STAT 770 Oct. 5 Lectures
GLMs — Information & Estimating Equations

Reading and Topics for this lecture: Chapter 4 through Sec. 4.3
(1) Score Estimating Eq’'n, Observed Information
(2) Logistic Regression
(3) Poisson Regression
(4) GLM as generalization: Exponential Families

(5) R coding — Function glm



Score Equation — Observed Information
Model f(z;,0), iiddata Xji,...,Xn, logL(0) =37 4109 f(X;,0)

Calculus-maximizer & MLE satisfies the score equation:

8/06,

V, log L(0) = ( ) = Y. Vylog f(X;,0) = 0

/80,

Taylor expansion (Mean Value Thm, no remainder) says:
0 = Viog L(f) = Viog L(6g) + VVlog L(6*) (§ — 0p)

= Vlog L(00) — { — V&2 log L(6*) } (8 — o)

Observed Information: put J = —V®2 log L(0)



Observed Information, II

Observed Information: via Law of Large Numbers

J = —V®2 |ogL(0) ~ n- E(—V®2log f(X1,00)) Fisher Info

So from the previous slide

0 ~ %Vlog L(6g) — {% J}{\/ﬁ(é—eo)} and

V(8 —60) ~ (nJ71) ¥, Viog f(X;,60)

Observed Information is the Hessian (matrix of 2nd partial
deriv’'s) of negative loglikelihood given by MLE software.
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Logistic Regression Estimating Equation

Logistic Regression is a model for binary Y; given X;

logitP(Y; =1|X;) = X8, logit(xz) = log <ﬁ) log-odds
P(Y; = 1|X;, B) = P Xij(1 + PX0) plogis(z) = 15

Data {(Y;, X))} 4, L(B) =1l Kﬂ)y@ (4)1_5/1

14ef'Xi 145X
logL.ik log L(B) = X [Yz B'X; — log (1 "'eﬁlXi)]
Equation: Viog L(B) = ¥, X, [v;— <Y | = o
quation: og L(B) = >iq Z[ a 1_|_€B’XJ

Compare least-squares estimating equation !



Poisson Regression Estimating Equation

Poisson Regression: model for Poisson counts Y; given X;

log {E(YHXZ-)} = X/ , Poisson rate \; = eP'Xi for Y;

P(Y;=k|X;, 8) = e YA7/k! = dpois(k, \;)

Data {(Y;, X;)}i—q, L(B) =11~ [exp < — eﬁ’)@;) eYi B’Xi]

logLik log L(B) = X4 [Yz B'X; — eB’Xi]

Equation: Vieg L(B) = Sy X;|Y; — e#Xi] = 0




Exponential Families and GLM'’s

Exponential families have densities f(y,0) = 9 TW)—c(0) p(y)

6 is the natural parameter (not always the simplest parameter)

Examples: (1) Binom(k,n) , p(y,w)= (k)wy(l—w)’f—y

So

(2)

Y
p(y,m) o exp (ylog(1%5) + klog(1 — 7)), 6 =log(;Z-)

and 1—r=(14+e)"1 = ¢(0) = klog(1+¢?))
Poisson(\) , p(y,7) = 2—3!16_)\ = % exp (ylog(A) — >\>

So #=log()\), c(0)=c¢€ in this example.



Quick Facts about (Natural) Exponential Families
(3) 455y p(y,0) =0 = () = Ey(T(Y1))

(b) for Y1,...,Yn, logL() =7y [0'T(Y;) — c(6)]

IS strictly concave with MLE defined uniquely, if it exists, by
d(0) = Eg(T(Y1)) =n~1¥" , T(Y;) Score Eq’n, GMOM est.

Next step is to combine the modeling ideas from the Logistic
and Poisson Regression slides into a unified “Generalized Linear
Modeling"’ framework, introduced in Sec. 4.1 and told in more
detail in Sec. 4.4 of Agresti.



Ingredients and Terminology for GLMs
Y; response variables satisfying exp. family model Y, ~ f(y,6;)
X, (vector) regressor variables entering model via n; = 8'X;
;  cond. expectation of Y, given X;
6, monotonically related to u; = [yf(y,0;)dy through model
g(u;) =mn; link function ¢ monotonic, smooth

GLM contains relationships B +— n; — p; — 6;

specifying likelihood L(B8) = I['—; f(Y;,6;)



Estimating Equation for GLM
Next time derive in detail the Score Equation Vglog L(8) =0

We find that this is an Estimating Equation sum of iid terms,
sketch theory to show that estimator B solving it makes

\/ﬁ(g—ﬁ)—D)./\/'(O,V) as n — oo
iIf ¢g(u;) =mn; hold for iid data even without the density model.
Some simplifications occur when link is canonical,
i.e. mn; is the natural parameter for the exponential-family

(as in our 2 examples).

Now look at R coding, in glmRcode.RLog



