STAT 770 Oct. 5 Lectures GLMs – Information & Estimating Equations

Reading and Topics for this lecture: Chapter 4 through Sec. 4.3

- (1) Score Estimating Eq'n, Observed Information
- (2) Logistic Regression
- (3) Poisson Regression
- (4) GLM as generalization: Exponential Families
- (5) R coding Function glm

Score Equation – Observed Information

Model $f(x_i, \theta)$, iid data X_1, \dots, X_n , $\log L(\theta) = \sum_{i=1}^n \log f(X_i, \theta)$

Calculus-maximizer $\hat{\theta}$ MLE satisfies the score equation:

$$\nabla_{\theta} \log L(\theta) = \begin{pmatrix} \partial/\partial \theta_1 \\ \vdots \\ \partial/\partial \theta_p \end{pmatrix} = \sum_{i=1}^n \nabla_{\theta} \log f(X_i, \theta) = 0$$

Taylor expansion (Mean Value Thm, no remainder) says:

$$0 = \nabla \log L(\widehat{\theta}) = \nabla \log L(\theta_0) + \nabla \nabla^{tr} \log L(\theta^*) (\widehat{\theta} - \theta_0)$$
$$= \nabla \log L(\theta_0) - \left\{ -\nabla^{\otimes 2} \log L(\theta^*) \right\} (\widehat{\theta} - \theta_0)$$

Observed Information: put $J = -\nabla^{\otimes 2} \log L(\widehat{\theta})$

Observed Information, II

Observed Information: via Law of Large Numbers

$$J = -\nabla^{\otimes 2} \log L(\widehat{\theta}) \approx n \cdot E(-\nabla^{\otimes 2} \log f(X_1, \theta_0))$$
 Fisher Info

So from the previous slide

$$0 \approx \frac{1}{\sqrt{n}} \nabla \log L(\theta_0) - \left\{ \frac{1}{n} J \right\} \left\{ \sqrt{n} \left(\hat{\theta} - \theta_0 \right) \right\}$$
 and

$$\sqrt{n} (\widehat{\theta} - \theta_0) \approx (n J^{-1}) \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \nabla \log f(X_i, \theta_0)$$

Observed Information is the Hessian (matrix of 2nd partial deriv's) of negative loglikelihood given by MLE software.

Logistic Regression Estimating Equation

Logistic Regression is a model for binary Y_i given X_i :

$$\operatorname{logit} P(Y_i = 1 \mid X_i) = X_i'\beta$$
, $\operatorname{logit}(x) = \operatorname{log}\left(\frac{x}{1-x}\right) \operatorname{log-odds}$

$$P(Y_i = 1 | X_i, \beta) = e^{\beta' X_i} / (1 + e^{\beta' X_i})$$
 $plogis(x) = \frac{e^x}{1 + e^x}$

Data
$$\{(Y_i, X_i)\}_{i=1}^n$$
, $L(\beta) = \prod_{i=1}^n \left[\left(\frac{e^{\beta' X_i}}{1 + e^{\beta' X_i}} \right)^{Y_i} \left(\frac{1}{1 + e^{\beta' X_i}} \right)^{1 - Y_i} \right]$

logLik
$$\log L(\beta) = \sum_{i=1}^{n} \left[Y_i \beta' X_i - \log \left(1 + e^{\beta' X_i} \right) \right]$$

Equation:
$$\nabla \log L(\beta) = \sum_{i=1}^{n} X_i \left[Y_i - \frac{e^{\beta' X_i}}{1 + e^{\beta' X_i}} \right] = 0$$

Compare least-squares estimating equation!

Poisson Regression Estimating Equation

Poisson Regression: model for Poisson counts Y_i given X_i :

$$\log \left\{ E(Y_i \mid X_i) \right\} = X_i' \beta$$
 , Poisson rate $\lambda_i = e^{\beta' X_i}$ for Y_i

$$P(Y_i = k \mid X_i, \beta) = e^{-\lambda_i} \lambda_i^k / k! = \text{dpois}(k, \lambda_i)$$

Data
$$\{(Y_i, X_i)\}_{i=1}^n$$
, $L(\beta) = \prod_{i=1}^n \left[\exp \left(-e^{\beta' X_i} \right) e^{Y_i \beta' X_i} \right]$

logLik
$$\log L(\beta) = \sum_{i=1}^{n} \left[Y_i \beta' X_i - e^{\beta' X_i} \right]$$

Equation:
$$\nabla \log L(\beta) = \sum_{i=1}^{n} X_i \left[Y_i - e^{\beta' X_i} \right] = 0$$

Exponential Families and GLM's

Exponential families have densities $f(y,\theta) = e^{\theta'T(y)-c(\theta)}h(y)$

 θ is the **natural parameter** (not always the simplest parameter)

Examples: (1)
$$\mathsf{Binom}(k,\pi)$$
 , $p(y,\pi) = \binom{k}{y} \pi^y (1-\pi)^{k-y}$

- So $p(y,\pi) \propto \exp\left(y\log(\frac{\pi}{1-\pi}) + k\log(1-\pi)\right), \quad \theta = \log(\frac{\pi}{1-\pi})$ and $1-\pi = (1+e^{\theta})^{-1} \Rightarrow c(\theta) = k\log(1+e^{\theta})$
- (2) Poisson(λ), $p(y,\pi) = \frac{\lambda^y}{y!} e^{-\lambda} = \frac{1}{y!} \exp\left(y \log(\lambda) \lambda\right)$ So $\theta = \log(\lambda)$, $c(\theta) = e^{\theta}$ in this example.

Quick Facts about (Natural) Exponential Families

(a)
$$\frac{d}{d\theta} \sum_{y} p(y, \theta) = 0 \Rightarrow c'(\theta) = E_{\theta}(T(Y_1))$$

(b) for Y_1, \ldots, Y_n , $\log L(\theta) = \sum_{i=1}^n \left[\theta' T(Y_i) - c(\theta) \right]$ is strictly concave with MLE defined uniquely, if it exists, by

$$c'(\theta) = E_{\theta}(T(Y_1)) = n^{-1} \sum_{i=1}^{n} T(Y_i)$$
 Score Eq'n, GMOM est.

Next step is to combine the modeling ideas from the Logistic and Poisson Regression slides into a unified "Generalized Linear Modeling" framework, introduced in Sec. 4.1 and told in more detail in Sec. 4.4 of Agresti.

Ingredients and Terminology for GLMs

- Y_i response variables satisfying exp. family model $Y_i \sim f(y, \theta_i)$
- X_i (vector) regressor variables entering model via $\eta_i = \beta' X_i$
- μ_i cond. expectation of Y_i given X_i
- θ_i monotonically related to $\mu_i = \int y f(y, \theta_i) dy$ through model
- $g(\mu_i) = \eta_i$ link function g monotonic, smooth
- GLM contains relationships $\beta \mapsto \eta_i \mapsto \mu_i \mapsto \theta_i$ specifying likelihood $L(\beta) = \prod_{i=1}^n f(Y_i, \theta_i)$

Estimating Equation for GLM

Next time derive in detail the Score Equation $\nabla_{\beta} \log L(\beta) = 0$

We find that this is an **Estimating Equation** sum of iid terms, sketch theory to show that estimator $\tilde{\beta}$ solving it makes

$$\sqrt{n}(\tilde{\beta}-\beta) \stackrel{\mathcal{D}}{\to} \mathcal{N}(\mathsf{0},V) \quad \text{as} \quad n \to \infty$$

if $g(\mu_i) \equiv \eta_i$ hold for iid data even without the density model.

Some simplifications occur when link is canonical, i.e. η_i is the natural parameter for the exponential-family (as in our 2 examples).

Now look at R coding, in glmRcode.RLog