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As described in class, here are one discrete and one continuous example of EM algorithm.
Both are small examples where a straightforward numerical maximization of the log observed-
data likelihood would be possible and work just as well as EM.

I. A Contingency-Table Example.

This example is a 2 x 3 contingency-table setup, but the structure that makes it work
is exactly the same as the one-way parameterized multinomial discussed in the handout
https://www.math.umd.edu/ slud/s705/LecNotes/Sec6NotF16.pdf linked on the web-
page. The point in that general example is that the cell-probabilities 7;(0), j =1,...,C,
are pameterized together through a shared parameter 6, and then treat the cell-counts
Yii1,..., Yo is individually unobservable, while their sum Xy = ZJCZ K41 Y; along with
the individual counts Y}, j = 1,..., K are observable. The only role of the two-way contin-
gency table here is to make the choice of the parameter 6 look sensible.

So consider a ‘complete’ data situation where counts X, = {X;;, @ = 1,2, j =
1,...,3} arranged in a 2-way table can be viewed as multinomial with a fixed known number
N=Y7, Z;’:l X;; of trials, and probabilities

my = am, m; = yp; for (i,7) # (1,1)

where the unknown parameter is 8 = («, 7, p1, p2, p3) which is effectively 3-dimensional be-
cause of the two constraints

p1+p2+ps =1, apy +y(p1 4+ 2p2 +2p3) =27+ (. —y)p1 =1 (1)

In this setting with complete data, the multinomial has 5 degrees of freedom but the
parameter dimension is 4, so the parameter remains identifiable when the observable Data
are Xgps given by

X | X2 ‘ Xi3
Xop | Xog + Xo3

In the complete-data setting (with all X;; observable), it is easy to check that the log-
likelihood is .
10g Leom(0) = X11log(a/7) + > Xijlogp; + Nlogy

i=1



and after maximizing the Lagrange-multiplier expression
3
108 Leom (6) = A pj — 1) = u(27 + pr(e = 7))
j=1

the MLE 6 is given (after differentiating and using the constraints) by

< . . X .. Xo1
A=N = 24N = = — 2=
y M YV, ap1 N7 P1 N
N-X X 2X X5
4 — 11+ XA21 P 21 R +j =12 2)

2N ’ :N—X11+X21’ pj:N_Xll‘i‘XQl’

These formulas provide an explicit function écom = ¢(Xecom). When the observed data
are Xy as above, the log-likelihood becomes

log Lops1(0) = Xqilog(apr) + Xoilog(pr) + Xiglog(pe) + Xislog(ps)

+ (Xoz2 + Xa3) log(pz +p3) + (2N — X11)logy
The EM algorithm says to replace log Lops(6) by Eg,(10g Leom (0) | Xops), which requires
only replacing Xs; in log Loy, for j = 2,3 by
Eoy(Xaj | Xoo + Xo3) = (Xoo + Xos)pjo/(D2,0 + D30)

In this particular example, where we set up a sequence of successive EM iterations , we can
see that all of the MLEs for &, 4, p; are constant in all iterations, along with po+p3 = 1—py,
but that the successive EM iterations map an initial guess py to

1
N — X1+ Xg

<X12 + 1p270A (Xo2 + X23))
— M

The unique fixed-point for this mapping is easy to write down explicitly.

Within this same complete-data setting, another possibility for observed data would be

X1 ‘ X2 | X3
Xo1 + Xoo | Xo3




In this setting, the observed -data log—likelihood is
log Lops2(0) = Xiilog(apr) + (Xo1 + Xoz)log(pr + p2) + Xiz2log(ps)

+ Xizlog(ps) + Xapslog(ps) + (2N — Xy;)logy

Exercise I.(a) Verify the complete-data MLE formulas (2).

(b). Give the explicit EM-iteration limit in the first observed-data setting
Lobs1(6), and show directly that is the maximizer of log L 1(6).

(c). For the specific observed-data table

30 |25 |45
50 58

give the estimated Fisher information two ways: using the Louis (1982) formula
(Thm 2.7 in the Kim-Shao book) and using the observed information /() from

Lobs,1<9)'

We will show separate R-code for the EM-algorithm in the second observed-data setting
Lops 2(0), where it turns out that there is no explicit observed-data MLE.

II. An Unbalanced ANOVA Example.

The second example presented in class is 2-way unbalanced ANOVA viewed as a missing-
data problem. Define

Xij = p+a+e;, j=1...,m, 1=1...,n;

where a; ~ N(0,07 and ¢;; ~ N(0,07) are all jointly independent. Let N =3>7"", n; and
6 = (u, 02, 02). The observed data in the example are Yo = {Xj;, 1 <j<m, 1<
i < n;}; the complete or augmented data are Yeom = (Yobs, {}]2;); and the unknown

parameters to be estimated are 6 = (u,02,02).

The complete-data log-likelihood is log Likeom (0) =

N +m m o N R )
— 5 log(2m) — 5 log(02) — = log(a?) 203]2104 202 (Xij —a; — )



It is fairly straightforward to check that the complete-data MLEs are given by the formulas

X 1 1 & . 1 R 1 X
=5 2 (Xij—ay) = ;ny J—q), 0n = 5%2-7 o7 = I iZj(Xij_,u_O‘j)z
(3)
where
_ 1 &
X, = — Xi; for j=1....m
= ; )

To compute the conditional expected log Likcy, () under the model with parameters
0o = (1o, 02, (024) (the E-step) and maximize it over 6 to define #; (the M-step), we make
the remark that condltlonally given Y s,

0 2

a-wN(QX.’— ,—]02>, where 0 ’
J ,}/] ( J /’LO) n; e,0 ’Y] (0_270 + 0_370//”/]')

so that 0
_ v;

Ego(0F | Yobs) = (79) (X5 — po)* + n—]ﬁio
j

0
_ ’y H
Egy(Xij — p— ;) [ Yops) = (Xig —pp =75 (X — po))” + n—] a2
j
It follows, after substituting these formulas into Ey,(log Leom(0) | Yobs), that the M-step
equations are:

2 0= D), o= SO+ o)
j=1 j=1
2 1 & & 0/ v 2 ’730 2
2= 0 {8 )+ 2o
=1 =1 /



