Sample Problems for Stat 750 In-Class Test

Eric Slud

March 12, 2022

1. (Proof of independence of Wishart quadratic forms with orthogonal matrices) Prove in detail that if Y is an $n \times p$ normal data matrix with mean **0** and variance Σ for each row, and if B and C are nonnegative-definite symmetric matrices such that BC = 0, then Y'BY and Y'CY are independent, and if B and C are also projection matrices then these two quadratic forms are Wishart random $p \times p$ matrices, and give the Wishart parameters.

2. (*Simulation*) Let Y be an 100×5 matrix with independent identically distributed rows

$$\mathbf{Y}_i = \mu + V_i \cdot \Sigma^{1/2} \mathbf{U}_i$$
, $V_i \sim g(v) = 8 (1+v)^{-9}$ for $v > 0$, $\mathbf{U}_i \sim$ unif. unit vector

where $\mu \in \mathbb{R}^5$ and the 5 × 5 nonsingular covariance matrix Σ are unknown, and V_i and \mathbf{U}_i are independent for each *i*. Explain as clearly as you can the steps by which you would simulate R = 1e4 replications of 100×5 datasets and estimate the 0.9, 0.95 quantiles of the Hotelling T^2 test statistic for the data Y that would be used to test the hypothesis $\mathbf{H}_0 : \mu = \mathbf{0}$.

3. (Multivariate Normal - best linear approximation – application to cross-moments) Suppose that $X = (X_1, X_2, X_3)$ is a normal random vector with mean 0 and covariance matrix

1	1	0.5	0	
	0.5	1	0.5	
$\left(\right)$	0	0.5	1	J

Find $E(X_1 \cdot X_2^2 \cdot X_3)$.

4. (Spherical symmetry) (a). Show that if $\mathbf{X} = (X_1, \ldots, X_k)$ is spherically symmetric, for $k \geq 3$, then (X_1, \ldots, X_{k-1}) is also spherically symmetric. (b) Show that if if $\mathbf{X} = (X_1, \ldots, X_k)$ is spherically symmetric, and the positive scalar random variable V is independent of \mathbf{X} , then $V \cdot \mathbf{X}$ is also spherically symmetric.

5. (Recognition of distribution of various test statistics) Suppose Y is an $n \times 4$ normal data matrix with rows ~ $\mathcal{N}_4(\mu, \Sigma)$. Let $\hat{\mu}, S$ be the MLEs for μ, Σ respectively.

(a). Let

$$A = \left(\begin{array}{rrrr} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{array}\right)$$

What is the distribution of $(A\hat{\mu})' (ASA')^{-1} (A\hat{\mu})$? This expression has been corrected. For what hypothesis can it be used as a test statistic ?

(b) What does $n^{-1}Y'(I - n^{-1}\underline{1}^{\otimes 2})Y$ estimate, and what is its distribution, where I is the $n \times n$ identity matrix and $\underline{1}$ the n-vector of all 1's ?

6. In the setting of problem 5, find the Union Intersection Test for \mathbf{H}_0 : $\mu_1 + \mu_2 - \mu_3 = a$, $\mu_1 - \mu_2 + \mu_4 = b$, with Σ unknown and unrestricted and a, b fixed. Use this test to provide simultaneous confidence intervals for $\mu_1 + \mu_2 - \mu_3$ and $\mu_1 - \mu_2 + \mu_4$.

7. (Reasoning with projections and Wisharts) Suppose that Y = (X | Z)) is an $n \times p$ normal data matrix with mean **0** and variance Σ for each row, where X and Z are respectively normal data matrices with q and r = p - q columns, with Σ partitioned into blocks as

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$
, $\Sigma_{11} = \operatorname{Var}(\mathbf{X}_i)$ invertible

Let

$$M = Y'Y = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} , \qquad M_{11} = X'X , \quad M_{22} = Z'Z , \quad M_{12} = X'Z$$

Show that conditionally given Z, the random matrix $M_{11} - M_{12}M_{22}^{-1}M_{21} \equiv X'X - X'Z(Z'Z)^{-1}Z'X$ has the form X'QX for an $n \times n$ projection matrix Q, and therefore has a Wishart distribution independent of Z; and find the parameters of that Wishart distribution.

8. (Max-Min problem for Matrices) Suppose that B is a fixed known symmetric positive-definite $p \times p$ matrix. Find the supremum over symmetric nonnegative definite matrices A of $(\det(A))^{1/p} - \operatorname{trace}(AB^{-1})$.

9. (*Regression*) Consider the following results concerning a simulated dataset Sim-ProbFr, a data-frame consisting of p = 2 outcome column Y1, Y2 with 3 grouping factors F1 (2 levels H, L), F2 (3 levels A,B,C) and F3 (3 levels 1,2,3). Altogether there are 18 group-combinations, and 20 observations for each combination, for a total of n = 360 observations.

```
> SimProbFr[20*(1:18),]
```

	F1	F2	F3	Y1	Y2
20	Η	А	1	5.25103606	6.7797895
40	Η	А	2	2.06371453	2.1915714
60	Η	А	3	1.94659562	4.4645685
80	Η	В	1	0.12130146	5.1505129
100	Η	В	2	1.84702204	-0.3419188
120	Η	В	3	-0.34130798	-2.1825328
140	Η	С	1	0.05014656	2.6975613
160	Η	С	2	-3.47980201	5.3432956
180	Η	С	3	1.32086595	-0.6060656
200	L	А	1	5.74936203	5.8598511
220	L	А	2	0.56104101	1.0059033
240	L	А	3	7.34881370	8.6745729
260	L	В	1	-4.45722390	-4.3722358
280	L	В	2	-0.51043199	3.2898355
300	L	В	3	0.02937361	-2.5618660
320	L	С	1	0.12753017	-0.8846669
340	L	С	2	-1.49726159	0.3942742
360	L	С	3	2.92435096	6.1544452

(a). Here are three separate model-fits and some results:

```
> fit2 = lm(cbind(Y1,Y2) ~ F2, data=SimProbFr)
> t(fit2$eff) %*% fit2$eff
         Y1
                  Y2
Y1 3528.838 2342.430
Y2 2342.430 5003.926
> t(fit2$res) %*% fit2$res
         Y1
                  Y2
Y1 2870.282 1281.629
Y2 1281.629 2623.436
> fit3 = lm(cbind(Y1,Y2) ~ F3, data=SimProbFr)
> t(fit3$eff) %*% fit3$eff
         Y1
                  Y2
Y1 3528.838 2342.430
Y2 2342.430 5003.926
> t(fit3$res) %*% fit3$res
                  Y2
         Y1
Y1 3299.505 1659.491
Y2 1659.491 2931.040
```

(a). Is there enough information in just these displayed matrices to calculate Wilks statistics separately for the MANOVA for the three factor-groupings ? Explain.

(b). I give you next a series of MANOVA tables showing you the Wilks Lambda statistic, and the problem will be to interpret what hypotheses are being tested in each table and to interpret the results.

```
> anova(fit1, test="Wilks")
Analysis of Variance Table
                   Wilks approx F num Df den Df Pr(>F)
             Df
              1 0.58057
                          128.954
                                        2
                                             357 <2e-16 ***
(Intercept)
                                        2
                                             357 0.1068
F1
              1 0.98755
                            2.251
Residuals
            358
```

```
anova(fit2, test="Wilks")
>
Analysis of Variance Table
                 Wilks approx F num Df den Df Pr(>F)
            Df
(Intercept)
             1 0.55999 139.861
                                     2
                                         356 < 2.2e-16 ***
F2
             2 0.82889
                        17.512
                                     4
                                         712 1.021e-13 ***
Residuals
           357
> anova(fit3, test="Wilks")
Analysis of Variance Table
                 Wilks approx F num Df den Df Pr(>F)
            Df
             1 0.57755 130.197
                                     2
                                         356 < 2e-16 ***
(Intercept)
F3
             2 0.97385
                         2.374
                                    4
                                         712 0.05084 .
Residuals
           357
```