STAT 750 Handout on Spherical Symmetry

We saw in class that a joint density on RP? is spherically symmetric (equivalently,
that a random vector with this density is rotationally invariant if and only if for every
p X p orthogonal matrix U, the identity f(Uzx) = f(x) holds for x in a set of probability
1. Equivalently, this holds if and only if f(x) has the form h((z}+ - -- + 22)/?).

We made a claim in class and sketched a proof idea that for X a rotationally invari-
ant random vector, R = (X7 + -+ + X2)/? = ||X||; and Z = X/R are independent,
with R a scalar-valued random variable with density proportional to h(r) on (0, 00)
and X/R uniformly distributed on the surface of the unit sphere in R?. We provide
two proofs of this.

First, let’s define the concept of a uniformly distributed random unit-length vector
Z in RP. Intuitively, that should mean for each open subset B of the surface S of the
unit sphere in R?,
P(Z € B) = vol,_1(B)/vol,_1(5)

where vol,_(+) is the calculation volume within the p — 1-dimensional surface of the
unit sphere (the ‘surface area’ when p = 3 and the circumference length-measure when
p = 2). With respect to this p — 1-dimensional surface volume measure, the random
unit vector Z is called uniform if it has constant density, and that constant must be
1/vol,_1(S). We evaluate that constant in the next paragraphs of this handout.

Because each small open set B C S centered around a single unit-vector z can
be regarded as a volume-element that can be carried into a volume element centered
around Uz by an orthogonal matrix U, it follows immediately from the rotational
invariance of X that for any orthogonal U,

P(Re (r,r+¢), Z€eB) = P(Re(r,r+¢), Z€UB)

The collection of sets UB, by choice of small B, covers the whole spherical surface S
and can be used to define or approximate Riemann-type integrals over S. By covering
S with tiny sets UB with very small overlap, we conclude also that P(Z € B|R €
(r € (r,r+¢€)) depends on B only through its volume and therefore that R and Z are
independent. That is a sketch-proof of the independence and the uniform distribution
of Z. The p-dimensional set {x : ||z]l2 € (r,7 + €)} is easily seen to be the relative
complement {z: ||z|2 <r+e}\{z: ||z||2 <r}, and its volume is equal to the volume
of the whole unit sphere {z : ||z|s < 1} times (r 4+ €)? — rP. Assume for convenience



that f(z) and h(r) are continuous functions, and let C,, = vol,({x € R? : |jz|]» < 1}.
Then our argument shows that for small e,

P(RE (rr+¢) = / W) dz = C,h(r)prote + o(e)
{z: ||lzl|2€(r,r+e€)}

and it follows that the density of R = || X ||z for r € (0,00) is pCp h(r). On the other
hand, the set {x : ||z||2 € (r,7 +¢€)} evidently also has volume € r*~! - vol,_1(.5) + o(e),
so our argument proves also

vol, 1(5) = pvol,({z: |zl <1}) = p - G,

The constants in the last paragraph do not depend on the form of the function h(r)
and can therefore be evaluated in the special case where X has iid N(0, 1) components.
Then

h(r) = (2m)P/? e — 1= / h(||z||2)dz = / pC,rP=' (2m) P/ e /2 dy
RP 0
It follows by the change-of-variables w = r?/2 that
1 = pC,(2r) 7?2 / 2w)P? e dw = pC, (2m) P2 27271 (p/2)
0

and therefore C, = 7?/2/T'((p+2)/2). These formulas agree with the common formulas
for area Cy = 7 and circumference 2Cy = 2w when p = 2, and for volume C5 = 47/3
and surface-area voly(S) =3 - C5 = 47 when p = 3

Finally, we provide a more formal proof of the independence of R, Z using
a slight extension of the Jacobian change-of-variable formula. Suppose that
q : R? — RP is a differentiable k-to-1 map such that there are K disjoint subsets
Ay, partitioning R? (which means UL, Ay = RP) and differentiable inverse maps
¥ R — Ag such that i, 0q: Ay — Ay is the identity-map. Then if X ~ f(z) is a
random p-vector, the random vector V' = ¢(X) € RP has probability density

fo() = Y fodu(v)ldet(Jy,(v))] (1)

where as usual Jy, (v) denotes the Jacobian matrix.



We apply this formula to the mapping ¢(z) = (r, 21, . .., 2p—1) where r = ||z||2 and
(21,...,2p) = x/r (which can be defined to be the 0-vector when x = 0. Here K — 2,
and the sets A, are

Aj={xeR: z,>0} |, Ay ={xeR: z,<0}

and the mappings ¢y, for k = 1,2 are:

Ur(r, 21, . ... aZpﬂ) = (rz1, rza ..., TZp—1, (—1)]6717” \/1 - z% - "2571 ) (2)

Direct calculation of partial derivatives shows that the absolute determinants of the

Jacobians Jy, are the same and are equal to 77~ \/ 1 —2f —---22 ;. It follows from (1)
that the joint density of (R, Z1,...,Z,_1) is P~ L h(r) \/1 — 2{ —---z7_;. This is not
particularly convenient as a way to prove the uniform distribution of Z = (Z3,...,Z,)

on S, but the factorization of the joint density does prove that R is independent of

(Z1,...,Zy—1). By definition, 2z, = (—1)F! \/1 — 2 —--zp on A for k= 1,2
Since the density of (R,Zy,...,Z,_1) is identical on Ay, Ay, we find that Ij; >q is
independent of (R, Zy,...,Z,_1). Thus the three variables R and (Zi,...,Z,-1) and

I17,>0) are independent, which implies that R is independent of (Z1,...,Z,).

Putting together what we have shown above, we have justified the claim made in
class that the most convenient way to simulate a uniform unit-vector Z on the surface
of the p-dimensional unit sphere is to simulate the 7d AN(0,1) entries of a random
multivariate-normal vector X and define Z = X/||X||2.



