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STAT 770 Handout on Power for Tests in GLMs

This handout is about finding power and sample-size formulas, in Score and Waldtests
about Generalized Linear Model parameters, based on local (contiguous) alternatives. The
derivation of these formulas is based on somewhat advanced probability theory techniques,
but the resulting formulas are directly applicable and interpretable by the applied statistician.

This topic is not covered in the Categorical Data Analysis book, except indirectly in
talking about special power and sample-size formulas, for example in Sections 6.4 and 6.6.
The technical derivations and formulas given in this handout can be used to make precise
sense of assertions in Agresti, and we give a couple of examples of this, with another example
to be worked out by students in an upcoming Homework Problem set.

Consider a Generalized Linear Model with fixed regressors {Xi}ni=1 ⊂ Rp, independent
outcome data Yi ∼ f(y, θi) ≡ h(y) exp(θiy− c(θi)) leading to mean µi = c′(θi) and variance
function v(µi) = c′′((c′)−1(µi)), and link function g, so that g(µi) = X ′iβ for unknown
parameter β ∈ Rp. Here the parameters θi are assumed scalar, falling within the natu-
ral parameter interval which is assumed open (but possibly infinite). In this setting, the
usual regularity conditions hold for large-sample asymptotic normality of MLE’s and for
asymptotic equivalence of Score and Wald tests. (Additional regularity conditions needed
below for the local alternatives HA,n to have the contiguity propery are also satisfied in this
case.) See the Handout (3). of the STAT 770 Course Web-page for details of the asymptotic
relationships between MLEs and Wald and Score Test statisticss.

We consider a setting in which β = (γ, λ), γ ∈ Rq, λ ∈ Rp−q, and it is desired to
test H0 : γ = 0 versus altenatives, and to derive sample-size formulas based on formulas
for power of the Score Test of H0 against nearby alternatives. The theory leading to such
formulas is based on the notion of contiguous alternatives. This is a somewhat advanced
topic that can be found in books like Bickel and Doksum’s (1977) Mathematical Stistics
book in simplified fom, and more fully in the advanced book Asymptotic Statistics (1998)
by A. van der Vaart or the monograph Semiparametric Theory and Missing Data (2006) by
A. Tsiatis.

For simplicity of assumptions and formulas, we restrict to the case where the underly-
ing regressor variables Xi were themselves generated iid from a fixed (unchanging, known)
probability law on Rp, and where the link function g is canonical , which means that θi =
X tr
i β, or equivalently means that g−1(y) ≡ c′(y). In that case, the family of alternatives

HA,n : β = (0, λ) + b/
√
n for a fixed specified b ∈ Rp can be shown to be contiguous to

H0 : γ = 0, which means that any sequence Zn of random variables that converge to 0 in
probability as n → ∞ under P(0,λ0) (where β0 = (0, λ0) is a fixed parameter value within
H0) must also converge to 0 in probability under P(0,λ0)+b/

√
n. As a further item of notation,

let b be decomposed into its initial q-dimensional and final (p− q)-dimensional subvectors as
b = (bγ, bλ).

1



A. Wald and Score Statistic Large-Sample Asymptotics

We start with some notation for Score Statistics and Observed and theoretical Information
matrices. The Likelihood L(β) ≡ L(γ, λ) =

∏n
i=1 f(Yi, X

tr
i β) is the one given for data Yi

under the exponential-family model with density f , treating the Xi predictors as fixed. Let
β̂ = (γ̂, λ̂) denote the unrestricted maximum likelihood estimator, which exists and is unique
as a solution of ∇β logL(β) = 0 because of the strict log-concavity of the exponential-family

likelihood, with probability converging to 1 in large samples. Similarly, λ̂r denotes the
restricted maximum likelihood estimator of λ when γ is restricted to be equal to 0, i.e.,

λ̂r solves ∇λ logL(0, λ) = 0

The Wald test statistic for H1 : β = β0 is given by Zn ≡ Ĵ−1/2 (β̂ − β0), and the Wald
test statistic for H0 : γ = 0 is given by

Z̃n =
{

(Ĵ−1)γγ
}−1/2

γ̂ = (Ĵγγ − ĴγλĴ−1λλ Ĵλγ)
1/2 γ̂ (1)

where Ĵ = J(β̂) is the usual observed information matrix and we define the general negative
Hessian matrix of the log-likelihood by the block decomposition

J(β) =
( Jγγ Jγλ
Jλγ Jλλ

)
= −∇⊗2β logL(β) = −∇⊗2β logL(γ, λ)

where Jγγ is p × p, Jλγ = J trγλ is a (p − q) × p matrix, and Jλλ is (p − q) × (p − q). The
score test statistic for H0 : γ = 0 is

Sn = (J̃γγ − J̃γλJ̃−1λλ J̃λγ)
−1/2 ∇γ logL(0, λ̂r) (2)

where the restricted observed information matrix J̃ = J(0, λ̂r). With reference to the
Asymptotics Handout http://www.math.umd.edu/∼slud/s701.S14/MLEpdim.pdf, (3) on
the course web-page, here are several useful statements about convergence in probability
that are known from MLE theory to hold under the null hypothesis:

n1/2
(
β̂ −

(
0

λ0

)
− Ĵ−1∇β logL(0, λ0)

)
P−→ 0 (3)

Sn − (J̃γγ − J̃γλJ̃−1λλ J̃λγ)
−1/2 (∇γ − J̃γλJ̃−1λλ∇λ

)
logL(0, λ0)

P−→ 0 (4)

√
n (λ̂r − λ0) −

√
n Ĵ−1λλ ∇λ logL(0, λ0)

P−→ 0 (5)

n−1 J̃ − I(0, λ0)
P−→ 0 , n−1 Ĵ − I(0, λ0)

P−→ 0 (6)

Here J, Ĵ , J̃ are forms of full-sample information and grow approximately proportionately
to n, while I always denotes per-observation Fisher Information and (when Xi are iid)
does not depend on n. In addition to these, or easily derived from (1), (4) and (6), is the
asymptotic equivalence of the Wald and Score test statistics under H0:

Z̃n − Sn
P−→ 0 (7)
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Therefore, using the property mentioned above that HA,n is a family of contiguous alter-
natives , the same four statements (3)-(6) about convergence in probability hold also under
the densities f(y,X tr

i β) when β = (0, λ0) + b/
√
n under HA,n. In the following manipula-

tions with formulas we define, for ease of writing, the q × q matrix notation

Dγ = Iγγ − Iγλ I−1λλ Iλγ , I(0, λ0) =
( Iγγ Iγλ
Iλγ Iλλ

)
= −E(0,λ0)

[
∇⊗2β logL(0, λ0)

]
(8)

B. Simplified Statistic Expressions under Canonical GLM

Now we make these expressions more concrete and explicit using the formulas for log-
likelihood and its gradient under the canonical-link GLM. The formula that we derived
in class (see for example Lecture 12 Slide 5) for the gradient of GLM log-likelihood at a
general parameter β is:

∇β logL(β) =
n∑
i=1

Xi
Yi − µi

g′(µi) v(µi)
, J(β) = −

n∑
i=1

Xi∇tr
β

( Yi − µi
g′(µi) v(µi)

)
While we could have proceeded to develop asymptotic expressions for this general-link GLM
setting, for simplicity we are restricting to the case of canonical link, with γ the initial q-
dimensional subvector of the β parameter vector. Let Xi =

(
ξi
ζi

)
denote the decomposition of

the p-vectors Xi into q-dimensional and (p− q)-dimensional sub-vectors, respectively ξi, ζi.
Then, in our setting g′(µ) v(µ) ≡ 1, and

∇β logL(β) =
n∑
i=1

(
ξi
ζi

)
(Yi − µi,0) , J̃ = J(0, λ̂r) =

n∑
i=1

v(µ̂i,r)XiX
tr
i (9)

where

µi,0 = g−1(X tr
i

(
0

λ0

)
) = g−1(ζtri λ0) , µ̂i,r ≡ g−1(X tr

i

(
0

λ̂r

)
) = g−1(ζtri λ̂r)

By (4), (5) and (7) together with these GLM expressions, under HA,n we obtain

Z̃n = Sn + oP (1) =
[
nDγ]

−1/2
n∑
i=1

(
ξi − Iγλ(Iλλ)−1 ζi) (Yi − µi,0) + oP (1) as n→∞

(10)
and by (6), the blocks of I are estimating by n−1 times the corresponding blocks
of Ĵ or J̃ , where

Ĵγγ =
n∑
i=1

v(µ̂i,r) ξi ξ
tr
i , Ĵλγ =

n∑
i=1

v(µ̂i,r) ζi ξ
tr
i , Ĵλλ =

n∑
i=1

v(µ̂i,r) ζi ζ
tr
i
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C. Power and Sample-Size Formulas

We continue our reasoning by noticing that Yi in the summation of (10) is centered at the
value µi,0 appropriate to H0. To understand this expression asymptotically also under HA,n,
we consider these centered terms under HA,n with the aid of Taylor expansions, as follows:

EHA,n(Yi) = g−1(ζtri λ0 + btrXi/
√
n) ≈ µi,0 + (g−1)′(µi,0) b

trXi/
√
n + oP (1/

√
n)

So, since (g−1)′(µ) = (c′)′(µ) = c′′(µ) = v(µ) in the canonical-link setting,

Yi − µi,0 = Yi − EHA,n(Yi) + v(µi,0) b
trXi/

√
n + oP (1/

√
n) (11)

Combining (10) and (11), we find

Sn = D−1/2γ

1

n

n∑
i=1

(
ξi − Iγλ (Iλλ)−1 ζi

) {√
n(Yi − EHA,n(Yi)) + v(µi,0)X

tr
i b
}

+ oP (1)

Since Yi−EHA,n(Yi) have mean 0 and variance c′′(ζtri λ0 +btrXi/
√
n) = v(µi,0)+oP (1) (uni-

formly in i, when with probability converging to 1 for large n, the vectors Xi are uniformly
o(
√
n) for 1 ≤ i ≤ n) under HA,n, the definitions of J, I and (6) imply that under HA,n

Sn = (Dγ)
−1/2 1√

n

n∑
i=1

(
ξi − Iγλ(Iλλ)−1 ζi

)
(Yi − EHA,n(Yi)) + (Dγ)

1/2 bγ

where recall b =
(
bγ
bλ

)
, and thus

Sn −→ N
(

(Dγ)
1/2 bγ, Iq×q

)
in distribution as n→∞ (12)

The convergence in (12) quickly leads to power and sample-size formulas for hypothesis
tests in problems related to our categorical data analysis topics. These tests are generally
score tests or tests asymptotically equivalent to score tests, where in the test statistic is
Tn ≡ ‖Sn‖2 =

∑q
j=1 S

2
n,j. The large-sample limiting power of such a test, which reduces to

an ordinary two-tailed which rejects when |Sn| ≥ zα/2, is known to be

P (‖Sn‖22 ≥ χ2
q,α) = 1− pchisq(χ2

q,α, q, b
tr
γ Dγ bγ) (13)

an upper-tail probability for the noncentral chi-square distribution with q degrees of
freedom and noncentrality parameter ‖D1/2

γ bγ‖22 = btrγ Dγ bγ.

This formula allows one to determine the sample size needed to achieve a specified power
against an alternative γ1 ∈ Rq. Suppose we are designing an experiment with known β1 =
(γ1, λ1), Dγ, and want to know how large n must be to achieve power ≥ 1− δ against this
fixed alternative. Let us assume that ‖γ1‖2 > 0 is small, necessitating an n that is at least
moderately largel. To find this n, we view λ0 = λ1 and γ1 = bγ/

√
n, b = (bγ, 0), and equate

1− δ = 1− pchisq
(
χ2
q,α, q, n γ

tr
1 Dγ γ1

)
) (14)
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The matrix Dγ would either be estimated by n−1
∑n

i=1 v(g−1(λtr1 ζi))ξi ξ
tr
i if the sequence

{Xi}ni=1 is known, or else would be calculated as the expectation of this expression if the
distribution of the iid variables Xi is known or assumed.

When n is large and q = 1, an approximate solution of (14) would be

1− δ = 1−Φ(zα/2− |γ1D1/2
γ |
√
n) + Φ(−zα/2− |γ1D1/2

γ |
√
n) ≈ 1−Φ(zα/2− |γ1D1/2

γ |
√
n)

and solve

δ = Φ(zα/2 − |γ1|
√
nDγ) =⇒ n ≈

(
(zδ + zα/2)

/
(D1/2

γ γ1)
)2

(15)

We next consider the use of these power and sample-size formulas in a couple of examples.

D. Comparing Power of Trend versus General-Alternative Tests

D.1 Score test in K × 2 table

Consider the data structure of Agresti‘s Sec. 5.3.7, in our notation for a K × 2 table. Fix
numbers of observations nk, k = 1, . . . K and , and let n =

∑K
k=1 nk. Fix a set of known

nonnegative ‘scores’ xk, increasing with respect to k, quantifying the (hypothesized) effect
of a treatment, and x1 = 0 without loss of generality. Let Ak = {n1 + · · ·nk−1 + 1, . . . ,
n1 + · · ·+ nk} denote the index set of i’s for which observations Yi ∼ Binom

(
1, plogis(a0 +

a1xk)
)

are independent and Xi =
(
ξi
1

)
=
(
xk
1

)
. This is a logistic regression model as in

earlier sections, with v(µi) ≡ µi(1−µi), for which we consider a score test of the hypothesis
H0 : a1 = 0. Here β = (a1, a0), with γ = a1, λ = a0. Assuming that not all of the
observations Yi are the same (i.e., not all 0 and not all 1), it is easy to check that the
restricted MLE for a0 puts

â0,r = logit(Ȳ ) , µ̂i,0 ≡ Ȳ , Ȳ = n−1
∑n

i=1 Yi

From this, it follows by definition that

J̃ = Ȳ (1−Ȳ )
∑
i=1

XiX
tr
i = Ȳ (1−Ȳ )

K∑
k=1

nk

(
xk
1

)(
xk
1

)tr
, Dγ =

Ȳ (1− Ȳ )

n

K∑
k=1

nk (xk−ξ̄)2

where ξ̄ ≡ n−1
∑n

i=1 ξi = n−1
∑K

k=1 nk xk. Therefore the score statistic Sn in (2) is
directly calculated equal to the Cochran-Armitage Trend Test statistic

∑n
i=1(ξi − ξ̄) ·

(Yi − Ȳ )
/ [∑K

k=1 nk (xk − ξ̄)2
]1/2

which is given as (5.7) and discussed in the present
context at the top of p. 179.

We find the power of this Score Test against two specific contiguous alternatives.

(i) First: we consider the alternatives HA,n : a1 = a/
√
n. The power of the score test

against HA,n is given by (12) or (13) as

1− pchisq(χ2
1,α, 1, a2Dγ) = 1− Φ(zα/2 − |a|Dγ) + Φ(−zα/2 − |a|Dγ) (16)
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(ii) Second, we consider local alternatives to H0 that show single-k differences from nullity
rather than trend, such as HB,n : πk = plogis

(
a0 + h I[k=1]/

√
n
)
. The score-statistic power

formula (13) does not apply directly, but the expression of Sn in the Cochran-Armitage form
does. Recall that Ak is the index-set of i’s for which n1 + · · ·+nk−1 < i ≤ n1 + · · ·+nk, so
that A1 = {1, . . . , n1}. Using (11), we find that

EHB,n(Yi − Ȳ ) = (h/
√
n)
(
I[i≤n1] −

n1

n

)
+ o(1/

√
n)

so that the conditional expectation of Sn given {Xi}ni=1 is

EHBn
(
Sn | {Xi}ni=1

)
=
( h√

n
(n1(x1 − ξ̄)

) / [ K∑
k=1

nk (xk − ξ̄)2
]1/2

+ o(1/
√
n) < 0

Here we have used x1 = 0, and since the variance of the Cochran-Armitage statistic under
HB,n is still approximately 1 as n→∞, we conclude that the power of Sn against alternatives
in HB,n is actually less than α.

D.2 General-alternative X2 test in K × 2 table

If, in the setting of Section D.1, yk1 ≡
∑

i∈Ak Yi and yk0 ≡ nk−yk1, then the data ykj are in
the form of a K × 2 table with two ordinal factors, but Yi still obeys a canonical-link GLM.
We compute the local (contiguous-alternative) power against alternatives of a size-α score
test of H0 : π1 = π2 = · · · = πK . This test, with the same null-hypothesis but a richer set
of alternatives, may be viewed as the score test for β = (γ, a0), within the saturated model
where γ = (γ1, . . . , γK−1) satisfy πi = plogis

(
γtr(I[k=2], . . . , I[k=K]) + a0

)
for i ∈ Ak.

The associated regression variables are Xi = (ξi, ζi) = (I[k=2], . . . , I[k=K], 1) (with ζi ≡ 1)
for i ∈ Ak. Here we find under H0 : γ = 0 that X tr

i β = a0 and µi = µ0 = plogis(a0) for
all i, and

J(β) = µ0(1− µ0)


n2 0tr 0 n2

0
. . . 0

...
0 0tr nK nK
n2 · · · nK n

 ,

Dγ = µ0(1− µ0)


 n2 0tr 0

0
. . . 0

0 0tr nK

 − 1

n

 n2
...
nK


 n2

...
nK


tr 

In addition, again assuming that Ȳ 6= 0, 1, the restricted MLE of a0 is again â0,r = logit(Ȳ ),
so that µ̂i,r ≡ Ȳ .

We now consider the behavior of Score statistic (2) of H0 versus contiguous alternatives
of the form HC,n : β = (bγ/

√
n, a0). As long as all ratios nk/n tend to positive limits as

n→∞, the score statistic is asymptotically equivalent to the display preceding (12), i.e. to

D−1/2γ

1√
n

K∑
k=1

 I[k=2] − n2/n
...

I[k=K] − nK/n

 (yk1 − nkȲ )

6



Then the score test Tn = ‖Sn‖22 is asymptotically χ2
K−1 distributed under H0, and can be

seen using (12) to be noncentral chi-square distributed under HC,n with degrees of freedom
K − 1 and noncentrality parameter

n−1 btrγ Dγ bγ = n−1 µ0(1− µ0)
[ K∑
k=2

nk b
2
γ,k−1 − n−1

( K∑
k=2

nk bγ,k−1

)2]
We can apply this limiting distributional result to find the power of the score test in this
section versus the alternatives (i) and (ii) considered in subsection D.1. In (i), bγ,k−1 = axk,
for k = 2, . . . , K, while in (ii), the alternative is essentially bγ = −(1, 1, . . . , 1)h. Thus the
power for the test based on Tn versus alternatives (i) is

1 − pchisq
(
χ2
K−1,α, K − 1, a2µ0(1− µ0)

1

n

n∑
k=1

nk(xk − X̄)2
)

and the power versus alternatives (2) is

1 − pchisq
(
χ2
K−1,α, K − 1, h2µ0(1− µ0)

n1(n− n1)

n2

)
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