
Statistical Computing with R

Eric Slud, Math. Dept., UMCP

October 21, 2009

Overview of Course

This course was originally developed jointly with Benjamin Kedem and
Paul Smith. It consists of modules as indicated on the Course Syllabus.
These fall roughly into three main headings:

(A). R (& SAS) language elements and functionality, including computer-
science ideas;

(B). Numerical analysis ideas and implementation of statistical algorithms,
primarily in R; and

(C). Data analysis and statistical applications of (A)-(B).

The object of the course is to reach a point where students have some
facility in generating statistically meaningful models and outputs. Wher-
ever possible, the use of R and numerical-analysis concepts is illustrated in
the context of analysis of real or simulated data. The assigned homework
problems will have the same flavor.

The course formerly introduced Splus, where now we emphasize the use
of R. The syntax is very much the same for the two packages, but R costs
nothing and by now has much greater capabilities. Also, in past terms SAS
has been introduced primarily in the context of linear and generalized-linear
models, to contrast its treatment of those models with the treatment in
R. Students in this course have often had a separate and more detailed
introduction to SAS in some other course, so in the present term we will

not present details about SAS, in order to leave time for interesting data-
analytic topics such as Markov Chain Monte Carlo (MCMC) and multi-level
modeling in R.

Various public datasets will be made available for illustration, homework
problems and data analysis projects, as indicated on the course web-page.

The contents of these notes, not all of which are posted currently, and
which will be augmented as the term progresses, are:

1. Introduction to R

Unix and R preliminaries, R language basics, inputting data, lists and
data-frames, factors, functions.

2. Random Number Generation & Simulation

Pseudo-random number generators, shuffling, goodness of fit testing.

3. Graphics

4. Simulation Speedup Methods

5. Numerical Maximization & Root-finding

(respectively for log-likelihoods and estimating equations)

6. Commands for Subsetting

Manipulating Arrays and Data Frames

7. Spline Smoothing Methods

8. EM Algorithm

9. The Bootstrap Idea

10. Markov Chain Monte Carlo

Metropolis and Gibbs Sampling Algorithms
Convergence Diagnostics for MCMC
Bayesian Data Analysis applications using WinBugs

11. Multi-level Model Data Analysis

Linear and Generalized Linear Model Fitting and Interpretation

A few Exercises are contained in these notes, but all formal Homework as-
signments are posted separately in the course web-page Homework directory.

2

6 Loose Ends

6.1 More Commands for Subsetting

Suppose you have a vector of observations for which you want to transform
all entries satisfying a specified condition according to a rule you specify. For
example, consider the following data on final exam grades from an under-
graduate class:

Final410 = c(75,93,71,71,50,71,57,53,74,71,100,92,74,93,95,

68,70,55,100,29,78,63,34,55)

If we want to change grades by adding 3 points to all scores below 65, then
here are four distinct ways which do not use for-loops:

> x = Final410 ; x[x<65] = x[x<65]+3;

> x = Final410 + 3*as.numeric(Final410<65)

> x = replace(Final410, Final410<65, Final410[Final410<65]+3)

> x = ifelse(Final410<65, Final410+3, Final410)

All four command-lines give the same result. I find the last one the most
attractive conceptually: ifelse is a very nice command for adjusting pieces
of vectors. Note that the third argument in the replace function above
must designate the components needed to do the replacement and must have
exactly the same length as the number of entries satisfying the condition
specified by the second argument ! (The command

> x = replace(Final410, Final410<65, Final410+3)

definitely gives a different result.)

6.2 Special Syntax for Parallelizing

Once you get used to avoiding for-loops by parallelizing, you will naturally
try to write all of your expressions so that they make sense and give compo-
nentwise correct results when applied to vectors. In a few cases, this requires

68

special syntax. For example, min(x,y) denotes the smaller of the two num-
bers x, y, but if x and y are vectors of the same length, then min(x,y) gives
the same result as min(c(x,y)), which is the smallest single entry in the
combined vector. If instead you want the vector of coordinatewise smaller
entries x[i], y[i], then the command is pmin(x,y). (Similarly for max use
instead pmax. Another example is: (x < y && x >= 3), which has the
natural Boolean interpretation if x and y are scalar, but you must use & in
place of && if you want the componentwise correct Boolean vector.

6.3 Meaning of (Smoothing) Splines

The splines which we use in speeding up interpolation and inversion of func-
tions are provided by Splus functions smooth.spline and
predict.smooth.spline. The mathematical definition of these functions
is as the solution of the following optimization problem. Suppose that data-
pairs {(xi, yi)}n

i=1 are given, with xi ∈ [a, b] and a, b known, and that a
subset K ⊂ {xi}n

i=1 and a positive constant λ are specified. The problem
is to find the continuously differentiable and piecewise twice differentiable
function s : [a, b] 7→ R to

minimize
n∑

i=1

(yi − s(xi))
2 + λ

∫ b

a
(s′′(x))2 dx

If there were no knots at all (K = ∅), then the solution is obviously the
least-squares line. More generally, it can be shown that the solution s(·)
is a piecewise cubic polynomial, which is also called a cubic spline. For
given λ the solution exhibits more smoothing and less accuracy in satisfying
s(xi) ≈ yi when the set of knots becauses smaller, and for a fixed set of
knots the solution exhibits more smoothing and less accuracy in satisfying
s(xi) ≈ yi for xi 6∈ K when λ is made larger. The size of spar parameter
to use is much larger for the function in R than it was for the older Splus
function: values of this parameter of the order of 1 (say from .2 to .6) will
be typical. This parameter is proportional to λ above in a way which is
described clearly in the online documentation to smooth.spline) when the
(xi, yi) pairs are believed to pass close to a very smooth curve. But you may
have to try a couple of cases and plot the resulting predict function to see
whether you have achieved the desired degree of visual smoothness.

69

Here is a little demonstration that smooth.spline and predict produce
a piecewise cubic polynomial:

> x = runif(10)

y = 4*x^5 - 3*x^2 +2

> tmpspl = smooth.spline(x,y,spar=.3,all.knots=T)

> sort(x)[8:9]

[1] 0.8463247 0.8886385[1] 0.5146857 0.6923524

Since there are no points between .85 and .885, let’s look at

the spline-function on that interval !!

> z = predict(tmpspl, .85+(0:10)*.0035)$y

> var(diff(diff(diff(z)))) ### = 3.2e-30

For a vector z, diff(z) is a vector of first-differences with entries zi −
zi−1, i ≥ 2. The cubic nature of the function at the points .85, ..8535, . . . , .885
is shown by the fact that the third differences are constant.

70

