
Adapted from P. Smith

9 Introduction to SAS

Assume that you have either done the telnetting dialogue to log onto the cluster
machines, and then issued the command ”sas &” from the unix prompt on a
cluster machine, or that you have started SAS on a PC. At this point SAS will
open a variety of windows on your mathnet screen, of which we describe the most
important.

9.1 The SAS environment

This section describes the three most important SAS windows as they appear on
a mathnet machine. Users from other machine platforms will see essentially the
same environment, with only minor differences.

The three key windows are titled SAS: Program Editor, SAS Log, and SAS:

Output. Each window has a title bar and a pull-down menu bar, as indicated
below.

1. The SAS: Program Editor window, which you use to write your SAS code.

SAS: Program Editor-Untitled

File Edit View Tools Run Solutions Help

00001

00002

00003

00004

00005

2. The LOG window, in which SAS shows you how the program is running and
also gives you error messages if there are any mistakes in your program.

SAS: LOG-Untitled

File Edit View Tools Solutions Help

76

3. The OUTPUT window, in which the results of your SAS program are displayed.

SAS: OUTPUT-Untitled

File Edit View Tools Solutions Help

9.2 Pull-down menus in the Program Editor window

The entries in the File and Edit menus mostly work just like those on any other
unix window. Note that Run:Exit... terminates the SAS run. The View menu
lists SAS windows and enables you to focus on the window of your choice.

The Run menu is critical: this menu enables you to execute your program. Pro-
gram statements are typed in the body of the window. Clicking Run:Submit causes
your program statements to be compiled and executed by SAS. After clicking
Run:Submit, your program statements vanish. Clicking Run:Recall Last Submit

brings them back for further editing as desired. The menu item Run:Submit N

Lines causes the first N lines of the Program Editor window to be submitted
(and to vanish, as described above). If one highlights a block of commands and
uses Edit:Copy to copy them onto the Clipboard, then Run:Submit Clipboard

submits the selected commands for execution. In this case, the commands do not
disappear from the Program Editor window.

9.3 Editing tips for the Program Editor window

• To delete a line, type d in the margin (number line) and hit Enter.

• To delete several lines (a block), you may either:

1. type dd at the beginning line of the block and dd at the ending line of
the block, and then type Enter;

2. type d5 at the beginning line of the block if you wish to delete, say,
the next five lines.

Note that once you delete a line or block of lines, it cannot be recovered.

• To insert a blank line, type i in the margin, then hit Enter. To insert several
lines (say 3), type i3.

• To copy a line:

77

1. Type c on the margin of the line you want to copy.

2. Go to the margin of the line where you want to insert the copy and
type a if you want the copy inserted after this line, or b if you want
the copy inserted before this line.

• To copy several lines, use cc . . . cc or c# to mark the lines you want to copy,
and then use a or b to indicate the location of the insertion.

• Moving one or several lines is done in the same way as copying lines except
that one uses m, mm . . . mm, or m# to mark the area to be moved.

9.4 Saving the Contents of a Window

The Save As option under the File menu enables you to save your program file
on the disk. This causes a dialog box to open, enabling you to choose a file name
and a directory to store the text. (It is helpful to save SAS programs with names
like myprogram.sas.) At a future session you can use File:Open to recall and
rerun your program.

Alternatively, use any other editing tool you are familiar with to write your
SAS code, and save it as a plain text file. Then use the Open option under the
File menu in the Program Editor window to retrieve it.

The contents of the Output or Log windows can also be saved or recalled as
described above. Note that the contents of the Output window will be saved as a
text file.

9.5 Running SAS programs in batch mode

1. Create the SAS code using any editing tool. Save it as a plain text file, with
.sas as the extension filename: filename.sas. If necessary, transfer it to
your WAM account.

2. Telnet to the WAM system. Log on to your account.

3. Use sas filename to execute your file. The SAS system will, after the run,
create a LOG file with the name filename.log. If the program has no bugs
and there is some output, the resulting file filename.lst is also created.

78

9.6 Transferring and Printing Files

From any mathnet machine, either use ftp or stfp to move files back and forth
between mathnet and the cluster muchines, or copy from SAS windows or saved
text-files in a cluster-machine window into text-editor windows on your mathnet
machine.

9.7 Getting help

• The Help:SAS System Help menu selection, which is available on any SAS
window, will open a Netscape window with help on all components of SAS.
You will most likely want help with Base SAS Software or SAS/STAT Soft-
ware at the beginning.

• The SAS manuals are available on line at

https://www.statlab.umd.edu/sasdoc/sashtml/onldoc.htm

You do not have to be running SAS to view the online documentation.

• If you have any questions regarding the WAM system, you can call the
Consulting Lab, (301) 405-1500, Rm. CSS 1400, for help.

• If your question has more to do with statistical software than the cluster
system, you can also call the Statistics Lab, (301) 405-6030, Rm. CSS
1425, for further assistance. However, the lab will not help students to solve
homework assignments.

9.8 SAS: STATISTICAL ANALYSIS SYSTEM

SAS is:

• a collection of programmed statistical procedures,

• a data management / file manipulation package,

• a compiler for a high level programming language,

• a system for data description and report writing.

79

SAS programs consist of DATA steps and PROC steps (procedures). DATA steps:
Create and manipulate data files, one observation at a time. PROC steps summarize
or analyze SAS data sets, and can produce printed results or new data sets.

SAS statements:

• Must end in a semicolon (;)

• Generally are free format — spaces and position on a line do not matter. A
statement can wrap onto several lines. This means that you can and should
use spacing, indentation, and other elements of style to create a program
that is visually easy to read.

Names in SAS are:

• Up to 8 characters long. First character must be a letter or underscore .
Other characters may be letters, digits, or underscore. Special characters,
like $ @ # etc. are not allowed.

• These rules apply to names of variables, data sets, procedures, arrays, etc.

9.9 The DATA Step

• The DATA step interprets your raw data and puts it into a standard form
which SAS can deal with.

• SAS PROC’s can not work with raw data. SAS must first create its own
version of your data, called a SAS dataset.

SAS datasets are organized by:

• Observations: the data values associated with a single entity. Typically each
line of data corresponds to one observation.

• Variables: each observation may consist of several variables.

80

Schematic representation of a SAS data set:

Variables

Obs DOSE RESPONSE GENDER

1 125 3.1 M

2 135 9.0 M

3 173 15.4 F

. . . .

. . . .

. . . .

12 183 20.7 M

Sample SAS code for a DATA Step:

Data one ;

input dose response gender $;

lndose = log(dose) ;

datalines ; /* indicates start of data lines */

125 3.1 M

135 9.0 M

173 15.4 F

.

183 20.7 M

; /* indicates end of data lines */

run ;

The names, such as one for the dataset, or the variable names, such as dose,

response, gender, lndose are user-defined.

The input statement tells SAS how to read the lines of datathat you are
entering. The default (shown above) is to simply list the variable names. SAS
assumes that at least one space will separate the data entries. Missing values
should be written with a dot (.) .

The $ above specifies that the variable gender is a character-valued variable.

Another form of the input statement specifies column positions:

81

input A 1-5 B 6-9 C 12 E $ 15-20 ;

The input statement can be very powerful; many possible formats and position-
ing options are available. Using the pointer controls, it is possible to read very
complicated raw data, for example, multiple records per observation.

A sample SAS program which reads data, transforms variables and produces
simple summaries is given below.

data one ;

input dose response gender $;

lndose = log(dose) ;

datalines ;

125 3.1 M

135 9.0 M

173 15.4 F

154 3.2 F

136 2.0 M

153 . F

165 20.2 M

164 17.1 M

144 14.9 F

183 20.7 M

155 13.9 F

130 8.9 M

;

run;

proc sort data=one ;

by gender dose ;

proc print ;

proc means;

var dose response;

proc means;

by gender;

var dose response;

proc univariate;

var dose lndose response ;

run;

82

9.10 Permanent Files in SAS

It is important to distinguish between ascii data sets and SAS data sets. An
ascii data set contains data coded in standard format: letters, digits and special
characters. An ascii data set can be viewed using an ordinary editor. On the
other hand, a SAS data set contains coded information identifying the contents
and variables to SAS; the data values are coded according to an internal SAS
format which is not viewable by a computer editor. SAS can handle both types of
data files in a DATA step, but with somewhat different commands.

Data input from an ascii file. A DATA step which reads data from an
existing ascii file is very similar to the previous sample DATA steps which read data
from the input stream. An input file is identified to SAS by an INFILE statement.
The following elementary example illustrates the syntax.

data fromfile ;

infile ’/home/pjs/info/my.stuff’ ;

input name $ rank $ ser_no ;

The file is specified by the INFILE statement. Note that the full Unix path-
name must be given between the quotation marks. Alternatively, one can provide
a FILENAME statement (which may appear outside the DATA step). This allows
multiple DATA steps involving the same file and also allows one to specify informa-
tion about the physical layout of the file (necessary for instance if the file exists on
tape or CD-ROM). The example above could have been programmed as follows.

filename myinfo ’/home/pjs/info/my.stuff’ ;

data fromfile ;

infile myinfo ;

input name $ rank $ ser_no ;

In this program myinfo is what SAS calls a fileref : a label by which the SAS job
references a certain file stored permanently on the computer system. Depending
on the platform, filerefs may also be specified by platform-specific statements or
through operating system commands.

Writing data to an ascii file. To create an external file containing output
data, a SAS programmer must use PUT statements in a DATA step. Note that by
default, a DATA step creates an output line in a SAS data set. This default is
overridden by the PUT statement. One must also identify the file to be created,

83

either by using a FILE statement in the DATA step or by a FILENAME statement. A
simple example using the FILE statement follows.

data makefile ;

infile ’/home/pjs/info/my.stuff’ ;

file ’/home/pjs/info/month.pay’ ;

input name $ rank $ ssno annpay ;

monpay = annpay/12 ;

put name $ 1-10 @12 ss_no 9.0 ann_pay 6.0 mon_pay 8.2 ;

This program creates a new variable and writes a new ascii file. It is necessary
to tell SAS how the output is to be arranged in the output records. In this example,
NAME will be a 10 character numeric field. The numerical variables begin in the
12th character of the output line. The 9.0 indicates that SSNO is to be coded as a
nine digit field with no digits to the right of the decimal point; on the other hand,
MONPAY will be coded in an 8 character field with two characters to the right of
the decimal point. These are examples of SAS FORMATs. There are corresponding
INFORMATs for reading input data.

SAS libraries. To cause SAS data sets to be saved permanently, it is necessary
to create a SAS Library. Essentially, this means that one must specify a directory
to which a SAS data set is to be written. By default, all SAS data sets are recorded
in the library WORK, but this library vanishes when the program is terminated. A
LIBNAME statement is needed to cause SAS data sets to be recorded permanently.
The library identification is then part of the data set name and must be used
explicitly in later SAS steps. Consider the following example.

libname drugs ’/home2/pjs/drugdata’ ;

data drugs.rawdata ;

input drug $ dose response gender $ weight ;

datalines ;

ASPIRIN 100 1 M 183

BUFFERIN 150 0 F 107

. . .

;

The LIBNAME statement identifies a directory on the system. Its libref is drugs.
Any SAS data set with a name of the form DRUGS.xxx will be stored permanently
in that directory as a SAS data set. Such a data set is available for analysis or
updating in later SAS sessions.

84

Using SAS data sets. A SAS data set can be used as input to a later SAS
DATA step very easily. Instead of an INPUT statement, one uses a SET statement.
For instance the data set created in the previous example can be accessed by the
following program.

data patients ;

set drugs.rawdata ;

. . .

Any of the variables in the data set specified by SET are available for analysis.
Note also that the data set PATIENTS is temporary and will vanish at the end of
the SAS job.

To find out about the variables in a SAS data set, use PROC CONTENTS. This will
list all variables in the data set, whether they are numeric or character, information
about how they are stored, the number of records, etc.

85

