STAT 750 Handout on Spherical Symmetry

We saw in class that a joint density on \mathbb{R}^p is spherically symmetric (equivalently, that a random vector with this density is *rotationally invariant* if and only if for every $p \times p$ orthogonal matrix U, the identity f(Ux) = f(x) holds for x in a set of probability 1. Equivalently, this holds if and only if f(x) has the form $h((x_1^2 + \cdots + x_p^2)^{1/2})$.

We made a claim in class and sketched a proof idea that for X a rotationally invariant random vector, $R = (X_1^2 + \cdots + X_p^2)^{1/2} = ||X||_2$ and Z = X/R are independent, with R a scalar-valued random variable with density proportional to h(r) on $(0, \infty)$ and X/R uniformly distributed on the surface of the unit sphere in \mathbb{R}^p . We provide two proofs of this.

First, let's define the concept of a uniformly distributed random unit-length vector Z in \mathbb{R}^p . Intuitively, that should mean for each open subset B of the surface S of the unit sphere in \mathbb{R}^p ,

$$P(Z \in B) = \operatorname{vol}_{p-1}(B) / \operatorname{vol}_{p-1}(S)$$

where $\operatorname{vol}_{p-1}(\cdot)$ is the calculation volume within the p-1-dimensional surface of the unit sphere (the 'surface area' when p=3 and the circumference length-measure when p=2). With respect to this p-1-dimensional surface volume measure, the random unit vector Z is called **uniform** if it has constant density, and that constant must be $1/\operatorname{vol}_{p-1}(S)$. We evaluate that constant in the next paragraphs of this handout.

Because each small open set $B \subset S$ centered around a single unit-vector z can be regarded as a volume-element that can be carried into a volume element centered around Uz by an orthogonal matrix U, it follows immediately from the rotational invariance of X that for any orthogonal U,

$$P(R \in (r, r + \epsilon), Z \in B) = P(R \in (r, r + \epsilon), Z \in UB)$$

The collection of sets UB, by choice of small B, covers the whole spherical surface Sand can be used to define or approximate Riemann-type integrals over S. By covering S with tiny sets UB with very small overlap, we conclude also that $P(Z \in B | R \in$ $(r \in (r, r + \epsilon))$ depends on B only through its volume and therefore that R and Z are independent. That is a sketch-proof of the independence and the uniform distribution of Z. The p-dimensional set $\{x : ||x||_2 \in (r, r + \epsilon)\}$ is easily seen to be the relative complement $\{x : ||x||_2 \leq r + \epsilon\} \setminus \{x : ||x||_2 \leq r\}$, and its volume is equal to the volume of the whole unit sphere $\{x : ||x||_2 \leq 1\}$ times $(r + \epsilon)^p - r^p$. Assume for convenience that f(x) and h(r) are continuous functions, and let $C_p = \operatorname{vol}_p(\{x \in \mathbb{R}^p : ||x||_2 \leq 1\})$. Then our argument shows that for small ϵ ,

$$P(R \in (r, r+\epsilon)) = \int_{\{x: \|x\|_2 \in (r, r+\epsilon)\}} h(\|x\|_2) \, dx = C_p \, h(r) \, p \, r^{p-1} \, \epsilon \, + \, o(\epsilon)$$

and it follows that the density of $R = ||X||_2$ for $r \in (0, \infty)$ is $p C_p h(r)$. On the other hand, the set $\{x : ||x||_2 \in (r, r + \epsilon)\}$ evidently also has volume $\epsilon r^{p-1} \cdot \operatorname{vol}_{p-1}(S) + o(\epsilon)$, so our argument proves also

$$\operatorname{vol}_{p-1}(S) = p \operatorname{vol}_p(\{x : \|x\|_2 \le 1\}) = p \cdot C_p$$

The constants in the last paragraph do not depend on the form of the function h(r)and can therefore be evaluated in the special case where X has *iid* $\mathcal{N}(0, 1)$ components. Then

$$h(r) = (2\pi)^{-p/2} e^{-r^2/2} \implies 1 = \int_{\mathbb{R}^p} h(\|x\|_2) dx = \int_0^\infty p C_p r^{p-1} (2\pi)^{-p/2} e^{-r^2/2} dr$$

It follows by the change-of-variables $w = r^2/2$ that

$$1 = p C_p (2\pi)^{-p/2} \int_0^\infty (2w)^{p/2-1} e^{-w} dw = p C_p (2\pi)^{-p/2} 2^{p/2-1} \Gamma(p/2)$$

and therefore $C_p = \pi^{p/2}/\Gamma((p+2)/2)$. These formulas agree with the common formulas for area $C_2 = \pi$ and circumference $2C_2 = 2\pi$ when p = 2, and for volume $C_3 = 4\pi/3$ and surface-area $\operatorname{vol}_2(S) = 3 \cdot C_3 = 4\pi$ when p = 3

Finally, we provide a more formal proof of the independence of R, Z using a slight extension of the Jacobian change-of-variable formula. Suppose that $q : \mathbb{R}^p \to \mathbb{R}^p$ is a differentiable k-to-1 map such that there are K disjoint subsets A_k partitioning \mathbb{R}^p (which means $\bigcup_{k=1}^K A_k = \mathbb{R}^p$) and differentiable inverse maps $\psi_k : \mathbb{R} \to A_k$ such that $\psi_k \circ q : A_k \to A_k$ is the identity-map. Then if $X \sim f(x)$ is a random p-vector, the random vector $V = q(X) \in \mathbb{R}^p$ has probability density

$$f_{V}(v) = \sum_{k=1}^{K} f \circ \psi_{k}(v) |det(J_{\psi_{k}}(v))|$$
(1)

where as usual $J_{\psi_k}(v)$ denotes the Jacobian matrix.

We apply this formula to the mapping $q(x) = (r, z_1, \ldots, z_{p-1})$ where $r = ||x||_2$ and $(z_1, \ldots, z_p) = x/r$ (which can be defined to be the 0-vector when x = 0. Here K - 2, and the sets A_k are

$$A_1 = \{ x \in \mathbb{R}^p : x_p \ge 0 \} \quad , \qquad A_2 = \{ x \in \mathbb{R}^p : x_p < 0 \}$$

and the mappings ψ_k for k = 1, 2 are:

$$\psi_k(r, z_1, \dots, z_{p-1}) = (rz_1, rz_2, \dots, rz_{p-1}, (-1)^{k-1} r \sqrt{1 - z_1^2 - \dots + z_{p-1}^2})$$
(2)

Direct calculation of partial derivatives shows that the absolute determinants of the Jacobians J_{ψ_k} are the same and are equal to $r^{p-1}\sqrt{1-z_1^2-\cdots z_{p-1}^2}$. It follows from (1) that the joint density of $(R, Z_1, \ldots, Z_{p-1})$ is $r^{p-1}h(r)\sqrt{1-z_1^2-\cdots z_{p-1}^2}$. This is not particularly convenient as a way to prove the uniform distribution of $Z = (Z_1, \ldots, Z_p)$ on S, but the factorization of the joint density does prove that R is independent of (Z_1, \ldots, Z_{p-1}) . By definition, $z_p = (-1)^{k-1}\sqrt{1-z_1^2-\cdots z_{p-1}^2}$ on A_k for k = 1, 2. Since the density of $(R, Z_1, \ldots, Z_{p-1})$ is identical on A_1, A_2 , we find that $I_{[Z_p \ge 0]}$ is independent of $(R, Z_1, \ldots, Z_{p-1})$. Thus the three variables R and (Z_1, \ldots, Z_p) .

Putting together what we have shown above, we have justified the claim made in class that the most convenient way to simulate a uniform unit-vector Z on the surface of the *p*-dimensional unit sphere is to simulate the *iid* $\mathcal{N}(0,1)$ entries of a random multivariate-normal vector X and define $Z = X/||X||_2$.