[0,1], and
where D = {(x, u) : 0 ≤ u ≤ c f(x)/fX(x) } for an arbitrary positive
constant c . Here the desired density to simulate is f(x), and to make the
method work it must be assumed known that for all x, c f(x) ≤ fX(x). It
is then easy to check [Devroye 1986, pp. 40-42] that the first component of
Y defined as above has density f .

As another particular example, suppose it is desired to simulate a set of
ten random variables Z1, . . . , Z10 which behave like independent standard-
normals subject to the condition that

max
k

Zk − min
k

Zk ≥ 3 |Z|

This is not a particularly natural condition to impose; but because it is not
an improbable, there is no doubt that the most efficient way to simulate it re-
peatedly is to generate batches rnorm(10) of standard-normal independent
variates and to keep only those batches which satisfy the condition.

4.2 Control Variates

In general, we seek in Monte-Carlo studies to approximate E(Z), where
Z = f(X) is a random variable which may summarize some complicated
statistical experiment. Suppose there is a variable Y defined from the same
experiment which is closely related to (i.e., highly correlated with) Z and
for which we happen either to know E(Y) = m, or to be able to find it
with much less effort than we could hope to use in simulating E(Z) directly.
Then the method is to simulate pairs (Yi, Zi), i = 1, . . . , N and from these
‘data’ we ‘fit’ the linear regression model

Zi = a + b(Yi −m) + ei , E(ei) = E(eiYi) = 0

47

via least-squares, recalling that a = E(Z) is what we are after. Once we
have assumed that Yi has the exactly known expectation m, this is an
‘orthogonal regression design’ in the sense that the design column consisting
of all 1’s is uncorrelated with (and therefore in large samples approximately
orthogonal to) the design column (Yi −m, i = 1, . . . , N). From well known
results of linear regression theory, the variance of â conditionally given
(Yi −m, i = 1, . . . , N) (and therefore also unconditionally) is

1

N
Var(e1) =

1

N

(
Var(Z1)−b2Var(Y1−m)

)
=

1

N
Var(Z1) (1−Corr2(Y1, Z1))

So the benefit of this approach is to decrease the width of simulation-based

confidence intervals for E(Z) by a factor
√

1− (Corr(Y, Z))2. The benefit
can sometimes be amplified by regressing on more than one control variate,
as we indicate in the next Example.

4.2.1 A Toy Clinical Trial Case-Study Example

We describe an example in which the variable Z of interest is the ‘total time
on test’ of all patients in a small clinical trial conducted as follows. Sixty
(60) patients are ‘accrued’ (i.e. brought) into the trial at times Ui which
are uniformly distributed within the first year and randomly allocated (by an
independent fair coin toss for each patient) to group Zi = 1 or 0. From the
time of their entry into the study, the individuals have lifetimes Ti which in
group 0 are Exponentially distributed with rate λ0, and which in group 1
are Exponential lifetimes with rate-parameter λ0 · e∆. At the end of each
of t = 1, 2 years a statistic is calculated, defined by

St =
TT (1, t) D(0, t) − TT (0, t) D(1, t)

(TT (0, t) + TT (1, t))2
·
√

D(1, t) + D(0, t)

where TT (z, t) denotes the total time on test in group z up to time t, and
D(z, t) denotes the total number in group z who have died by time t. Note
that in large-sample settings, S1 is approximately a normal variable (with
mean and variance which are easily calculated numerically, no matter what
∆ is), and S1 is approximately standard-normal if ∆ = 0.

This statistic St is a variant of some commonly used (weighted logrank)
test statistics commonly used in clinical trials: large positive values indicate

48

that there are fewer group-1 deaths than would have been expected if both
groups have the same survival distribution, i.e., if ∆ = 0.

Here is a decision rule for the clinical trial which allows ‘early stopping’:
stop and reject at t = 1 if S1 ≥ 2.4, otherwise continue to t = 2 and
reject if S2 > 1.7. (Accept at t = 2 if neither of these rejection conditions
holds.)

One problem of interest is: for clinical trials like this one, what is the
expected total time on test, for various choices of ∆ ? (This total time on
test is the sum over patients of the number of years each patient is in the
trial before the trial stops. It is one measure of clinical trial cost.) Although
I have approximate formulas, I do not know how to calculate this (even
asymptotically, if 60 is replaced by n going to ∞).

So our Z is taken equal to total time on test. What is a relevant set of
control variates ? A simple and natural choice is the pair of variables

TT1 = TT (0, 1) + TT (1, 1) , TT2 = TT (0, 2) + TT (1, 2)

This choice is useful because the expected time on test variables up to the
fixed times 1, 2 are easily shown to be given by simple formulas which under
the null hypothesis (after an integration by parts) become

E(TT1) = 60
∫ 1

0
(1− t)e−λ0t dt =

30

λ0

[
1 − 1− e−λ0

λ0

]

E(TT2) = 60
∫ 2

0
min(2− t, 1)e−λ0t dt = e−λ0 E(TT1) + 60

1− e−λ0

λ0

The simulation of such a clinical trial including all relevant statistics,
was implemented in an Splus function when Stat 705 was taught in 2005.
The defaults, which were used here, included λ0 = 0.7 and ∆ = 0. The
outputted data, from which we can not only calculate the desired expectation
two ways but can see the factor by which the contol-variate method reduces
variance, is as follows [where a few irrelevant entries have been deleted]:

> unlist(TrialSim(0, Nrep=1000))

Power ET VarT S1sq1 S1sq2 S2sq1 S2sq2

0.053 0.915158 0.0069185 1.2471 4.7832 1.0317 2.28242

49

TT1mean TT2mean TTvar1 TTvar2 TTvar3

0.00067195 0.00021994 0.001327 0.0016275 0.0016275

TTvar4 Et12Tim1 Et12Tim2 TimEst VarFac

0.00476656 0.0017799 0.004986 0.9148676 0.2449

The successive entries of this list were calculated empirically from the
1000 simulation-replication. Observe first that the relative frequency of over-
all (‘experimentwise’) rejection in this example is at 0.053, quite close to the
nominal 0.05. Next, the terms S1sq1 and S1sq2 are respectively the emipir-
ical mean and variance of the square of the supposedly standard-normal S1

statistic (and so should be 1, 2 respectively). With the parameter set-
tings used, S1 evidently has much fatter tails than it is supposed to. The
corresponding empirical moments for S2 do not look bad, though.

The quantity of interest to us here was the expected total time-on-test,
labelled ET , which we estimate from raw data as 0.915. The empirical
variance based on the 1000 simulation-replications was 0.0069185, so we
can interpret the quantity ET we desire as having been given within a 95%
tolerance interval

0.915 ± 1.96

√
0.00692

1000
= 0.915 ± 0.00516

The ‘control variate’ regression relationship

T = a + b1 (TT1 − E(TT1)) + b2 (TT2 − E(TT2)) + ε

had its coefficients estimated through the empirical covariances and correla-
tions given in the output-list above:(

Cov(T, TT1)
Cov(T, TT2)

)
=

(
Et12Tim1
Et12Tim2

)
= 60 ·

(
0.00178
0.00499

)
and

Var

(
TT1

TT2

)
= 602 ·

(
TTvar1 TTvar2
TTvar3 TTvar4

)
= 602 ·

(
0.0001327 0.001628
0.001628 0.04767

)
Using fitted coefficients and the observed empirical values 0.00067195 and
0.00021994 for (TT1 − E(TT1)/60 and (TT2 − E(TT2)/60, we obtain
the control-predictor estimate 0.91487 for ET . This differs from the
other estimator by very little, but the factor 0.245 (equal to 1 minus the
multiple-correlation in the regression), by which the variance is reduced over
that of the naive estimator, is substantial.

50

4.3 Importance Sampling

The idea of Importance Sampling is that, when we are simulating the occur-
rence of a rather unlikely event, we may be able to simulate instead under a
different probability law, and find the expectation of a suitable multiple of
the indicator-function of the event of interest. So if we are interested in the
occurrence of an event D with respect to a vector X of variables with a
joint density f , and if D is unlikely according to f but not according to
a simple related joint density g, then instead of

simulating X1, . . . , XN ∼ f , estimating P̂ (D) = N−1
N∑

i=1

ID(Xi)

we could

simulate Y1, . . . , YN ∼ g , and estimate P̂ (D) = N−1
N∑

j=1

f(Yj)

g(Yj)
ID(Yj)

4.3.1 Example: Power of a Test

Suppose that we plan to have a moderately large (n = 40) sample of Expo-
nential(λ0) data-values for which we want to test λ0 = 1 versus λ0 = 0.6.
The Neyman-Pearson test statistic is S = X1 + ... + X40, and we would
often use the CLT to approximate the rejection region by

{X : (S − 40)/
√

40 > 1.645 }

We want to know whether the significance level is really 0.05 for this small
a sample-size, whether the related rejection-region {(S − 40)/

√
S > 1.645}

has the same significance level, and which of the two regions has the better
power. (Normal theory suggests that this power ought to be roughly 1 −
Φ(50.40− 40 · 5/3)/

√
40 · (5/3)2 = 0.9386.)

Note that the events which we are trying to simulate have small proba-
bilities ! We will use N = 10000 and explore the gain in accuracy which
is possible by importance sampling, when we recognize that we know some-
thing about likelihood ratios in the particular problem. Note that f and

51

g respectively denote the joint densities of 40 exponential variates with
different exponential parameters λ, λ′, so

f(y, λ)

g(y, λ′)
=

(
λ

λ′

)40

exp

(
−(λ− λ′)

∑
i

yi

)

The function used to accomplish the simulation is called SmExpTst,
and it is also available in the course Splus-data directory. The first input pa-
rameter is the value λ′ used to generate simulated variates (Yi with density
g), and the second parameter is the value λ for which we want to calculate
a rejection tail-probability. (There are two further input parameters: the
size nsiz of each data-sample, with default value 40, and the number Nrep
of simulation-replications with default value 10000. A typical simulated re-
sult (in this case corresponding to the direct null-hypothesis simulation) is
as follows:

> SmExpTst(1,1)[1:2]

[1] 0.05890000 0.05543633

So for the direct null-hypothesis simulation, we have (for the original rejection
region) the slightly above-nominal size 0.059. The second output component
is the empirical variance of the rejection indicator (essentially p(1− p) for
p = .0589), which implies because of the large number of replications that the
confidence interval for the actual significance level does lie above the nominal
value .95.

The corresponding information for power (based on a direct simulation)
is:

> SmExpTst(0.6,0.6, Upper=F)[1:2]

[1] 9.4860e-01 4.8763e-02

The theoretical prediction of 0.95 turned out to be very accurate: the
empirical answer is around 0.948, with confidence interval tolerances around

± 1.96
√

.04876/104 ≈ ±0.004.

Now let us simulate these with the importance-sampling approach. The
simplest idea for λ′ is to use a value for which bare rejection is the most
likely occurrence, i.e., to use as rate parameter the value given by the cutoff:

52

lamsamp = nsiz/cutoff = 40/50.404 = 0.7936.

Timing does not change at all, but the accuracy changes dramatically!

> SmExpTst(0.7936, 1)[1:2]

[1] 0.0584142 0.0074292

The simulation confidence intervals for significance level now have tolerance

equal to ± 1.96 ·
√

.0074/10000 = 0.0016746, quite a bit more accurate

(a factor of about 3) than before. In particular, we now learn that the true
significance level under the null hypothesis is about 0.058. Let us check this
using the exact calculation from R:

P(gamma(40,1) > 50.40389) = 1 - pgamma(50.40389,40) = 0.05793

To see what is going on, we do two more runs, this time showing the num-
bers of nonzero cases, which is the third output-component of the function
SmExpTst:

> SmExpTst(1,1)

[1] 0.057300 0.054022 573.000000

> SmExpTst(0.7936, 1)

[1] 5.8931e-02 7.4927e-03 4.8560e+03

The point is: we had 4856 nonzero things to average in the importance-
sampling simulation, but only 573 in the naive case.

Just to round out the illustration, we note that the true power in this
example, simulated above by naive relative frequencies to be around 0.949,
is in fact 0.9491 according to the true Gamma(40, .6) distribution for the
sum-statistic S. However, a much more efficient simulation of the same
power (as can be seen by comparing the previously simulated variance of
0.0488 for the power-estimator to the one below, is:

> SmExpTst(0.7936, 0.6, Upper=F)

[1] 9.484727e-01 4.542103e-03 5.265000e+03

53

Further small comparisons show that it does not help to choose the
importance-sampling λ′ still smaller than 0.7936, even though the num-
ber of nonzero items to average goes up, because those nonzero things have
bigger variance !

Additional simulations to find the actual power of the test-statistic with
denominator

√
S could be done using a completely analogous importance-

sampling method, and we leave this as an optional exercise.

For an R log implementing many of these ideas, see Rlog.ImpSamp in the
Stat 705 Course web-page.

We described in class that for further examples of Importance Sampling
in more realistic examples involving multivariate densities, the initial density
f(x) can often be ‘exponentially tilted’ in the direction of a function h(x)
when we are interested in restricting attention to empirical averages involving
indicators I[h(x)≥C] for large C : this means choosing g(x) whenever
possible (i.e. when this form is not too difficult to simulate from) of the form

g(x) = K f(x) exp(λ h(x))

Here K is chosen as a function of λ > 0 so that g integrates to 1, and
λ is generally chosen so that

∫
h(x) g(x) dx ≈ C.

54

