STAT 770 Sep. 9 Lecture Part B
LRT in Contingency Table Setting

Reading for this lecture: Agresti Ch. 2 through Sec. 2.2, plus
Ch. 16 through Sec. 16.3.4.

General X2 form of LRT for Contingency Tables.

Special cases of row-column independence in 2 x 2 tables,

differences between proportions



LRT in Contingency Table Setting

Recall: Yy, = (Za, Xa) Multinomial with probabilities p; ¢
0 ={pzc: (2,¢) €K}, B=(01,...,04),d=|K|—1

Nz,c

L(B;Y) = (multinom. coeff.)-H(Z,c)EK Pz.c

Lower dimensional model p; .= m;(yg,A) is Null Hypothesis
(Many examples will follow !)

So LRT A=G?= —-2log [L({wZ,c(vo,Xr}) /L({z’o‘x,c})]

N
= 2 E NZ,C |Og < Z,C/?:;\\ )
(2,0)EK 7TZ,C(707 7“)




Consequences for General Models

(I) G2 is a goodness-of-fit test statistic for the model

Pz.c = Tz.c(70, A) (A general, d — g dimensional, unknown)

(1) G? =2}k Ng, log @%) with 7 /n-consistent for p;

which means the same as +/n (7, —pr) = Op(l) or

Vvn(m,—Ni/n) = Op(1l) forlarge n which implies that as n — oo

(O — Ep)?
Ey,

(Nj, — niy)?

G* =) + op(1) = ) +op(1)

kEK Ly” kckK

_ 2
and Wilks’ Theorem gives X2 = D kckK (O’“Ef’“) 3 xg




Proof of Assertion (II) on Last Slide

This is a Taylor Series proof, using N./(npr) — 1 =o0p(1l) and

Ny 10g(Ny,/ (n#y,)) = —Nj,log(1 — ShglTk)
Np—nF Np—np)? Np—nF)3
— Nk[ kN:Wk 4 kQJG%Tk) 4+ OP<( kN%Wk) )}

~ Ni.—ni.)2 Ni—n7.)3
— Nk_nﬂ'k + ( an?ka) + OP(( k:ngmk:) )

since log(l —2) = —z— % — Op(2z3) for small z.

Sum over k € K to find [using Y. Np. = n = > (n7;) ] that

N Ni — nig)?
G#=23" Ny log (—’“) =y WS 6,12
kek nmg kek nmg




Row-column independence in 2 x 2 Tables

Here Z, € {0,1} are random, K ={0,1}2, K =4 and

B = (7, 1, 2) = (pll/(p+1p1+), P41, p1+>
with v =p11/(P+1p14+) = 1 under row-column independence.
The model is 71'11(’}/,)\) = YA1 Ao, T4 = A1, T4 = Ao, T4 4 = 1.
The unrestricted MLE is pzc = Nz¢/n, z,c = 0,1, while the
restricted MLE maximizes the likelihood
(A12A2) ™M1 (A1 = A1) 01 (A — A1 A2)N10 (1 — A1) (1 — Ap)) Voo
which occurs (check it!) at (A1)r = Nyi1/n, (A2)r = N14/n

D
X? = x3 from (II) above has the familiar form
2(370) (Oz,c — Ez,c)z/Ez,c; with Oz,c — Nz,c, Ez,c — N7z,c



R Code to Check x7 Distribution

>tmp=array(rmultinom(le5, 40, prob=c(.16,.24,.24,.36)), c(2,2,1e5))
aux = apply(tmp,3, function(tab2) c(chisq.test(tab2)$stat,
chisq.test(tab2, corr=F)$stat) )
round( rbind(Xsq.corr = quantile(aux[,1], prob=(1:9)/10),
Xsq = quantile(aux[,2], prob=(1:9)/10),
chisq = qchisq((1:9)/10, 1) ), 3)
10%  20%  30% 40% 50% 60% 70% 80%  90%
Xsq.corr 0.000 0.000 0.004 0.038 0.111 0.264 0.508 0.938 1.742
Xsq 0.017 0.067 0.152 0.302 0.444 0.750 1.125 1.710 2.824
chisq 0.016 0.064 0.148 0.275 0.455 0.708 1.074 1.642 2.706

Similar accuracy when n = 80

NB Yates over-corrects badly, used only when
conditioning on marginals!!



Testing Equality of Row Proportions in 2 x 2 Table

In this setting, Z, values are fixed by design, so the row-totals
N,4 = nz are nonrandom and known, and N,; ~ Binom(nz, ),

with 7, = pzl/pz—l— :

Here we can take B = (v,\) in different ways,
with Hpg:~v=1 and X\ =mg under Hj.
Example 1. Relative Risk, RR: g = (w1 /mg, 70)
Example 2. Odds Ratio, OR: 8 = ([771/(1—wl)]/[wo/(l—wo)], 770)

In RR, the restricted MLE (under v = 1) maximizes

N
[Hizo (z(rlzl)}ﬁévlﬁNOl(l — mo) V10T Noo = ¢. (1 — mp) N0

In both RR and OR, A= N,j/n and E..=n.w§(1—m)! ¢
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