STAT 770 Sep. 14 Lecture Part A Bayesian Inference for Binomial and Multinomial

Reading for this lecture:

Section 1.6 in Agresti, also Section 17.5 for some history.

We do a 2-slide review of basic Bayesian ideas, in the old-style setting where posteriors can be obtained analytically because the priors have the special *conjugate* form.

Then we apply the theory directly to estimates and "credible intervals" (the Bayesian analogue of CIs) for multinomial data.

General Setup for Bayesian Inference, I

(discrete) data vector $\underline{\mathbf{Y}} \sim p(\underline{\mathbf{y}}, \beta)$ assumed governed by a parametric model, $\beta \in \mathcal{U} \subset \mathbb{R}^d$

Bayesians view the unknown β as a random d-vector and $p(\underline{y}, \beta)$ as conditional (density or) prob. mass fcn. $P(\underline{Y} = y | \beta)$

Before data: assume known prior density $\beta \sim g(b)$ for r.v. β

After data-collection: posterior density governs probabilities for β r.v. given the fixed dataset, $P(\beta \in B \mid \underline{\mathbf{Y}}) = \int_B f(b \mid \underline{\mathbf{Y}}) db$

$$f(\beta | \underline{\mathbf{y}}) = g(\beta)p(\underline{\mathbf{y}} | \beta) / \int g(b)p(\underline{\mathbf{y}} | b) db$$
, $f(\beta | \underline{\mathbf{Y}}) = g(\beta) \frac{L(\beta, \underline{\mathbf{Y}})}{P(\underline{\mathbf{Y}} = \underline{\mathbf{y}})}$

General Setup for Bayesian Inference, II

Estimation: summary location-statistic for posterior density,

e.g posterior mean
$$\tilde{\beta}^{Bayes} = E(\beta \mid \underline{\mathbf{Y}}) = \int b f(\beta \mid \underline{\mathbf{Y}}) db$$

Other choices like posterior median OK too; mean minimizes posterior MSE $E\left((\beta-\tilde{\beta})^2\left|\underline{\mathbf{Y}}\right.\right)$

Credible Interval: Interval or region $B(\underline{\mathbf{Y}}) \subset \mathbb{R}^d$ such that $P(\beta \in B(\underline{\mathbf{Y}}) \mid \underline{\mathbf{Y}}) = \int_{B(\underline{\mathbf{Y}})} f(b \mid \underline{\mathbf{Y}}) db = 1 - \alpha$

If
$$\beta \in \mathbb{R}$$
, $d = 1$, take $B(\underline{\mathbf{Y}}) = \left(F^{-1}(\frac{\alpha}{2} | \underline{\mathbf{Y}}), F^{-1}(1 - \frac{\alpha}{2} | \underline{\mathbf{Y}})\right)$

interval between quantiles of posterior d.f. $F(b|\underline{y}) = \int_{-\infty}^{b} f(x|\underline{y}) dx$

Conjugate Priors

With respect to data model $p(\underline{\mathbf{y}},b)$, parametrized family of prior & posterior densities $g(b,\mu)$ is called **conjugate** if the posterior for prior $\beta \sim g(b,\mu)$ is $f(b|\underline{\mathbf{Y}}) \equiv g(b,\mu^*), \ \mu^* = \mu^*(\underline{\mathbf{Y}}), \ \text{i.e.,}$

$$g(b) p(\underline{\mathbf{y}}, b) / \int g(x) p(\underline{\mathbf{y}}, x) dx \equiv g(b, \mu^*(\underline{\mathbf{y}}))$$

We will return to this definition later and recall that there is generally a conjugate prior family when the joint probability mass (or density) function has the exponential family form

$$p(\underline{\mathbf{y}}, \beta) = h(\mathbf{x}) \exp \left(q(\beta)' T(\underline{\mathbf{y}}) - C(\beta) \right)$$

(This is a review topic: you should read about it at some point.) We now discuss a special case.

Multinomial and Dirichlet Example

Let $\underline{Y} = \{X_a\}_{a=1}^n$ with $P(X_a = c) = \beta_c$ if $1 \le c \le d$, and $P(X_a = d + 1) = 1 - \beta_1 - \dots - \beta_d$

Consider prior $g(b,\underline{\mu}) = c(\underline{\mu}) \left[\prod_{j=1}^d b_j^{\mu_j-1} \right] (1-b_1-\cdots-b_d)^{\mu_d+1-1}$

where $b_j > 0$, j = 1, ..., d, such that $b_1 + \cdots + b_d < 1$, and $c(\underline{\mu})$ is an integration constant, $\underline{\mu} \in (0, \infty)^{d+1}$.

NB. usually, equivalently, defined on unit (d+1)-dim simplex

Density is called Dirichlet(μ): special case d=1 is Beta(μ_1, μ_2)

Verification of Conjugacy Property, Multinomial Example

Denote
$$\beta_{d+1} = 1 - \beta_1 - \dots - \beta_d$$
. Then

$$g(\beta, \underline{\mu}) \cdot P(\underline{\mathbf{Y}} = \underline{\mathbf{y}} | \beta) = c(\underline{\mu}) \cdot \left[\prod_{j=1}^{d+1} \beta_j^{\mu_j - 1} \right] \cdot \prod_{a=1}^n \beta_{y_a}$$

$$= c(\underline{\mu}) \cdot \left[\prod_{j=1}^{d+1} \beta_j^{\mu_j - 1} \right] \cdot \prod_{j=1}^{d+1} \beta_j^{N_j} \qquad \text{where} \qquad N_j \equiv \sum_{a=1}^n I_{[y_a = j]}$$

Therefore posterior is
$$f(\beta \mid \underline{\mathbf{Y}}) = \frac{c(\mu)}{P(\underline{\mathbf{Y}} = \underline{\mathbf{y}}) \mid_{\underline{\mathbf{y}} = \underline{\mathbf{Y}}}} \prod_{j=1}^{d+1} \beta_j^{\mu_j + N_j - 1}$$

Since this density as fcn of β is $\propto g(\beta, \underline{\mu} + \underline{\mathbf{N}})$ Dirichlet (where $\underline{\mathbf{N}} = (N_1, \dots, N_{d+1})$), it is $= g(\beta, \underline{\mu} + \underline{\mathbf{N}})$

Beta and Dirichlet: Densities & identities

The Beta
$$(\alpha_1, \alpha_2)$$
 density on $(0,1)$ is $\frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} x^{\alpha_1 - 1} (1 - x)^{\alpha_2 - 1}$

Dirichlet(
$$\mu$$
) density on $\{(x_1, ..., x_d) : x_j > 0, x_1 + ... + x_d < 1\}$

is
$$= \Gamma(\sum_{j} \mu_{j}) \prod_{j=1}^{d+1} (x_{j}^{\mu_{j}-1}/\Gamma(\mu_{j}))$$
, $x_{d+1} \equiv 1 - x_{1} - \dots - x_{d}$

Can verify integration constants using Jacobian change-of-variable formula in the identity: for $X_j \sim \text{Gamma}(\mu_j, 1)$ indep.

$$(X_1,\ldots,X_d)/\sum_{j=1}^{d+1}X_j\sim \mathsf{Dirichlet}(\underline{\mu})$$

$$(B_1,\ldots,B_d)\sim \mathsf{Dirichlet}(\underline{\mu}) \ \Rightarrow \ \sum_{j=1}^k B_j\sim \mathsf{Beta}(\sum_{j=1}^k \mu_j,\sum_{j=k+1}^{d+1} \mu_j)$$

Beta and Dirichlet Means & Variances

To find mean of Beta: $\int_0^1 x \cdot \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} x^{\alpha_1 - 1} (1 - x)^{\alpha_2 - 1} dx$

$$= \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} / \left[\frac{\Gamma(\alpha_1 + \alpha_2 + 1)}{\Gamma(\alpha_1 + 1)\Gamma(\alpha_2)} \right] = \frac{\Gamma(\alpha_1 + \alpha_2)\Gamma(\alpha_1 + 1)}{\Gamma(\alpha_1 + \alpha_2 + 1)\Gamma(\alpha_1)}$$

$$\text{Mean} = \frac{\alpha_1}{\alpha_1 + \alpha_2}, \quad \text{similarly} \quad \text{Variance} = \frac{\alpha_1 \alpha_2}{(\alpha_1 + \alpha_2)^2 (\alpha_1 + \alpha_2 + 1)}$$

For $\sum_{j=1}^k B_j$ based on $\underline{B} \sim \text{Dirichlet}(\underline{\mu})$, put $\alpha_1 = \sum_{j=1}^k \mu_j$, and $\alpha_2 = \sum_{j=k+1}^{d+1} \mu_j$ to get mean and variance formulas.