STAT 770 Sep. 2 Lecture Part A
Theory for Multinomial Likelihoods & MLE'’s

Reading for today’'s lectures: Chap. 1 in Agresti's book, plus
proofs in Ch. 16 on Asymptotics of MLE's, LRT's.

We review large-sample theory for MLEs and (in 2nd segment)
LRTs for Multinomial Data and draw consequences for Tests
and Confidence Intervals.

Start with Binomial & Multinomial Distributions, then review
MLE theory.



From Last Lecture: Why Binomial and Multinomial ?

When Z, are nonrandom: Nz e = Y1_1 Iz, —. x,= ~ Binom(n,p.)
sum of iid binary r.v.’s, jointly distributed as Multinom(n, {pz.c}(, .))
since each a belongs to only one (z,c¢) = (Za, Xa), With prob. p; c.

Unconditional parameterization, where 6 = {pzc}(, o
and N,4 = > .cc Nz, IS arandom outcome

Sometimes sample data (stratified) fixing N, 4+ =ngz, so that
(Nz.c, c€ C) ~ Multinom(ng, {pc\z}ceC’)
where p., = P(Xa = ¢|Za = 2) = pz,c/ XkeC P2 k
and 0 = {p.,}(,c)czxc IS conditional parameterization
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Basic Definitions for Likelihood and MLE
For discrete observed data Y (e.9. = {(Xqa, Za)}!—1 Or {Xa}l'—1)

and parametric prob. mass function p(y,0) =

HZ:]_ P(Za — Za, Xa — Cq | 9) or HZ’:]_ P(Xa — Cq |Za, — Za, 0)
Likelihood Lik(6;Y)=p(Y,0) as function of 0

and MLE = argmaxyco Lik(6,Y)

often unique, e.g. when prob. mass has exponential family form



Multinomial Likelihood
n sample size, random iid (Z4, Xg) € Z x C = K)
Xg € Cindep., pre=P(Zy=2,Xqg=2¢c), (z,c) eK
Reduced Data: N:c=37_1 Iz —. x,=] : (z,¢) € K

Likelihood for (ordered) unit-level data: n_q pgcg,ZCC;:Za’Xa:Ca]
Likelihood L(6) = L(6; N) for Multinomial {N. .} data:

<Nz,c, (Z,C)E/C) [z0ex pé\,%’c = nl [, 0)ex (pi\,%’c/(Nz,c)Q



Other Forms of Same Likelihood

However the parameters 6 = (pz,¢, (2,¢) € K) are restricted,
the previous 2 likelihoods are proportional, up to factors not

depending on 0.

If Zq variables are fixed along with n, =N, 4 and p,, , and
Xa are |ndep with P(Xa — C | Za — Z) — pC|Z — pz)c/pz’_l_
then the Likelihood for ¢’ = {p¢|.; s again proportional, =

z,C

IT (et I i/ o)) = IO (G 0 i)

2€Z ccC 2cz P24 ccc




Sampling Design, Conditioning & Poisson
Some extensions condition on >—0 >]<V:O Nl Tot
Marginals, e.g. Fisher Exact Test — 00 01] ™0
. . . . 1 N]_O Nll nl
fixes mq,n1,n in Multinomial Tot

mg | mi n

Useful distributional fact: Multinom(n, {p:.}) dist'n for {N. .}
IS identical to the conditional joint distribution of independent
Nz,c ~ Poisson(Apz,c) r.v.'s given 35, .y Nzc=n.

(A good self-contained exercise for review, not to be handed in.)
With this fact, conditioning in multinomial-data setting

can be viewed as further conditioning on indep. Poisson
underlying data.



Parameter Spaces and Statistical Questions

In unconditional parameterization, Categorical Statistics is about
Multinomial Data with parameters {p..}: in interesting cases

parameters are restricted/shared to reflect tabular and regression
structure.

Examples: (a) log(p;c) =ac+ B; or log(p.,) = ac+ Bz
(b) multiway extensions, similar models with (z,c¢) interactions,

(c) extensions reflecting longitudinal ¢'s, or other link functions
relating pz¢'s to E(N:.c)'S

Questions: Tests and Conf. Int's for parameter components,
Predictons of N, . (Classification)



Review: MLE Theory, Sec. 16.2

Collapse (z,c) = k € K, assume data probabilities 6 = {p.c} =
{Pk}keic are > 0 twice continuously differentiable functions of

lower-dimensional parameter 8 in an open subset U C RA

and |K|x d matrix J = (3%%) has full rank d, then for large n

J

with probability — 1 a consistent MLE /3 [ a local maximizer
of locally concave) log L(6(3)) ] exists and is unique on a suf-
ficiently small neighborhood of the ‘true’ parameter 55, and

vn (B — Bp) is asymptotically normally distributed with nonsin-
gular variance matrix V(B8g) about which we will say more later.

Note: there is a unique local solution 8 of 0(8) = {Ni/n}reic
and /n(B8—B)~V/nVglogL(N/n) in probability.



Three Classic Examples

(I) Binomial Proportion X, ~ Bernoulli(p), C = {0,1}, 8 =1p
0= (p,1—p)

N1 =3"_ 1 Xq ~ Binom(n,p), L(0) o« pM1(1—p)"~ M p= Ni/n

(I) Comparing Two Proportions. X,,7Z, € {0,1} fixed.
P(Xe=1|Z4=2,0) =m;, 2z=0,1, 6= (mg,1 —mg, 71,1 —71)

N
L(0) o [I1ogm " (L —7)"#0, MLEs &= (N.1/N. 4, z=0,1)

(III) Multinomial Goodness of Fit. X, C=1{1,..., K}
= P(Xe=k|0), 0= (m, k=1,...,K), 7= Ni/n

Statistical tests and Cls based on # and Likelihood Ratio Tests
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