8 Notes on EM Algorithm

8.1 EM Algorithm for Multinomial & Mixture Data

General Example 1. Suppose that for fixed integers 1 < K < C, cell-
counts X = (Xjy,..., Xk) are observed, and cell-counts Y = (Yi41,...,Yo)
cannot be observed, where

(Xl, o Xk Yieats oo, YC) ~ Multinomial(n, p;(¥), j =1,...,C)
Here 9 is an unknown parameter of dimension d < K, and the functions
p;(¥) which share ¥ as a parameter are sufficiently smooth. Also denote

c
XKJ,_l:n_Xl_"'_XK: Z Y.;
j=K+1
For notational convenience, define
ax (V) = 1=pi(¥) = — px (V)

In this setting, we express the conditional joint density of Y given X by

c ;i (0 Xrt1
Fox(YIX,9) = eXp(j;H v log (5K<(19))>) . (YKH» e vYC)

It follows that the E-step of the EM algorithm replaces Ejy, (log Frx(YX, 19))
by

C
pj (V1) p; (V) XK1
X lo + lo
oo 3 e B o) T8y)

or equivalently, replaces Y; by Xgi1-p;(th)/qx(th) for j=K+1,...,C.

To confirm that the definition of log-likelihood and conditional log-likelihood
terms as above, without multinomial coefficients, is legitimate, we observe
that the property needed in the proof of log-likelihood improvement for EM
iterations holds, that is,

Eg(logLYLX(no+1, NN 177 | X,’L9) — logLYLX(nC+1, NN 177 | X,ﬁl)) Z O

69

or equivalently, for all ¥, v,

K (v (9) q(9
Z pi()logp]() (V1) >0
isa a() 7 q(0) pi(h)
But this is a standard, discrete version of the famous ‘Information Inequality’

proved more generally in the form [f(z)log(f(z)/g(x))dv(z) > 0 for
probability densities with respect to a measure v, using Jensen’s Inequality.

In the multinomial setting, we express the conditional likelihood for Y
given X by

n n = ex 3 n; lo p;(V)
LYIX(Ct1s- - | X, 0) P(j;rl]lg(q(,ﬁ)))

The E-step of the EM algorithm replaces this conditional log-likelihood, when
the current parameter-iterate is 9, by

K
" pi(th) . pi (V)
Ey (log Lyx(Y|X,9) | X) = n log
(log Ly %) 2 ao " (Gay)
This expression is also equal to log Ly|x (ngy ;- -+, ni | X, 9), where n} =

By, (n}|X) = n*-p;(¥1)/q(¥) for j=C+1,... K.

Thus we have the following comparison between maximization approaches.
First, the complete-data likelihood to maximize, if Y could also be observed,
would be

d < p; (V)
Y- X;logp;(¥) + Xppa logar (V) + Y Y log
ot j=K+1 ax (V)

while the crude marginal-observed-data likelihood to maximize is

K
> X logp;(¥) + Xky1loggx ()

J=1

On the other hand, the M-step of the EM algorithm, after replacement of
the unobservable Y values in the complete-data likelihood by their E-step
imputed values, is

K C (9 (9
> Xjlogp;(¥) + Xgi1 logqr(¥) + Xx1 Y pild) log pi(9)
j=1 j=K+1 K(791> QK(ﬁ)

70

C

S 21CY)
= > X;logp;(¥) + Xk Y log p;(¥)
=1 =k k()

Note that the M-step involves a step of maximizing the complete-data like-
lihood using imputed data for the Y)’s, which will be very easy in some
problems.

A key aspect of the usefulness of the EM algorithm in multinomial miss-
ing data problems is that no sums of terms p;(¥) appear inside the log-
arithms arising in the mazrimization-step. Especially in so-called log-linear
contingency-table models with some missing cell-counts, where the p;(V)
have some multiplicative structure, this is very useful !

SPECIAL EXAMPLE FROM THE ORIGINAL EM PAPER

This example fits into the structure of the general multinomial example,

with scalar unknown parameter 9 =7, K =3, C' =5, and
1—m s 1
pi(m) = pa(m) = 1 p3(m) = pa(m) = 1 ps(m) = 2

The cell-counts given as data in Dempster, Laird & Rubin (1978) are:

(X1, Xo, X3, Xy) = (18, 20, 34, 125). Appealing to the formulas above, we
find that the complete-data M-step involves maximizing Z?Zl X, logp;(m) +

?:4 Y; logp;(m). In this particular problem , we are equivalently maximiz-
ing (X3 +Yy) log(n/4) + (X1 + Xs) log((1 —m)/4), which leads to

o= (Xs+Yi)/(n—Y3)

Substituting the E-step imputed valued for the Y; gives the EM iteration
explicitly, starting from initial guess my, as:

/4 1/2
= (Xg+ Xy ——— - Xy
m = (Xy+ X 1/2 +7r1/4> / (n =X 1/2+7r1/4)

_ 3441257 68 + 159m

19712552 144 +197Tm
In this little example, EM iterates the mapping h(w) = (68+ 1597)/(144 +
1977) to find the fixed-point. (The unique fixed-point 7 = 0.6268 solves
h(m) = m, which is a quadratic equation.) The Quasi-Newton optimization
of the marginal likelihood is messier but, using a modern computer, quicker
and more reliable.

71

> optimize(function(x) 38+*log(1l-x)+34*log(x)+125%log(x+2),
c(.01,.99), max=T)$max

[1] 0.6268036

> h <- function(x) (159 * x + 68)/(197 * x + 144)

x<- .5; for (i in 1:6) {x <- h(x) cat(round(x,5)," \n")}

.60825

.62432

.62649

.62678

.62682 ### converged to 5 places after 5 iterations

O O O O O

General Example 2. Consider ‘mixture’ data X; which are iid continu-
ously distributed rv’s with density

fx(z) = pe ™ + X(1—p) e x>0

where ¥ = (p,A) € (0,1) x [0,00) is the unknown parameter. These r.v.’s
are of mizture type because they have the same density as random variables

Xi=¢U + (1—¢)V; U, ~ Expon(l), V;~ Expon()\)

where ¢€; ~ Binom(1,p) is independent of (U;,V;). The marginal density
for the observed variables is fx, but the problem would be much simpler to
analyze with the ‘complete’ data (Xj, ¢), i = 1,...,n. Now the E-step of
the EM algorithm based on observing only X = (X;, i = 1,...,n) consists
of calculating

pre ™

pre X + A\ (1—p)eMX

Ey, (] X) = = "(X,0) = €

and then substituting to obtain

pe X

pe=X + A(l—p)e’\X>
A1 —p)e X)
pe X + A(1—p)e X

As a result, starting from initial guess ¥ = (Ay,p1), the M-step of the
EM algorithm is to maximize the ‘complete-data log-likelihood’ for the data

Ey, log px(e] X, 9)) = ¢ log (

+ (1 —€") log<

72

(X;, €(X;,01), i =1,...,n), which is given simply in terms of

m* = Z 6*(XZ‘,’[91) 5 U = (m*)_l zn; Xz 6*(XZ',191)
and N
V=m-m"" 2 X; (1—€(X;, %))
m* (logp — U) + (n—m") (log(A(1 = p)) —AV)

Thus the M-step is given in closed form by maximizing the last expression
in (A, p) to obtain

pe = m*/n | N = 1/V

In summary, the entire EM iteration-step in this example, starting from
initial guess ¥ = (A1, p1), is given in closed form by:

1 2 I o—Xi
P n i=1 P1 e~ Xi + A\ (1 —pl)ef/\lXi
Y = —— % (1—p)h Xye M X
n(l - pQ) i—1 D1 e~ X +)\1 (1 — pl) e~ X

We implement this, and evaluate the results in a little simulated dataset, as
follows.

> EMiter

function(thet, Xvec)

{

On input, thet is the vector consisting of old values of
#i# p, lambda in General Example 2 of Notes, and Xvec is

#i# the observed data vector. The output is the new theta.
frac <- 1/(1 + (1/thet[1] - 1) * thet[2] * exp((
1 - thet[2]) * Xvec))
pnew <- mean(frac)
lamnew <- (1 - pnew)/mean(Xvec * (1 - frac))

73

list(thet = c(pnew, lamnew), loglL = sum(log(pnew * exp(
- Xvec) + (1 - pnew) * lamnew * exp(- lamnew * Xvec))))

> epsv <- rbinom(10000, 1, .6)

Xv <- rexp(10000)/exp(.3*(1-epsv))
> round(c(mean(epsv), .4/exp(.3)+.6, mean(Xv)),5)
[1] 0.60050 0.89633 0.89459

> theta <- c(.5,1.5)

Initial log-likelihood

> sum(log(.5 * exp(- Xv) + .5*1.5*%exp(-1.5%Xv))) ## = -8908.9
Log-likelihood at true values:

> sum(log(.6 * exp(- Xv) + .4*xexp(.3-exp(.3)*Xv)))## -8883.5

> unlist (EMiter (theta,Xv)) ## values after one EM iteration
thetl thet2 logL
0.5069983 1.413503 -8893.04

> for(i in 1:100) {
tmpitr <- EMiter(theta,Xv)
theta <<- tmpitr$thet
if(i %% 5 ==0) cat(round(unlist(tmpitr),5),"\n") }
0.51477 1.30256 -8883.91956

.28736 -8883.74519

.28652 -8883.74114

.28686 -8883.73824

.28728 -8883.73536

.28772 -8883.73248

.28815 -8883.72962

.51983 1.28859 -8883.72677

.52042 1.28903 -8883.72393

.521 1.28947 -8883.72111

.521568 1.2899 -8883.71829

.52216 1.29034 -8883.71549

.52274 1.29078 -8883.7127

.52331 1.29122 -8883.70992

.51623
.51689
.51749
.51807
.51866
.51925

e e e e e S =

O O O O OO OO OO O oo

74

0.52389 1.29165 -8883.70716
0.52446 1.29209 -8883.7044
0.52504 1.29253 -8883.70166
0.52561 1.29297 -8883.69893
0.52618 1.29341 -8883.69622
0.52675 1.29385 -8883.69351

> for(i in 1:100) theta <- EMiter(theta,Xv)$thet

unlist (EMiter (theta,Xv))
thetl thet2 logL

0.5379237 1.302709 -83883.642

> for(i in 1:100) theta <- EMiter(theta,Xv)$thet
unlist (EMiter (theta,Xv))

> thetl thet2 logL

0.5483496 1.311421 -8883.596

Convergence is painfully slow !!!

> nlminb(c(0.5, 1.5), function(x) - sum(log(x[1] * exp(- Xv) +
(1 - x[1]) * x[2] * exp(- x[2] * Xv))), lower
= c(0.01, 0.1), upper = c(0.99, 10))[1:4]
$parameters:
[1] 0.6308609 1.3997779

$objective:
[1] 8883.386

$message:
[1] "RELATIVE FUNCTION CONVERGENCE"

$grad.norm:
[1] 0.001797887

Note the very slow convergence of the EM algorithm implemented and tested
here. The maximized logLik must be larger than —8883.5, since that is the
value at the true parameters (p = .6, A = e3), but from the not-too-awful
starting values p; = .5, A = 1.5, it took more than 300 EM iterations to get
there | As can be seen from the final converged maximization via nlminb,
the final maximized logLik is — 8883.39.

75

