Two EM Algorithm Examples, STAT 818M

Eric Slud

2/18/2019
As described in class, here are one discrete and one continuous example of EM algorithm. Both are small examples where a straightforward numerical maximization of the log observeddata likelihood would be possible and work just as well as EM.

I. A Contingency-Table Example.

This example is a 2×3 contingency-table setup, but the structure that makes it work is exactly the same as the one-way parameterized multinomial discussed in the handout https://www.math.umd.edu/ slud/s705/LecNotes/Sec6NotF16.pdf linked on the webpage. The point in that general example is that the cell-probabilities $\pi_{j}(\theta), j=1, \ldots, C$, are pameterized together through a shared parameter θ, and then treat the cell-counts Y_{K+1}, \ldots, Y_{C} is individually unobservable, while their sum $X_{K+1}=\sum_{j=K+1}^{C} Y_{j}$ along with the individual counts $Y_{j}, j=1, \ldots, K$ are observable. The only role of the two-way contingency table here is to make the choice of the parameter θ look sensible.

So consider a 'complete' data situation where counts $\mathbf{X}_{\text {com }}=\left\{X_{i j}, \quad i=1,2, \quad j=\right.$ $1, \ldots, 3\}$ arranged in a 2 -way table can be viewed as multinomial with a fixed known number $N=\sum_{i=1}^{2} \sum_{j=1}^{3} X_{i j}$ of trials, and probabilities

$$
\pi_{11}=\alpha \pi_{1}, \quad \pi_{i j}=\gamma p_{j} \quad \text { for } \quad(i, j) \neq(1,1)
$$

where the unknown parameter is $\theta=\left(\alpha, \gamma, p_{1}, p_{2}, p_{3}\right)$ which is effectively 3 -dimensional because of the two constraints

$$
\begin{equation*}
p_{1}+p_{2}+p_{3}=1, \quad \alpha p_{1}+\gamma\left(p_{1}+2 p_{2}+2 p_{3}\right)=2 \gamma+(\alpha-\gamma) p_{1}=1 \tag{1}
\end{equation*}
$$

In this setting with complete data, the multinomial has 5 degrees of freedom but the parameter dimension is 4 , so the parameter remains identifiable when the observable Data are $\mathbf{X}_{\text {obs }}$ given by

X_{11}	X_{12}	X_{13}
X_{21}	$X_{22}+X_{23}$	

In the complete-data setting (with all $X_{i j}$ observable), it is easy to check that the loglikelihood is

$$
\log L_{c o m}(\theta)=X_{11} \log (\alpha / \gamma)+\sum_{j=1}^{3} X_{+j} \log p_{j}+N \log \gamma
$$

and after maximizing the Lagrange-multiplier expression

$$
\log L_{\text {com }}(\theta)-\lambda\left(\sum_{j=1}^{3} p_{j}-1\right)-\mu\left(2 \gamma+p_{1}(\alpha-\gamma)\right)
$$

the MLE $\hat{\theta}$ is given (after differentiating and using the constraints) by

$$
\begin{gather*}
\hat{\lambda}=N, \quad \hat{\mu}=2 \hat{\gamma} N, \quad \hat{\alpha} \hat{p}_{1}=\frac{X_{11}}{N}, \quad \hat{\gamma} \hat{p}_{1}=\frac{X_{21}}{N} \\
\hat{\gamma}=\frac{N-X_{11}+X_{21}}{2 N}, \quad \hat{p}_{1}=\frac{2 X_{21}}{N-X_{11}+X_{21}}, \quad \hat{p}_{j}=\frac{X_{+j}}{N-X_{11}+X_{21}}, \quad j=1,2 \tag{2}
\end{gather*}
$$

These formulas provide an explicit function $\hat{\theta}_{c o m}=g\left(\mathbf{X}_{\text {com }}\right)$. When the observed data are $\mathbf{X}_{\text {obs }}$ as above, the log-likelihood becomes

$$
\begin{gathered}
\log L_{o b s, 1}(\theta)=X_{11} \log \left(\alpha p_{1}\right)+X_{21} \log \left(p_{1}\right)+X_{12} \log \left(p_{2}\right)+X_{13} \log \left(p_{3}\right) \\
+\left(X_{22}+X_{23}\right) \log \left(p_{2}+p_{3}\right)+\left(2 N-X_{11}\right) \log \gamma
\end{gathered}
$$

The EM algorithm says to replace $\log L_{o b s}(\theta)$ by $E_{\theta_{0}}\left(\log L_{c o m}(\theta) \mid \mathbf{X}_{o b s}\right)$, which requires only replacing $X_{2 j}$ in $\log L_{\text {com }}$ for $j=2,3$ by

$$
E_{\theta_{0}}\left(X_{2 j} \mid X_{22}+X_{23}\right)=\left(X_{22}+X_{23}\right) p_{j, 0} /\left(p_{2,0}+p_{3,0}\right)
$$

In this particular example, where we set up a sequence of successive EM iterations, we can see that all of the MLEs for $\hat{\alpha}, \hat{\gamma}, \hat{p}_{1}$ are constant in all iterations, along with $\hat{p}_{2}+\hat{p}_{3}=1-\hat{p}_{1}$, but that the successive EM iterations map an initial guess $p_{2,0}$ to

$$
\frac{1}{N-X_{11}+X_{21}}\left(X_{12}+\frac{p_{2,0}}{1-\hat{p}_{1}}\left(X_{22}+X_{23}\right)\right)
$$

The unique fixed-point for this mapping is easy to write down explicitly.
Within this same complete-data setting, another possibility for observed data would be

X_{11}	X_{12}	X_{13}
$X_{21}+X_{22}$	X_{23}	

In this setting, the observed -data \log-likelihood is

$$
\begin{gathered}
\log L_{o b s, 2}(\theta)=X_{11} \log \left(\alpha p_{1}\right)+\left(X_{21}+X_{22}\right) \log \left(p_{1}+p_{2}\right)+X_{12} \log \left(p_{2}\right) \\
+X_{13} \log \left(p_{3}\right)+X_{23} \log \left(p_{3}\right)+\left(2 N-X_{11}\right) \log \gamma
\end{gathered}
$$

Exercise I.(a) Verify the complete-data MLE formulas (2).
(b). Give the explicit EM-iteration limit in the first observed-data setting $L_{o b s, 1}(\theta)$, and show directly that is the maximizer of $\log L_{o b s, 1}(\theta)$.
(c). For the specific observed-data table

30	25	45
50	58	

give the estimated Fisher information two ways: using the Louis (1982) formula (Thm 2.7 in the Kim-Shao book) and using the observed information $I_{o b s}(\hat{\theta})$ from $L_{o b s, 1}(\theta)$.

We will show separate R-code for the EM-algorithm in the second observed-data setting $L_{o b s, 2}(\theta)$, where it turns out that there is no explicit observed-data MLE.

II. An Unbalanced ANOVA Example.

The second example presented in class is 2-way unbalanced ANOVA viewed as a missingdata problem. Define

$$
X_{i j}=\mu+\alpha_{j}+\epsilon_{i j}, \quad j=1, \ldots, m, \quad i=1, \ldots, n_{j}
$$

where $\alpha_{j} \sim \mathcal{N}\left(0, \sigma_{a}^{2}\right.$ and $\epsilon_{i j} \sim \mathcal{N}\left(0, \sigma_{e}^{2}\right)$ are all jointly independent. Let $N=\sum_{j=1}^{m} n_{j}$ and $\theta=\left(\mu, \sigma_{a}^{2}, \sigma_{e}^{2}\right)$. The observed data in the example are $\mathbf{Y}_{o b s}=\left\{X_{i j}, 1 \leq j \leq m, 1 \leq\right.$ $\left.i \leq n_{j}\right\}$; the complete or augmented data are $\mathbf{Y}_{\text {com }}=\left(\mathbf{Y}_{\text {obs }},\left\{\alpha_{j}\right\}_{j=1}^{m}\right)$; and the unknown parameters to be estimated are $\theta=\left(\mu, \sigma_{a}^{2}, \sigma_{e}^{2}\right)$.

The complete-data \log-likelihood is $\log \operatorname{Lik} k_{\text {com }}(\theta)=$

$$
-\frac{N+m}{2} \log (2 \pi)-\frac{m}{2} \log \left(\sigma_{a}^{2}\right)-\frac{N}{2} \log \left(\sigma_{e}^{2}\right)-\frac{1}{2 \sigma_{a}^{2}} \sum_{j=1}^{m} \alpha_{j}^{2}-\frac{1}{2 \sigma_{e}^{2}} \sum_{i, j}\left(X_{i j}-\alpha_{j}-\mu\right)^{2}
$$

It is fairly straightforward to check that the complete-data MLEs are given by the formulas
$\hat{\mu}=\frac{1}{N} \sum_{i, j}\left(X_{i j}-\alpha_{j}\right)=\frac{1}{N} \sum_{j=1}^{m} n_{j}\left(\bar{X}_{\cdot j}-\alpha_{j}\right), \quad \hat{\sigma}_{a}^{2}=\frac{1}{m} \alpha_{j}^{2}, \quad \hat{\sigma}_{e}^{2}=\frac{1}{N} \sum_{i, j}\left(X_{i j}-\hat{\mu}-\alpha_{j}\right)^{2}$
where

$$
\begin{equation*}
\bar{X}_{\cdot j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} X_{i j} \quad \text { for } \quad j=1, \ldots, m \tag{3}
\end{equation*}
$$

To compute the conditional expected $\log \operatorname{Lik} k_{\text {com }}(\theta)$ under the model with parameters $\theta_{0}=\left(\mu_{0}, \sigma_{a, 0}^{2},\left(\sigma_{e, 0}^{2}\right)\right.$ (the E-step) and maximize it over θ to define θ_{1} (the M-step), we make the remark that conditionally given $\mathbf{Y}_{\text {obs }}$,

$$
\alpha_{j} \sim \mathcal{N}\left(\gamma_{j}^{0}\left(\bar{X}_{\cdot j}-\mu_{0}\right), \frac{\gamma_{j}^{0}}{n_{j}} \sigma_{e, 0}^{2}\right), \quad \text { where } \quad \gamma_{j}^{0} \equiv \frac{\sigma_{a, 0}^{2}}{\left(\sigma_{a, 0}^{2}+\sigma_{e, 0}^{2} / n_{j}\right)}
$$

so that

$$
\begin{gathered}
E_{\theta_{0}}\left(\alpha_{j}^{2} \mid \mathbf{Y}_{o b s}\right)=\left(\gamma_{j}^{0}\right)^{2}\left(\bar{X}_{\cdot j}-\mu_{0}\right)^{2}+\frac{\gamma_{j}^{0}}{n_{j}} \sigma_{e, 0}^{2} \\
E_{\theta_{0}}\left(\left(X_{i j}-\mu-\alpha_{j}\right)^{2} \mid \mathbf{Y}_{o b s}\right)=\left(X_{i j}-\mu-\gamma_{j}^{0}\left(\bar{X}_{\cdot j}-\mu_{0}\right)\right)^{2}+\frac{\gamma_{j}^{0}}{n_{j}} \sigma_{e, 0}^{2}
\end{gathered}
$$

It follows, after substituting these formulas into $E_{\theta_{0}}\left(\log L_{\text {com }}(\theta) \mid \mathbf{Y}_{\text {obs }}\right)$, that the M-step equations are:

$$
\begin{gathered}
\mu_{1}=\frac{1}{N} \sum_{j=1}^{m} n_{j}\left(\left(1-\gamma_{j}^{0}\right) \bar{X}_{\cdot j}+\gamma_{j}^{0} \mu_{0}\right), \quad \sigma_{a, 1}^{2}=\frac{1}{m} \sum_{j=1}^{m}\left\{\left(\gamma_{j}^{0}\right)^{2}\left(\bar{X}_{\cdot j}-\mu_{0}\right)^{2}+\frac{\gamma_{j}^{0}}{n_{j}} \sigma_{e, 0}^{2}\right\} \\
\sigma_{e, 1}^{2}=\frac{1}{N} \sum_{j=1}^{m} \sum_{i=1}^{n_{j}}\left\{\left(X_{i j}-\mu_{1}-\gamma_{j}^{0}\left(\bar{X}_{\cdot j}-\mu_{0}\right)\right)^{2}+\frac{\gamma_{j}^{0}}{n_{j}} \sigma_{e, 0}^{2}\right\}
\end{gathered}
$$

