
STAT 770 Sep. 9 Lecture Part B

LRT in Contingency Table Setting

Reading for this lecture: Agresti Ch. 2 through Sec. 2.2, plus

Ch. 16 through Sec. 16.3.4.

General X2 form of LRT for Contingency Tables.

Special cases of row-column independence in 2× 2 tables,

differences between proportions
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LRT in Contingency Table Setting

Recall: Ya = (Za, Xa) Multinomial with probabilities pz,c

θ = {pz,c : (z, c) ∈ K}, β = (θ1, . . . , θd), d = |K| − 1

L(β;Y) = (multinom. coeff.) ·
∏

(z,c)∈K p
Nz,c
z,c

Lower dimensional model pz,c = πz,c(γ0, λ) is Null Hypothesis

(Many examples will follow !)

So LRT Λ = G2 = −2 log
[
L({πz,c(γ0, λ̂r})

/
L({p̂x,c})

]

= 2
∑

(z,c)∈K
Nz,c log

( Nz,c/n

πz,c(γ0, λ̂r)

)

2



Consequences for General Models

(I) G2 is a goodness-of-fit test statistic for the model

pz,c = πz,c(γ0, λ) (λ general, d− q dimensional, unknown)

(II) G2 = 2
∑
k∈KNk log

(
Nk
nπ̃k

)
with π̃k

√
n-consistent for pk

which means the same as
√
n (π̃k − pk) = OP (1) or

√
n(π̃k−Nk/n) = OP (1) for large n which implies that as n→∞

G2 =
∑
k∈K

(Nk − nπ̃k)2

nπ̃k
+ oP (1) =

∑
k∈K

(Ok − Ek)2

Ek
+ oP (1)

and Wilks’ Theorem gives X2 =
∑
k∈K

(Ok−Ek)2

Ek

D→ χ2
q
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Proof of Assertion (II) on Last Slide

This is a Taylor Series proof, using Nk/(npk)− 1 = oP (1) and

Nk log(Nk/(nπ̃k)) = −Nk log(1− Nk−nπ̃k
Nk

)

= Nk
[
Nk−nπ̃k
Nk

+ (Nk−nπ̃k)2

2N2
k

+ OP
(

(Nk−nπ̃k)3

N3
k

)]
= Nk − nπ̃k + (Nk−nπ̃k)2

2nπ̃k
+ OP

(
(Nk−nπ̃k)3

n2

)
since log(1− z) = −z − z2

2 −OP (z3) for small z.

Sum over k ∈ K to find [using
∑
kNk = n =

∑
k (nπ̃k) ] that

G2 = 2
∑
k∈K

Nk log
(
Nk
nπ̃k

)
=

∑
k∈K

(Nk − nπ̃k)2

nπ̃k
+ OP (n−1/2)
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Row-column independence in 2× 2 Tables

Here Za ∈ {0,1} are random, K = {0,1}2, K = 4 and

β = (γ, λ1, λ2) =
(
p11/(p+1p1+), p+1, p1+

)
with γ = p11/(p+1p1+) = 1 under row-column independence.

The model is π11(γ, λ) = γλ1λ2, π+1 = λ1, π1+ = λ2, π++ = 1.

The unrestricted MLE is p̂zc = Nzc/n, z, c = 0,1, while the
restricted MLE maximizes the likelihood

(λ1λ2)N11 (λ1 − λ1λ2)N01 (λ2 − λ1λ2)N10 ((1− λ1)(1− λ2))N00

which occurs (check it!) at (λ̂1)r = N+1/n, (λ̂2)r = N1+/n

X2 D≈ χ2
1 from (II) above has the familiar form∑

(z,c) (Oz,c − Ez,c)2/Ez,c, with Oz,c = Nz,c, Ez,c = nπz,c
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R Code to Check χ2
1 Distribution

>tmp=array(rmultinom(1e5, 40, prob=c(.16,.24,.24,.36)), c(2,2,1e5))

aux = apply(tmp,3, function(tab2) c(chisq.test(tab2)$stat,

chisq.test(tab2, corr=F)$stat) )

round( rbind(Xsq.corr = quantile(aux[,1], prob=(1:9)/10),

Xsq = quantile(aux[,2], prob=(1:9)/10),

chisq = qchisq((1:9)/10, 1) ), 3)

10% 20% 30% 40% 50% 60% 70% 80% 90%

Xsq.corr 0.000 0.000 0.004 0.038 0.111 0.264 0.508 0.938 1.742

Xsq 0.017 0.067 0.152 0.302 0.444 0.750 1.125 1.710 2.824

chisq 0.016 0.064 0.148 0.275 0.455 0.708 1.074 1.642 2.706

Similar accuracy when n = 80

NB Yates over-corrects badly, used only when
conditioning on marginals!!
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Testing Equality of Row Proportions in 2× 2 Table

In this setting, Za values are fixed by design, so the row-totals
Nz+ = nz are nonrandom and known, and Nz1 ∼ Binom(nz, πz),
with πz = pz1/pz+ .

Here we can take β = (γ, λ) in different ways,

with H0 : γ = 1 and λ = π0 under H0.

Example 1. Relative Risk, RR: β = (π1/π0, π0)

Example 2. Odds Ratio, OR: β =
(
[π1/(1−π1)]

/
[π0/(1−π0)], π0

)
In RR, the restricted MLE (under γ = 1) maximizes[∏1

z=0

(
nz
Nz1

)]
π
N11+N01
0 (1− π0)N10+N00 = c · πN+1

0 (1− π0)N+0

In both RR and OR, λ̂ = N+1/n and Ez,c = nzπc0(1−π0)1−c
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