
7 Notes on EM Algorithm

7.1 EM Algorithm for Multinomial & Mixture Data

General Example 1. Suppose that for fixed integers 1 ≤ K < C, cell-
counts X = (X1, . . . , XK) are observed, and cell-counts Y = (YK+1, . . . , YC)
cannot be observed, where(

X1, . . . , XK , YK+1, . . . , YC
)
∼ Multinomial(n, pj(ϑ), j = 1, . . . , C)

Here ϑ is an unknown parameter of dimension d ≤ K, and the functions
pj(ϑ) which share ϑ as a parameter are sufficiently smooth. Also denote

XK+1 = n−X1 − · · · −XK =
C∑

j=K+1

Yj

For notational convenience, define

qK(ϑ) = 1− p1(ϑ)− · · · − pK(ϑ)

In this setting, we express the conditional joint density of Y given X by

fY|X(y|X, ϑ) = exp(
C∑

j=K+1

yj log
( pj(ϑ)

qK(ϑ)

)
) ·

( XK+1

YK+1, . . . , YC

)
and the conditional log-likelihood term can be defined omitting the multinomial-
coeffcient as:

logLY|X(nK+1, . . . , nC |X, ϑ) =
C∑

j=K+1

Yj log
( pj(ϑ)

qK(ϑ)

)

It follows that the E-step of the EM algorithm replaces Eϑ1
(

log fY|X(Y|X, ϑ)
)

by

XK+1

C∑
j=K+1

pj(ϑ1)

qK(ϑ1)
log

( pj(ϑ)

qK(ϑ)

)
+ log

( XK+1

YK+1, . . . , YC

)
or equivalently, replaces Yj by XK+1 ·pj(ϑ1)/qK(ϑ1) for j = K+ 1, . . . , C.

To confirm that the definition of log-likelihood and conditional log-likelihood
terms as above, without multinomial coefficients, is legitimate, we observe
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that the property needed in the proof of log-likelihood improvement for EM
iterations holds, that is,

Eϑ
(

logLY|
¯
X(nC+1, . . . , nK |X, ϑ)− logLY|

¯
X(nC+1, . . . , nK |X, ϑ1)

)
≥ 0

or equivalently, for all ϑ, ϑ1,

K∑
j=C+1

pj(ϑ)

q(ϑ)
log

pj(ϑ) q(ϑ1)

q(ϑ) pj(ϑ1)
≥ 0

But this is a standard, discrete version of the famous ‘Information Inequality’
proved more generally in the form

∫
f(x) log(f(x)/g(x)) dν(x) ≥ 0 for

probability densities with respect to a measure ν, using Jensen’s Inequality.

Thus we have the following comparison between maximization approaches.
First, the complete-data likelihood to maximize, if Y could also be observed,
would be

K∑
j=1

Xj log pj(ϑ) + XK+1 log qK(ϑ) +
C∑

j=K+1

Yj log
pj(ϑ)

qK(ϑ)

while the crude marginal-observed-data likelihood to maximize is

K∑
j=1

Xj log pj(ϑ) + XK+1 log qK(ϑ)

On the other hand, the M-step of the EM algorithm, after replacement of
the unobservable Yj values in the complete-data likelihood by their E-step
imputed values, is

K∑
j=1

Xj log pj(ϑ) + XK+1 log qK(ϑ) + XK+1

C∑
j=K+1

pj(ϑ1)

qK(ϑ1)
log

pj(ϑ)

qK(ϑ)

=
K∑
j=1

Xj log pj(ϑ) + XK+1

C∑
j=K+1

pj(ϑ1)

qK(ϑ1)
log pj(ϑ)

Note that the M-step involves a step of maximizing the complete-data like-
lihood using imputed data for the Yj’s, which will be very easy in some
problems.
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A key aspect of the usefulness of the EM algorithm in multinomial miss-
ing data problems is that no sums of terms pj(ϑ) appear inside the log-
arithms arising in the maximization-step. Especially in so-called log-linear
contingency-table models with some missing cell-counts, where the pj(ϑ)
have some multiplicative structure, this is very useful !

SPECIAL EXAMPLE FROM THE ORIGINAL EM PAPER

This example fits into the structure of the general multinomial example,
with scalar unknown parameter ϑ = π, K = 3, C = 5, and

p1(π) = p2(π) =
1− π

4
, p3(π) = p4(π) =

π

4
, p5(π) =

1

2

The cell-counts given as data in Dempster, Laird & Rubin (1978) are:

(X1, X2, X3, X4) = (18, 20, 34, 125). Appealing to the formulas above, we
find that the complete-data M-step involves maximizing

∑3
j=1 Xj log pj(π) +∑5

j=4 Yj log pj(π). In this particular problem , we are equivalently maximiz-
ing (X3 + Y4) log(π/4) + (X1 +X2) log((1− π)/4), which leads to

π̂ = (X3 + Y4)/(n− Y5)

Substituting the E-step imputed valued for the Yj gives the EM iteration
explicitly, starting from initial guess π1, as:

π2 =
(
X3 + X4 ·

π1/4

1/2 + π1/4

)/ (
n−X4 ·

1/2

1/2 + π1/4

)

=
34 + 125 · π1

2+π1

197− 125 · 2
2+π1

=
68 + 159π1
144 + 197 π1

In this little example, EM iterates the mapping h(π) ≡ (68+159π)/(144+
197π) to find the fixed-point. (The unique fixed-point π = 0.6268 solves
h(π) = π, which is a quadratic equation.) The Quasi-Newton optimization
of the marginal likelihood is messier but, using a modern computer, quicker
and more reliable.

> optimize(function(x) 38*log(1-x)+34*log(x)+125*log(x+2),

c(.01,.99), max=T)$max
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[1] 0.6268036

> h = function(x) (159 * x + 68)/(197 * x + 144)

x = .5; for (i in 1:6) {x = h(x); cat(round(x,5)," \n")}

0.60825

0.62432

0.62649

0.62678

0.62682 ### converged to 5 places after 5 iterations

General Example 2. Consider ‘mixture’ data Xi which are iid continu-
ously distributed rv’s with density

fX(x) = pe−x + λ (1− p) e−λx , x > 0

where ϑ = (p, λ) ∈ (0, 1) × [0,∞) is the unknown parameter. These r.v.’s
are of mixture type because they have the same density as random variables

Xi = εi Ui + (1− εi)Vi Ui ∼ Expon(1) , Vi ∼ Expon(λ)

where εi ∼ Binom(1, p) is independent of (Ui, Vi). The marginal density
for the observed variables is fX , but the problem would be much simpler to
analyze with the ‘complete’ data (Xi, εi), i = 1, . . . , n. Now the E-step of
the EM algorithm based on observing only X = (Xi, i = 1, . . . , n) consists
of calculating

Eϑ1(ε |X) =
p1 e

−X

p1 e−X + λ1 (1− p1) e−λ1X
= ε∗(X,ϑ1) = ε∗

and then substituting to obtain

Eϑ1 log pε|X(ε |X,ϑ)) = ε∗ log
( p e−X

p e−X + λ (1− p) e−λX
)

+ (1− ε∗) log
( λ (1− p) e−λX

p e−X + λ (1− p) e−λX
)

As a result, starting from initial guess ϑ1 = (λ1, p1), the M-step of the
EM algorithm is to maximize the ‘complete-data log-likelihood’ for the data
(Xi, ε

∗(Xi, ϑ1), i = 1, . . . , n), which is given simply in terms of

m∗ =
n∑
i=1

ε∗(Xi, ϑ1) , U = (m∗)−1
n∑
i=1

Xi ε
∗(Xi, ϑ1)
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and

V = (n−m∗)−1
n∑
i=1

Xi (1− ε∗(Xi, ϑ1))

as
m∗ (log p − U) + (n−m∗) (log(λ(1− p)) − λV )

Thus the M-step is given in closed form by maximizing the last expression
in (λ, p) to obtain

p2 = m∗/n , λ2 = 1/V

In summary, the entire EM iteration-step in this example, starting from
initial guess ϑ1 = (λ1, p1), is given in closed form by:

p2 =
1

n

n∑
i=1

p1 e
−Xi

p1 e−Xi + λ1 (1− p1) e−λ1Xi

1/λ2 =
1

n(1− p2)

n∑
i=1

(1− p1)λ1Xi e
−λ1Xi

p1 e−Xi + λ1 (1− p1) e−λ1Xi

We implement this, and evaluate the results in a little simulated dataset, as
follows.

> EMiter

function(thet, Xvec)

{

## On input, thet is the vector consisting of old values of

## p, lambda in General Example 2 of Notes, and Xvec is

## the observed data vector. The output is the new theta.

frac = 1/(1 + (1/thet[1] - 1) * thet[2] * exp((

1 - thet[2]) * Xvec))

pnew = mean(frac)

lamnew = (1 - pnew)/mean(Xvec * (1 - frac))

list(thet = c(pnew, lamnew), logL = sum(log(pnew * exp(

- Xvec) + (1 - pnew) * lamnew * exp( - lamnew * Xvec))))

}

> epsv <- rbinom(10000, 1, .6)
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Xv <- rexp(10000)/exp(.3*(1-epsv))

> round(c(mean(epsv), .4/exp(.3)+.6, mean(Xv)),5)

[1] 0.59870 0.89633 0.89548

> theta <- c(.5,1.5)

## Initial log-likelihood

sum(log(.5 * exp( - Xv) + .5*1.5*exp(-1.5*Xv))) ## = -8922.3

## Log-likelihood at true values:

> sum(log(.6 * exp( - Xv) + .4*exp(.3-exp(.3)*Xv)))## -8894.8

> unlist(EMiter(theta,Xv)) ## values after one EM iteration

thet1 thet2 logL

0.5072665 1.4103608 -8905.1229932

> for(i in 1:100) {

tmpitr = EMiter(theta,Xv)

theta = tmpitr$thet

if(i %% 10 ==0) cat(round(unlist(tmpitr),5),"\n") }

0.51622 1.27855 -8894.966

0.51684 1.27756 -8894.964

0.51738 1.27793 -8894.962

0.51792 1.27832 -8894.961

0.51847 1.27871 -8894.96

0.51901 1.27909 -8894.959

0.51955 1.27948 -8894.958

0.52008 1.27987 -8894.956

0.52062 1.28026 -8894.955

0.52116 1.28064 -8894.954

> for(i in 1:100) theta = EMiter(theta,Xv)$thet

unlist(EMiter(theta,Xv))

thet1 thet2 logL

0.5264933 1.2845611 -8894.94227

> for(i in 1:100) theta = EMiter(theta,Xv)$thet

unlist(EMiter(theta,Xv))

thet1 thet2 logL

0.5316379 1.2884347 -8894.93122
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## Convergence is painfully slow !!!

> nlminb(c(0.5, 1.5), function(x) - sum(log(x[1] * exp( - Xv) +

(1 - x[1]) * x[2] * exp( - x[2] * Xv))), lower

= c(0.01, 0.1), upper = c(0.99, 10),

control=list(trace=1))[c(1,2,4)]

...

[prints estimate and objective at each iteration, ending with]

13: 8894.8192: 0.618188 1.37204

$par

[1] 0.6181876 1.3720355

$objective

[1] 8894.82

$message

[1] "relative convergence (4)"

## Final code of 0 for successful convergence

Note the very slow convergence of the EM algorithm implemented and tested
here. The maximized logLik must be larger than −8894.83, since that is the
value at the true parameters (p = .6, λ = e.3), but from the not-too-awful
starting values p1 = .5, λ = 1.5, it took more than 300 EM iterations to get
there ! As can be seen from the final converged maximization via nlminb,
the final maximized logLik is − 8894.82.

Many of the interesting and computationally challenging applications of
EM arise in so-called random effect models where unobserved random vari-
ables (often, unobserved random errors at some intermediate level of aggrega-
tion like “cluster”) must be integrated out to find log-likelihood. We discuss
random-effect linear and nonlinear/generalized-linear regression models in
the next segment of the course.
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