
STAT 750 Handout on Spherical Symmetry

We saw in class that a joint density on Rp is spherically symmetric (equivalently,
that a random vector with this density is rotationally invariant if and only if for every
p×p orthogonal matrix U , the identity f(Ux) = f(x) holds for x in a set of probability
1. Equivalently, this holds if and only if f(x) has the form h((x21 + · · ·+ x2p)

1/2).

We made a claim in class and sketched a proof idea that for X a rotationally invari-
ant random vector, R = (X2

1 + · · · + X2
p )1/2 = ‖X‖2 and Z = X/R are independent,

with R a scalar-valued random variable with density proportional to h(r) on (0,∞)
and X/R uniformly distributed on the surface of the unit sphere in Rp. We provide
two proofs of this.

First, let’s define the concept of a uniformly distributed random unit-length vector
Z in Rp. Intuitively, that should mean for each open subset B of the surface S of the
unit sphere in Rp,

P (Z ∈ B) = volp−1(B)/volp−1(S)

where volp−1(·) is the calculation volume within the p − 1-dimensional surface of the
unit sphere (the ‘surface area’ when p = 3 and the circumference length-measure when
p = 2). With respect to this p − 1-dimensional surface volume measure, the random
unit vector Z is called uniform if it has constant density, and that constant must be
1/volp−1(S). We evaluate that constant in the next paragraphs of this handout.

Because each small open set B ⊂ S centered around a single unit-vector z can
be regarded as a volume-element that can be carried into a volume element centered
around Uz by an orthogonal matrix U , it follows immediately from the rotational
invariance of X that for any orthogonal U ,

P (R ∈ (r, r + ε), Z ∈ B) = P (R ∈ (r, r + ε), Z ∈ UB)

The collection of sets UB, by choice of small B, covers the whole spherical surface S
and can be used to define or approximate Riemann-type integrals over S. By covering
S with tiny sets UB with very small overlap, we conclude also that P (Z ∈ B |R ∈
(r ∈ (r, r + ε)) depends on B only through its volume and therefore that R and Z are
independent. That is a sketch-proof of the independence and the uniform distribution
of Z. The p-dimensional set {x : ‖x‖2 ∈ (r, r + ε)} is easily seen to be the relative
complement {x : ‖x‖2 ≤ r+ ε} \{x : ‖x‖2 ≤ r}, and its volume is equal to the volume
of the whole unit sphere {x : ‖x‖2 ≤ 1} times (r + ε)p − rp. Assume for convenience
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that f(x) and h(r) are continuous functions, and let Cp = volp({x ∈ Rp : ‖x‖2 ≤ 1}.
Then our argument shows that for small ε,

P (R ∈ (r, r + ε)) =

∫
{x: ‖x‖2∈(r,r+ε)}

h(‖x‖2) dx = Cp h(r) p rp−1 ε + o(ε)

and it follows that the density of R = ‖X‖2 for r ∈ (0,∞) is pCp h(r). On the other
hand, the set {x : ‖x‖2 ∈ (r, r+ ε)} evidently also has volume ε rp−1 · volp−1(S) + o(ε),
so our argument proves also

volp−1(S) = p volp({x : ‖x‖2 ≤ 1}) = p · Cp

The constants in the last paragraph do not depend on the form of the function h(r)
and can therefore be evaluated in the special case where X has iid N (0, 1) components.
Then

h(r) = (2π)−p/2 e−r
2/2 =⇒ 1 =

∫
Rp

h(‖x‖2)dx =

∫ ∞
0

pCp r
p−1 (2π)−p/2 e−r

2/2 dr

It follows by the change-of-variables w = r2/2 that

1 = pCp (2π)−p/2
∫ ∞
0

(2w)p/2−1 e−w dw = pCp (2π)−p/2 2p/2−1 Γ(p/2)

and therefore Cp = πp/2/Γ((p+2)/2). These formulas agree with the common formulas
for area C2 = π and circumference 2C2 = 2π when p = 2, and for volume C3 = 4π/3
and surface-area vol2(S) = 3 · C3 = 4π when p = 3

Finally, we provide a more formal proof of the independence of R,Z using
a slight extension of the Jacobian change-of-variable formula. Suppose that
q : Rp → Rp is a differentiable k-to-1 map such that there are K disjoint subsets
Ak partitioning Rp (which means ∪Kk=1Ak = Rp) and differentiable inverse maps
ψk : R→ Ak such that ψk ◦ q : Ak → Ak is the identity-map. Then if X ∼ f(x) is a
random p-vector, the random vector V = q(X) ∈ Rp has probability density

fV (v) =
K∑
k=1

f ◦ ψk(v) |det(Jψk
(v))| (1)

where as usual Jψk
(v) denotes the Jacobian matrix.
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We apply this formula to the mapping q(x) = (r, z1, . . . , zp−1) where r = ‖x‖2 and
(z1, . . . , zp) = x/r (which can be defined to be the 0-vector when x = 0. Here K − 2,
and the sets Ak are

A1 = {x ∈ Rp : xp ≥ 0} , A2 = {x ∈ Rp : xp < 0}

and the mappings ψk for k = 1, 2 are:

ψk(r, z1, . . . , zp−1) = (rz1, rz2 . . . , rzp−1, (−1)k−1 r
√

1− z21 − · · · z2p−1 ) (2)

Direct calculation of partial derivatives shows that the absolute determinants of the

Jacobians Jψk
are the same and are equal to rp−1

√
1− z21 − · · · z2p−1. It follows from (1)

that the joint density of (R,Z1, . . . , Zp−1) is rp−1 h(r)
√

1− z21 − · · · z2p−1. This is not

particularly convenient as a way to prove the uniform distribution of Z = (Z1, . . . , Zp)
on S, but the factorization of the joint density does prove that R is independent of

(Z1, . . . , Zp−1). By definition, zp = (−1)k−1
√

1− z21 − · · · z2p−1 on Ak for k = 1, 2.

Since the density of (R,Z1, . . . , Zp−1) is identical on A1, A2, we find that I[Zp≥0] is
independent of (R,Z1, . . . , Zp−1). Thus the three variables R and (Z1, . . . , Zp−1) and
I[Zp≥0] are independent, which implies that R is independent of (Z1, . . . , Zp).

Putting together what we have shown above, we have justified the claim made in
class that the most convenient way to simulate a uniform unit-vector Z on the surface
of the p-dimensional unit sphere is to simulate the iid N (0, 1) entries of a random
multivariate-normal vector X and define Z = X/‖X‖2.
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