STAT 770 Oct. 26 Lecture 16
GLM model selection, checking, and alternatives

Reading and Topics for this lecture: Chapters 5, 7.
(1) Rationale for Stepwise Model Selection
(2) Computational Issues
(3) Checking GLM Goodness of Fit — Binning (Sec. 5.2.5)
(4) Hosmer-Lemeshow Test
(5) GLMs and ‘Tests for Trend' in I x 2 Tables (Sec. 5.3.4)

(6) Other Links, other Models (Secs. 7.1, 7.3)



Wilks T heorem & Variable Selection

For maximal set of covariates X; (incl. interactions X, . * X; 1,
etc.), link and variance function g(u),v(u), outcomes Y;

consider (4 ¢ RP with specified (p—d)-dim subvector = 0 versus
Bd+1) with an extra nonzero coeff., B{d=1) with an extra 0

if Hp holds that d coefficients are really non-0 :
2 log (L(B(CH‘D)/L(B(CZ))) < x%, with prob. ~¥1 -«

2 log (L(B(d))/L(B(d—l))) > X3, With prob. > a  power

Idea: log L(BU)) — 2x3?  likely maximized at j =d

n: { —log LGED) + o c=2,  AI0
AIC, BIC, ... min;{—log L(BY)+cj} for {Czlogn, BIC

2



Computational Issues in Penalized MLE
Objective Function (to minimize): —logL(B{Y)) 4 ¢

(1) In large data and covariate sets, exact maximization not
possible over all sets of variables. (SAS does best subset selec-
tion by default only when p < 11) ¢‘forward’’ or ¢ ‘backward’’ Or
‘‘both’’ all greedy algorithm searches

(2) Choosing ¢ too low results in Overfitting, often the
problem with AIC. BIC value ¢ = logn is probably as high as
one should go. Script RscriptLec16.RLog shows an example where
a value in-between is best as judged by 20-fold cross-validation.



Diagnostics for Goodness of Fit

Predictive accuracy is not the same as model-adequacy. Check-
ing goodness of fit assesses whether deviations from a model
within a defined larger class of models are no more than might
occur by chance, by patternlessness of residuals.

(1) LRTs do this explicitly in a model class.

(2) Binning allows non-model-based checks on grouped data.

Bins partition data, by covariate-defined cells A, = {i: X, € Cy}
or by predictor intervals A, ={i: §'X; € Cy}, Cj = (ap,apt1]

Diagnostic GLM comparison of > ;c 4, Y; versus > ;ca, .
Illustrated in RscriptLec16.RLog on Breast-cancer data.



Hosmer-Lemeshow Test

In the setting where bins involve X partition only , put:

by,n = Z Yi, fy,h — Z Hi np = |Ap|
1€A, 1€A,

Hosmer-Lemeshow Statistic: S, (fy,h—ty’h)Q/ [Ey’h(l—fy’h/nh)]

Idea: ty’h/nh represents true expected fraction of 1’s in Group h,
which is roughly the proportion for each i € A;; however fy’h/nh

is a fitted proportion using all d parameters in the fitted GLM!
Degrees of freedom not clear (> H — d).

S (G — tyn)?/E,n only resembles X2, (< x%_,).



Logistic Regression in [ x 2 Tables

Data: }/ilNBinom(ni?ﬂ-i)a 1<:<1I,3=1,, Yio =mn; — Y;
Model: H; : logit(m;) = o + Bx;, Hy:B8=0
predictor scores x; describe ‘distances’ between 1 levels

This is a ‘test for trend’ with ordinal categories, also a GLM
Logistic Regression (can use glm).

Score test is equivalent to Cochran-Armitage trend test (derived
using OLS) with statistic

I I
_ 2 _
22 = | Y (zi—-D)Yi1] /|p(1 —p) Y ni(a; — 7))

i=1 i=1
where p =Y, 1/n, T =>7"_;n;x;/n. More powerful than test for
independence against Hy alternatives.



Other Models, Chapter 7

e probit and cloglog link binary-outcome GLMs

Recall ¢~1 = F could be any distribution function:
F=® probit, F(x) =1-—exp(—e*) cloglog
graphs on next page, example of fits in RscriptLec16

e Look at conditional Logistic Regression (sec. 7.3) next time

Also look at (local) power and sample size
formulas next time, Secs. 6.4 and 6.6.



F(x)
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Inverse—Links for GLMs: Logit, Probit, cloglog
1st two are symmetric, all standardized
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