
Adapted from SAS notes of P. Smith

12 Simulation Loops in Splus vs. SAS

12.1 Random number generation in SAS.

SAS has a variety of pseudo-random number generation functions which can
be invoked during a DATA step (‘pseudo’ because computer software imple-
ments deterministic algorithms and so does not produce genuinely random
numbers). In SAS, one must supply an initial random number or seed to
generate a pseudorandom sequence. (In Splus, recall, one can specify or
record the seed using the reserved vector .Random.seed, but one need not
unless it is desirable to re-use the same seed later, e.g. for debugging.) In
SAS, the seed is a nonzero integer with absolute value less than 231

−1. Each
call to a random number generating function must use the seed as a func-
tion argument, and the seed is updated on each call. The resulting sequence
should appear to be a sequence of independent random variables with a pre-
assigned distribution. As an example, consider the following SAS program.
The sample moments and quantiles are very close to the theoretical values.

data random ;

seed = 4055061 ;

do i=1 to 100 ;

uu = ranuni(seed) ;

output ;

end ;

title ’RANDOM UNIFORM NUMBERS’ ;

proc univariate data=random plot ;

var uu ;

The SAS function RANUNI returns a random variable with a uniform dis-
tribution on [0, 1]. Here is the edited output of our little simulation.

106

RANDOM UNIFORM NUMBERS

Univariate Procedure

Variable=UU

Moments

N 1000 Sum Wgts 1000

Mean 0.492469 Sum 492.4692

Std Dev 0.288889 Variance 0.083457

Skewness 0.082374 Kurtosis -1.19532

...

Quantiles(Def=5)

100% Max 0.998822 99% 0.992526

75% Q3 0.743291 95% 0.956327

50% Med 0.484571 90% 0.90731

25% Q1 0.240905 10% 0.108907

0% Min 0.00117 5% 0.055209

1% 0.007447

Range 0.997652

Q3-Q1 0.502387

Mode 0.00117

According to the logic of SAS, we can operate using a PROC only on the
column(s) of a SAS dataset. So if we want to do a large number of simulation-
iterations, e.g. to check the statistical distribution of the studentized average
of 40 independent normally or exponentially distributed variables, we should
generate the data in 40 columns and operate on the column entries within a
data-step, and then process the result in a single PROC UNIVARIATE :

data student ;

seedz = 314159 ; seedw = 271828 ;

array zz[40] _TEMPORARY_ ;

array ww[40] _TEMPORARY_ ;

do r=1 to 1000 ;

sum_z = 0 ; sum_zsq = 0 ;

sum_w = 0 ; sum_wsq = 0 ;

do i=1 to 40 ;

zz[i] = rannor(seedz) ;

ww[i] = ranexp(seedw)-1 ;

107

sum_z = sum_z + zz[i] ;

sum_zsq = sum_zsq + zz[i]*zz[i] ;

sum_w = sum_w + ww[i] ;

sum_wsq = sum_wsq + ww[i]*ww[i] ;

end ;

t_z = sum_z/sqrt(40)/sqrt((sum_zsq-sum_z*sum_z/40)/39);

t_w = sum_w/sqrt(40)/sqrt((sum_wsq-sum_w*sum_w/40)/39) ;

output ;

end ;

title ’SIMULATED T FOR NORMAL AND EXPONENTIAL DATA’;

proc univariate data=student;

var t_z t_w ;

run;

We know that Student’s t with 39 d.f. has a symmetric, bell-shapeddistribution
when the underlying sample is normal. This distribution is not too far from
Normal, and the Central Limit Theorem says that also for non-normal data,
the studentized averages should be roughly normal. But how roughly ? We
next display our (edited) simulated output.

The theoretical quantiles from 1% through 99% of the t39 distribution
as displayed on the SAS output are

−2.426, −1.685, −1.304, −0.681, 0.000, 0.681, 1.304, 1.685, 2.426

and the theoretical mean, variance, skewness, and kurtosis are respectively
0, 1.0541, 0, 0.1905. The simulated values for normal input-data agree quite
well with the values in the Student t tables. For the exponential data, we
have a somewhat different story. The mean is close to zero because we have
centered the exponential data-values, but the distribution of the studentized
values is still skewed by comparison with a t39 distribution.

SIMULATED T FOR NORMAL AND NONNORMAL DATA

Variable=t_z

Moments

N 1000 Sum Weights 1000

Mean 0.00711654 Sum Observations 7.11653888

Std Deviation 1.05915437 Variance 1.12180798

Skewness 0.00522282 Kurtosis 0.35739736

108

Quantiles (Definition 5)

100% Max 4.49569 99% 2.41896

95% 1.73602 90% 1.34262

75% Q3 0.72300 50% Median -0.00984

25% Q1 -0.70482 10% -1.32652

5% -1.73805 1% -2.57299

0% Min -3.84347 Range 8.33916

Variable=t_w

Moments

N 1000 Sum Weights 1000

Mean -0.1882496 Sum Observations -188.24957

Std Deviation 1.1091563 Variance 1.23022763

Skewness -0.6548093 Kurtosis 1.201935

Quantiles(Def=5)

100% Max 3.01113 99% 1.90066

95% 1.44562 90% 1.15071

75% Q3 0.57106 50% Median -0.07586

25% Q1 -0.86782 10% -1.65168

5% -2.15754 1% -3.20561

0% Min -6.34213 Range 9.35325

We can display the discrepancies between the histograms in either SAS or
Splus. The following code produces a high-quality scaled histogram in SAS.

proc gchart data=student ;

title "Histograms for LOGBILI" ;

vbar t_w / LEVELS=30 type=percent;

RUN ;

But as we see in the next subsection, it is very convenient in Sp[lus both
to plot the histogram and an overlaid theoretical function.

109

12.2 Histograms and Overlaid Densities in Splus

Before proceeding to more complicated simulations in SAS and Splus, let us
quickly re-capitulate the last graph through a simulation in Splus.

> motif()

> rmat <- matrix(rnorm(4e4), ncol=40)

nrmt <- apply(rmat,1, function(mrow)

sqrt(40)*mean(mrow)/sqrt(var(mrow)))

> round(quantile(nrmt, c(.01,.05,.1,.25,.5,.75,.9,.95,.99)),3)

1% 5% 10% 25% 50% 75% 90% 95% 99%

-2.558 -1.789 -1.390 -0.727 0.022 0.737 1.367 1.697 2.356

> rmat <- matrix(rexp(4e4)-1, ncol=40)

expt <- apply(rmat,1, function(mrow)

sqrt(40)*mean(mrow)/sqrt(var(mrow)))

round(quantile(expt, c(.01,.05,.1,.25,.5,.75,.9,.95,.99)),3)

1% 5% 10% 25% 50% 75% 90% 95% 99%

-3.648 -2.302 -1.654 -0.781 -0.045 0.622 1.157 1.502 2.019

> par(mfrow=c(2,1))

> hist(nrmt, , nclass=40, prob=T)

> lines(seq(-3,3,.01), dt(seq(-3,3,.01),39), lty=3)

> hist(expt, nclass=40, prob=T)

> lines(seq(-3,3,.01), dt(seq(-3,3,.01),39), lty=3)

The histograms produced in the last few command-lines, summarizing
the distribution of the simulated output values, are displayed in the follow-
ing Figure. Note that in order to overlay a theoretical density on a plotted
histogram, the option prob=T scaling the histogram like a probability den-
sity (total area in histogram bars equal to 1) must be chosen.

110

Histogram of nrmt

nrmt

D
en

si
ty

−2 0 2 4

0.
0

0.
2

0.
4

Histogram of expt

expt

D
en

si
ty

−4 −2 0 2

0.
0

0.
2

0.
4

Figure 1: Scaled relative-frequency histograms of Splus-simulated t Values,
for normal (nrmt) and centered-exponential (expt) data, n=40. Simulations
each consisted of 1000 iterations. In each plotted histogram, the true t39 is
overlaid as a dashed line.

111

12.3 More Elaborate Simulations

The key complication we address here, in comparing simulations in Splus
versus SAS, is the very familiar possibility that each iteration of a large
simulation may require some data-analysis step or model-fit which we do not
want to program from scratch. For purposes of illustration, we simulate the
standardized coefficient and associated t-distribution p-value for slope in a
simple linear regression with non-normal (uniform) predictor and errors.

> BigReg <- array(0, dim=c(1000,20,2), dimnames=list(

NULL,1:20,c("X","Y")))

BigReg[,,1] <- runif(20000)

BigReg[,,2] <- 0.3 + rnorm(20000)*.4

NOTE that BigReg[,,2] is now UNrelated to BigReg[,,1]

> unix.time(slopvec <- apply(BigReg,1, function(smat)

summary(lm(smat[,2] ~ smat[,1]))$coef[2,3]))

[1] 50.69 0.27 52.00 0.00 0.00

> summary(slopvec)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.618 -0.7371 -0.02168 -0.03306 0.7038 3.765

> pvals <- 1-pt(slopvec,18) ## This is the one-sided p-value for

###the standardized slope-coefficient, which is t_{18} distributed

> summary (pvals) #### Should be approx. Uniform[0,1]

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000709 0.245281 0.513005 0.508529 0.764719 0.999017

NB: the two-sided p-values would be 2*(1-pt(abs(slopvec),18))

So even this little simulation took nearly a minute of computer time in Splus!!
We next do a larger version in order to test the limits of efficiency of Splus
looping, to compare with a pure linear-algebra method, and to compare the
timing with R.

> unix.time({BigReg <- array(0, dim=c(1000,500,2), dimnames=list(

NULL,1:500,c("X","Y")))

BigReg[,,1] <- runif(5e5)

BigReg[,,2] <- 0.3 + rnorm(5e5)*.4

slopvec <- apply(BigReg,1, function(smat)

112

summary(lm(smat[,2] ~ smat[,1]))$coef[2,3])})

[1] 70.64 0.91 76.00 0.00 0.00

Only 50% longer with batch-size 500 than with batch-size 20 !

> summary(slopvec)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.936 -0.6481 0.04752 0.03481 0.727 3.616

We have already mentioned that the method of ‘parallel’ calculation using
apply is hardly better than directly coding a for-loop. But here, we can
compare with the much more efficient method using linear algebra in a truly
parallel way.

> unix.time({

BigReg <- array(0, dim=c(1000,500,2))

BigReg[,,1] <- runif(5e5)

BigReg[,,2] <- 0.3 + rnorm(5e5)*.4

cnstvc <- rep(.002,500)

Xsum <- c(BigReg[,,1] %*% cnstvc)

XtX <- matrix(c(rep(1,1000), Xsum, Xsum, BigReg[,,1]^2 %*%

cnstvc), ncol=4) ## scaled down by factor n=500

Ysum <- c(BigReg[,,2] %*% cnstvc)

XYsum <- c((BigReg[,,2]*BigReg[,,1]) %*% cnstvc)

Yvar <- (BigReg[,,2]^2 %*% cnstvc - Ysum^2)*(500/499)

Xvar <- (XtX[,4]-Xsum^2)*(500/499)

XYcor <- (500/499)*(XYsum-Xsum*Ysum)/sqrt(Yvar*Xvar)

sigsq <- Yvar*(1-XYcor^2)

dtvec <- Xvar*(499/500) ## scaled down by 500^2

slopvec2 <- c(XYsum - Ysum * Xsum)/sqrt(sigsq*Xvar/500)})

[1] 4.350006 0.200000 4.000000 0.000000 0.000000

Note the incredible difference in speed: the factor is > 15.

When I ran exactly the same programs in R (on my same Sun-terminal),
the last (linear-algebra) method took 6.07 seconds machine-time. But the
first method (calculating slopvec using apply) took 104 seconds !! So to
a first approximation, looping in R is no better than in Splus. Recall that
although the syntax of the two languages is the same, their internal; workings
are programmed differently.

113

Now we turn to SAS to attempt to reproduce the last simulation:

data sampreg (keep= xx yy);

seed = 4055067 ;

do i=1 to 30 ;

xx = ranuni(seed) ;

yy = -1.2 + 0.6*xx + 0.5*rannor(seed);

output ;

end ;

PROC REG outest=regests;

model yy = xx;

run;

The data set WORK.REGESTS has 1 observations and 7 variables.

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept xx yy

1 MODEL1 PARMS yy 0.48755 -1.42935 0.78730 -1

The −1 value for yy is just an indication that it is the dependent variable.
The list of output statistic values can be very much expanded: for example,
by issuing the TABLEOUT option, we get standard errors of estimates, t

values, etc. But now the output file REGESTS would have 6 records instead
of one, respectively with the TYPE variable equal to PARMS, STDERR, T,
PVALUE, L95B, U95B.

The next step is to try to produce an output file along the same lines to
contain estimated quantities from each of a number of simulation iterations.

data sampreg (keep = xx yy iter);

seed = 401067 ;

do iter = 1 to 100;

do i=1 to 30 ;

xx = ranuni(seed) ;

yy = -1.2 + 0.6*xx + 0.5*rannor(seed);

output ;

end ;

end;

run;

114

PROC SORT ;

by iter;

PROC REG outest=regests2 TABLEOUT NOPRINT;

model yy = xx;

BY iter;

run;

Note that the SAMPREG dataset used in this computation now had 3000
record-lines. The NOPRINT option is needed to generate the OUTEST file
without a lot of needless output printed to the OUTPUT window. Messages
about analysis by BY-group were issued for all 100 iterations; the REG
step now took 3.23 seconds of real time and 0.34 seconds of CPU time,
and the output data file REGEST2 has 600 records and 8 variables. (The
variables are the seven from before plus ITER (because the is the BY-group
variable), and we have 6 records of different TYPE for each BY-group value
ITER= 1, . . . , 100. It remains to re-process the last data-file into a summary.
First we need a data-step which grabs just the required fields (xx in records
of TYPE T and TYPE PVALUE).

data slopvals (keep = Tval Pval iter);

RETAIN Tval;

set REGESTS2 (keep = iter _TYPE_ xx);

if _TYPE_ EQ "T" then Tval = xx;

if _TYPE_ EQ "PVALUE" then do;

Pval = xx; output; end;

run;

PROC PRINT;

where iter < 3;

run;

...

Obs Tval iter Pval

1 1.77870 1 0.086149

2 2.80599 2 0.009024

The RETAIN statement is needed here in order that SAS not re-initialize
Tval to ‘missing’ each time it reads a new line.

115

We conclude this subsection by doing a timing run in SAS for the same
(1000 iterations of simple linear regression with 20 observations) simulation
which was done in 6 seconds in R, and 4.5 seconds in Splus3.4 using apply

and lm.

data sampreg (keep = xx yy iter);

seed = 401067 ;

do iter = 1 to 1000;

do i=1 to 20 ;

xx = ranuni(seed) ;

yy = -1.2 + 0.5*rannor(seed);

output ;

end ;

end;

run;

PROC SORT ;

by iter;

PROC REG outest=regests3 TABLEOUT NOPRINT;

model yy = xx;

BY iter;

data slopvals (keep = Tval Pval iter);

RETAIN Tval;

set REGESTS3 (keep = iter _TYPE_ xx);

if _TYPE_ EQ "T" then Tval = xx;

if _TYPE_ EQ "PVALUE" then do;

Pval = xx; output; end;

PROC UNIVARIATE;

Var Tval Pval;

run;

The total CPU and real times spent in this simulation run are respectively
0.21 and 24.74 seconds, on a detective-cluster machine. When I tried to
run the same simulation in SAS with 500 observations in each simple linear
regression, I ran out of SAS resources. When I tried to do the same thing
in 10 separate chunks: the average time was 1.86 seconds for each chunk,
or around 18.6 seconds in all. So the computations do not take particularly
long !

116

