STAT 770 Nov. 9 Lecture 20
Loglinear Models via Poisson Regression

Reading and Topics for this lecture: Chapter 9 Sections 1-3.
(1) Poisson logLik vs Multinomial logLik (Secs 1.2.5, 9.6.8)
(2) Alternative Side Conditions in Poisson Regression

(3) Transforming Parameters to change Side Conditions



loglik for Poisson versus Multinomial

General setting: data {Yo}M ;, M fixed, >,ma(B8) =1, either
o {Y,}M | ~ Multinom(n, {me(8)}M_;), n nonrandom, or

e Y, ~ indep. Poisson(ng ), n = ¥M .Y, random
If n random, then distribution of {Y;}M , given n Multinom
logLik for Multinomial: log Ly;(8) = M | Y, log(ma(B))
logLik for Poisson: log Lp(8,ng) = (nlog no—no) +>M | Y log ma(B)

Simplification: Likelihood factors, with conditional likelihood
free of [: so inference for B is asymptotically indep. of n/ng
(for large ng) with Observed Info J = — M |y, V%Q log ma (B)
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Loglinear Models are Multinomial GLMs

Now a < (4,7,k) or other multi-index, e.g. i1<I, < J k<K
model (X, W: B= (Ao, {\ o, (M} o, MV HL, {02} j22)

In the next slides, we will discuss choices for explicit side-conditions
by which A£, A2, AW A£2) A7 are determined from g

0gma = Ty Sjmy Sy Tumgiin { 2o +AF 4237 + 2 + 737}
Note one condition determining Ag always is > ,mq¢ = 1. Then

log L(B) = Zle Zj"]:1 2521 Yijk {AO + >‘zX + >‘jZ + A%V T )\{7{2}

= A0+ X Vigd A 25 Vi A+ X0 Yo A + 5055 Yig+ 257
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Poisson Regression

Previous slides say that loglinear models can be fit using Poisson
log-link regression, and the coefficient MLEs are the same with
same distributional properties !

Fitting using glm with factor regressors and default *“contrasts”
gives the estimates for loglinear parameters satisfying side-condition

that level-1 coefficients are O.

Contrasts will be discussed further in R scripts ...



Side Conditions for Loglinear Model (XZ W)

The usual set of side conditions (eg, given by Agresti) is:

)\X_)\Z_AW_AXZ_)\XZ_O,

T AT AL -+ T all z, z

Use these conditions to solve for A&, A7, AWV A{£2) A7 linearly
from 8 components for substitution into Iog L(B) above

Simpler set of side conditions: A = A = AV = \f7 =X\%7 =0

Then logL(B) = M . v, >P | H,:B: with design matrix

1
H = [ E |{I[i(a)=x]}a7 l<x< I'{[[j(a)zz]}a, 1 <2< J‘
1

Uk(a)=wlte 1 <w < K | Uli()=z,j(a)=z1}a 1 <z <1, 1 <2< J]

5



EXxpression for log L Under Sum Side-Conditons

The design-matrix H has dimensions ([JK) x (IJ+ K —1)
a€{l,...,IJK}, and a + (ijk) with i =1i(a), j = j(a), k = k(a)

Under sum side-conditions, it is clear that logL(8) has an
explicit but different representation in terms of 8 and H.

The coefficients Ag, A7, AV, A£Z, A7 are in that case all

linear combinations of 3 entries (eg A\ = — 37 5 A)

Also, the dummy-columns for factor-levels 1 are expressed as
linear combinations of dummies for larger factor-level indices:

e.g., {Ijy=11ta = 1 = Xheo {[i(a)=a])}a



Example: (XZ, W) model with Binary Factors

In this case, | = J = K = 2, design matrix His 8 x5
H = [1 | {[i(a)=2]}a

Uja)y=2]}e | Uk(a)=2] e | U[i(a)=j(a)=2]}a

Let 0,7, 7, vy » ;2 be the coefficients for the loglinear
model with level-1 coefficients =0

Aos AF, AjZ, A A:L?J(.Z coefficients for model with sum-constraints

Claim. For each of these two sets of coefficients, the other can
be defined uniquely such that for all sets of Yi;,w data

Zx,z,w (70 + ’Yf + ’YZZ + ’YZ;V + W;igz) Yazw



Algebraic Proof of Claim in the Example

Starting from the sum involving the \'s, express
AnZ = (A2 =232 = M2+ 280 + A2 + 042 — Ay
Ar =08 = A0 A7, AXZ_ O3 — M1+

and so on. The terms in parentheses automatically are O for
factor levels x,z, or w of 1. Collecting terms, we find with

Ve T =N SN MM ) =M - AT
V=N A AT A, =0 AT AL - ALY

that the first blue line in the Claim is equal to



Algebraic Proof, continued

the first blue line in the Claim is equal to:

Yar Yord VX7 4 S Yaduw WiV 4 S0 Yoo X + 5, Yo 4 122
+n (o + A + M + 2V + M)

It follows that the Claim holds if the ~'s are all replaced by ~*'s,

where 48 = Xg + AF + A2 + AV 4+ A&7

In the Example, the sum-constraints for binary factors imply

Ap = (1)"A3, M = (1725, Ay = (DY A, A2 = (1) TS

SO o =X+ AL — A3 —AF -\, and

B = axas, Y =208 4 =200 — A3F), 74 = 2(0F — \3F)



Mapping Between Coefficient-sets in the Example

The mapping from A = (\g, A3, A4, Ay, A\3¥) to
v = (0, ¥5, 74, 7, v357) is linear and invertible,
(1 -1 -1 -1 1\
0 2 0 0O -2
v= 0 O 2 0O -2

0 0 0 2 0
\0 0 0 0 4)
and the constraint determining A\g is unaffected by this mapping.
Similarly:

>~
Il

Q
>~

\XZ (—1)2t= o N (=Y w
xz A Y22 w 5 72

_ (=1)?
4

(—1)*
PR
v 4

(248 ++37), N (275 + v35)
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R implementation

See topic (4) in Lec19BLogLin.RLog script for discussion of how
to map between the two kinds of side-conditions.

e [ he constraints setting level-1 loglinear coefficients to O are
equivalent to the same side-condition in Poisson regression, which
gives variance-covariance for estimated coefficients

e [ he fitted loglinear coefficients using sum constraints can be
found in the loglm fitted-model output list-component $param.

e Can transform between the two using the C' matrix to obtain

variance-covariance for fitted loglinear model coefficients with

the sum-constraint side condition. This is an exercise in Delta

method and the concepts of this Lecture, carried out next time.
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