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As described in class, here are one discrete and one continuous example of EM algorithm.
Both are small examples where a straightforward numerical maximization of the log observed-
data likelihood would be possible and work just as well as EM.

I. A Contingency-Table Example.

This example is a 2 × 3 contingency-table setup, but the structure that makes it work
is exactly the same as the one-way parameterized multinomial discussed in the handout
https://www.math.umd.edu/ slud/s705/LecNotes/Sec6NotF16.pdf linked on the web-
page. The point in that general example is that the cell-probabilities πj(θ), j = 1, . . . , C,
are pameterized together through a shared parameter θ, and then treat the cell-counts
YK+1, . . . , YC is individually unobservable, while their sum XK+1 =

∑C
j=K+1 Yj along with

the individual counts Yj, j = 1, . . . , K are observable. The only role of the two-way contin-
gency table here is to make the choice of the parameter θ look sensible.

So consider a ‘complete’ data situation where counts Xcom = {Xij, i = 1, 2, j =
1, . . . , 3} arranged in a 2-way table can be viewed as multinomial with a fixed known number
N =

∑2
i=1

∑3
j=1Xij of trials, and probabilities

π11 = απ1, πij = γ pj for (i, j) 6= (1, 1)

where the unknown parameter is θ = (α, γ, p1, p2, p3) which is effectively 3-dimensional be-
cause of the two constraints

p1 + p2 + p3 = 1, αp1 + γ(p1 + 2p2 + 2p3) = 2γ + (α− γ)p1 = 1 (1)

In this setting with complete data, the multinomial has 5 degrees of freedom but the
parameter dimension is 4, so the parameter remains identifiable when the observable Data
are Xobs given by

X11 X12 X13

X21 X22 +X23

In the complete-data setting (with all Xij observable), it is easy to check that the log-
likelihood is

logLcom(θ) = X11 log(α/γ) +
3∑
j=1

X+j log pj + N log γ
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and after maximizing the Lagrange-multiplier expression

logLcom(θ)− λ(
3∑
j=1

pj − 1)− µ(2γ + p1(α− γ))

the MLE θ̂ is given (after differentiating and using the constraints) by

λ̂ = N, µ̂ = 2γ̂N, α̂p̂1 =
X11

N
, γ̂p̂1 =

X21

N

γ̂ =
N −X11 +X21

2N
, p̂1 =

2X21

N −X11 +X21

, p̂j =
X+j

N −X11 +X21

, j = 1, 2 (2)

These formulas provide an explicit function θ̂com = g(Xcom). When the observed data
are Xobs as above, the log-likelihood becomes

logLobs,1(θ) = X11 log(αp1) + X21 log(p1) + X12 log(p2) + X13 log(p3)

+ (X22 +X23) log(p2 + p3) + (2N −X11) log γ

The EM algorithm says to replace logLobs(θ) by Eθ0(logLcom(θ) |Xobs), which requires
only replacing X2j in logLcom for j = 2, 3 by

Eθ0(X2j | X22 +X23) = (X22 +X23) pj,0/(p2,0 + p3,0)

In this particular example, where we set up a sequence of successive EM iterations , we can
see that all of the MLEs for α̂, γ̂, p̂1 are constant in all iterations, along with p̂2+p̂3 = 1−p̂1,
but that the successive EM iterations map an initial guess p2,0 to

1

N −X11 +X21

(
X12 +

p2,0
1− p̂1

(X22 +X23)
)

The unique fixed-point for this mapping is easy to write down explicitly.

Within this same complete-data setting, another possibility for observed data would be

X11 X12 X13

X21 +X22 X23
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In this setting, the observed -data log–likelihood is

logLobs,2(θ) = X11 log(αp1) + (X21 +X22) log(p1 + p2) + X12 log(p2)

+ X13 log(p3) + X23 log(p3) + (2N −X11) log γ

Exercise I.(a) Verify the complete-data MLE formulas (2).

(b). Give the explicit EM-iteration limit in the first observed-data setting
Lobs,1(θ), and show directly that is the maximizer of logLobs,1(θ).

(c). For the specific observed-data table

30 25 45
50 58

give the estimated Fisher information two ways: using the Louis (1982) formula
(Thm 2.7 in the Kim-Shao book) and using the observed information Iobs(θ̂) from
Lobs,1(θ).

We will show separate R-code for the EM-algorithm in the second observed-data setting
Lobs,2(θ), where it turns out that there is no explicit observed-data MLE.

II. An Unbalanced ANOVA Example.

The second example presented in class is 2-way unbalanced ANOVA viewed as a missing-
data problem. Define

Xij = µ + αj + εij, j = 1, . . . ,m, i = 1, . . . , nj

where αj ∼ N (0, σ2
a and εij ∼ N (0, σ2

e) are all jointly independent. Let N =
∑m

j=1 nj and

θ = (µ, σ2
a, σ

2
e). The observed data in the example are Yobs = {Xij, 1 ≤ j ≤ m, 1 ≤

i ≤ nj}; the complete or augmented data are Ycom = (Yobs, {αj}mj=1); and the unknown
parameters to be estimated are θ = (µ, σ2

a, σ
2
e).

The complete-data log-likelihood is logLikcom(θ) =

− N +m

2
log(2π) − m

2
log(σ2

a) −
N

2
log(σ2

e) −
1

2σ2
a

m∑
j=1

α2
j −

1

2σ2
e

∑
i,j

(Xij − αj − µ)2
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It is fairly straightforward to check that the complete-data MLEs are given by the formulas

µ̂ =
1

N

∑
i,j

(Xij−αj) =
1

N

m∑
j=1

nj (X̄·j−αj), σ̂2
a =

1

m
α2
j , σ̂2

e =
1

N

∑
i,j

(Xij− µ̂−αj)2

(3)
where

X̄·j =
1

nj

nj∑
i=1

Xij for j = 1, . . . ,m

To compute the conditional expected logLikcom(θ) under the model with parameters
θ0 = (µ0, σ

2
a,0, (σ2

e,0) (the E-step) and maximize it over θ to define θ1 (the M-step), we make
the remark that conditionally given Yobs,

αj ∼ N
(
γ0j (X̄·j − µ0),

γ0j
nj
σ2
e,0

)
, where γ0j ≡

σ2
a,0

(σ2
a,0 + σ2

e,0/nj)

so that

Eθ0(α
2
j |Yobs) = (γ0j )

2 (X̄·j − µ0)
2 +

γ0j
nj
σ2
e,0

Eθ0((Xij − µ− αj)2 |Yobs) = (Xij − µ− γ0j (X̄·j − µ0))
2 +

γ0j
nj
σ2
e,0

It follows, after substituting these formulas into Eθ0(logLcom(θ) |Yobs), that the M-step
equations are:

µ1 =
1

N

m∑
j=1

nj((1− γ0j )X̄·j + γ0jµ0), σ2
a,1 =

1

m

m∑
j=1

{
(γ0j )

2 (X̄·j − µ0)
2 +

γ0j
nj
σ2
e,0

}

σ2
e,1 =

1

N

m∑
j=1

nj∑
i=1

{
(Xij − µ1 − γ0j (X̄·j − µ0))

2 +
γ0j
nj
σ2
e,0

}
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