A Case Study in Comparing Bayes Estimated Fixed Effects versus Frequentist Random Effects

Eric V. Slud, Univ. of Maryland, Math. Dept.& U.S. Census Bureau,Center for Stat. Research & Methodology

March 2019, UMD Stat Seminar

Joint work with Yves Thibaudeau

Disclaimer

This report is released to inform interested parties of ongoing research and to encourage discussion of work in progress. The views expressed are the author's and not necessarily the Census Bureau's.

Overview

- 1. CPS Data on 1-month Labor Force Transitions
- 2. Generalized Logistic Model (3 outcome) with Random State Effects
- 3. Fixed effects, Random Effects, & Posterior Fixed Effects
- 4. Model Comparisons (AIC) & Predictive Metrics (ROC curves)
- 5. R Packages and Bayesian MCMC
- 6. Conclusions

Current Population Survey – Gross Labor Flows

Large survey (75,000 HU's per month) focused on Labor force (age 16+)

Longitudinal rotating panel design: in 4 months, out 8, in 4 (*issue of matching persons in HUs across months*)

Labor categories: 1=Employed, 2=Unemployed, 3=NILF

Other variables: geography (ST, 16 states NE, SW, South), Educ (College or no), Age (4 groups: 65+, 55-64, 35-54, 34-),

Data Structure and Problem

 Y_6, Y_7 3-category labor status Lab (Emp, Unemp, NILF) June and July 2017 (18K matched cases only)

 Age_6 , $Educ_6$ (= college indicator), ST (16 states)

Objective: estimate/predict # in small cross-classified cells, e.g. (NILF₆, EMP₇), 35-54, No-college, NewMexico

Large X cells obtained using survey weights: $\hat{N}_{\mathbf{x}} = \sum_{i} w_{i} I_{[\mathbf{X}_{i}=\mathbf{x}]}$ Model cross-classified conditional probabilities for Y_{7} given predictors X (including Y_{6})

Model – Generalized Logistic

Let y values 1 = Emp, 2 = Unemp, 3 = NILF, and for y = 1, 2 define

$$P(Y_{7,i} = y | \mathbf{X}_i = \mathbf{x}) = \exp(\mathbf{x}'\beta^{(y)}) / \left(1 + \sum_{z=1}^{2} \exp(\mathbf{x}'\beta^{(z)})\right)$$

⇒ separate logistic regressions Emp vs NILF, Unemp vs NILF

Models to compare wrt covariate sets:

F0: Lab₆+Age₆+Educ₆,F1: F0+ST,F2: F1+Lab₆: Age₆ $2 \cdot (1+2+3+1)$ $14+2 \cdot 15$ $44+2 \cdot (32)$ df

with $\# \operatorname{coef's} = 14$ for FO, 44 for F1, 56 for F2

Fixed-Effect Model Comparisons

Comparisons for separate logistic models Emp07 vs. NILF07 and Unemp07 vs. NILF07 based on CPS June-July 2017 dataset.

		Emp07 vs NILF07				Unemp07 vs NILF07			
		df	Dev	ResDf	ResDev	df	Dev	ResDf	ResDev
	NULL			327	18857			333	1912
	F0	6	18365	321	492	6	1530	327	382
F1	ST	15	35	306	457	15	18	312	364
F2	Lab:Age	6	75	300	381	6	35	306	329
	Lab:ST	30	31	270	350	30	39	276	290

adequacy questionable

OK

Random-Effect Models

Can instead assume $\beta^{(y)} = (\beta_{ST}^{(y)}, \gamma^{(y)})$ in models **(F1)**, **(F2)**, with **random** ST coefficients of State dummy indicator that label s_i of *i*'th subject is equal to *j*

$$\beta_{ST} = (u_j^{(y)}, j = 2, \dots, 16, y = 1, 2)$$

e.g., $\beta_{ST} \sim \mathcal{N}(0, V)$ for V of prescribed form, e.g. V diagonal with 1st and 2nd sets of 15 entries $\equiv \sigma^{(y)2}, y = 1, 2$

Then estimate $\theta = (\gamma^{(y)}, \sigma^{(y)2}, y = 1, 2)$ by Max. likelihood.

Packages to do this ML estimation discussed in later slide

Random-Effect Models, continued

Suppose X_i includes ST dummy components; for states j, denote $\beta_{ST}^{(y)} = u_i^{(y)}$ for y = 1, 2, and $\underline{u} \equiv \beta_{ST}$, $\underline{u}_i = \{u_i^{(y)}\}_{u=1}^2$. For $X_i = x = (\xi, s)$ predictor values within state s, have random $P(Y_i = y \mid \mathbf{X}_i = \mathbf{x}, \underline{u}) = \pi(y, \mathbf{x}, \underline{u}, \gamma) \equiv e^{\xi' \gamma^{(y)} + u_s^{(y)}} / \left(1 + \sum_{i=1}^{2} e^{\xi' \gamma^{(z)} + u_s^{(z)}}\right)$ and Best Linear Unbiased Predictor (for fixed parameter values) of unconditional $P(Y = y | \mathbf{X} = \mathbf{x})$ is $= E_{\theta} \left(\pi(y, \mathbf{x}, \underline{u}, \gamma) \middle| \{Y_i, \mathbf{X}_i\}_i \right)$

This becomes the Empirical Bayes predictor when $\hat{\theta}$ replaces θ .

Bayesian Point of View

Within fixed-effects model (F1) or (F2) adopt prior either flat or with fictitious observations (n_y in Lab₇ status y = 1, 2, 3 with covariates **X** replaced by average covariate).

Posterior distributions for all coefficients jointly obtained by MCMC: posterior distributions of state effects are like those of other parameters, but enter predictions by being averaged within $\pi(y, \mathbf{x}, \underline{u}, \gamma)$

Using State-Effect Coefficients for Prediction

Fixed-effect case:
$$\widehat{N}_{(\mathbf{x},y)} = \sum_{i} w_{i} I_{[\mathbf{X}_{i}=\mathbf{x}]} \widehat{P}(Y_{i}=y | \mathbf{X}_{i}=\mathbf{x}, \beta) \Big|_{\beta=\widehat{\beta}}$$

Random-effect case: with $\mathbf{x} = (\xi, s)$,

$$\widehat{N}_{(\mathbf{x},y)} = \sum_{i} w_{i} I_{[\mathbf{X}_{i}=\mathbf{x}]} E\left(\pi(y,\mathbf{x},\underline{u},\gamma) \left| \{Y_{i},X_{i}\}_{i}\right) \right|_{\theta=\widehat{\theta}}$$

Bayes prediction: like fixed-effect case but $\hat{P}(Y_i = y | \mathbf{X}_i = \mathbf{x}, \hat{\beta})$ replaced by posterior-averaged $\pi(y, \mathbf{x}, \underline{u}, \gamma)$

Alternate Interpretations of State Effects

(1) Fixed Effects – unknown constants estimated directly $\hat{\beta} = (\hat{\gamma}^{(y)}, \hat{\underline{u}}^{(y)}, y = 1, 2) \sim \mathcal{N}(\beta, (I(\beta))^{-1})$ Fixed state effects $u_j^{(y)}$ (coefficients for $I_{[s_i=j]}, j = 1, ..., 16$) (2) Random state effects $u_j^{(y)} \sim \mathcal{N}(0, \sigma^{(y)2})$ model random variation around mean state effect $\mu^{(y)}, y = 1, 2$

(3) Posterior-distributed \underline{u} effects based on simple prior or simple variants)

Summary of Results Related to State Effects

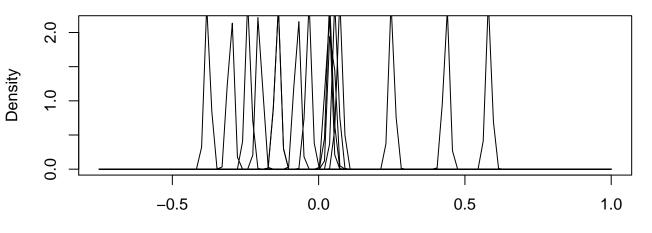
(a) Correlations across different ML state effects small (almost all < 0.05), but between same-state effects for Emp_7 and $Unemp_7$ outcomes around 1/3. Same holds for Bayes posteriors.

(b) Models with all indep. state effects did not fit materially worse than the fixed-effect models (several criteria ... prediction criteria can be applied to Bayes fits as well).

(c) MLEs of state fixed intercept effects (minus average effect) from -0.38 to 0.58 for Emp₇ outcome, and from -0.72 to 0.43 for Unemp₇.

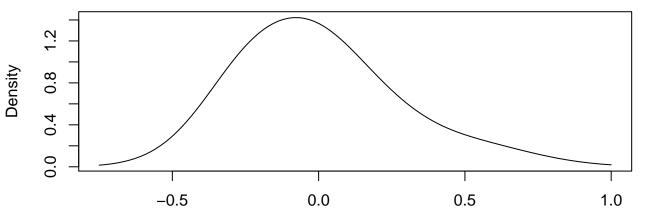
(d) In separate random-intercept logistic-regression model fits for Emp₇ vs. NILF₇, found $\hat{\sigma} = 0.164$ with SE = 0.060, and for Unemp₇ vs. NILF₇ found $\hat{\sigma} = .033$ with SE = 0.28.

Superposition of sharp peaks at 16 State Effects

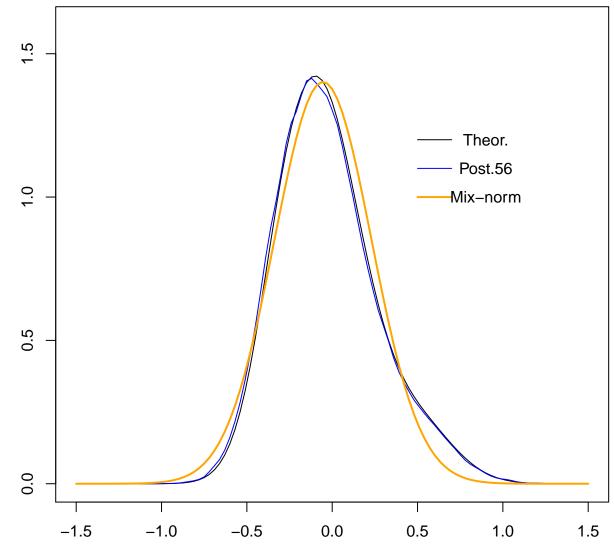


Х

Superposition of normals with betaj SEs at State Effects



Overlaid Mixture Densities for EMP-outcome State Intercepts



State Intercept

Density

Bernstein-von Mises Theorem & Implications

B-vM Theorem says under large-sample regularity conditions for MLE theory, for general continuous broadly supported priors, the posterior density given data of the parameter θ within a wellspecified parametric model is approximately distributed as

$$\sqrt{n} \left(heta \, - \, \widehat{ heta}
ight) \, \sim \, \mathcal{N} \Big(0, \, (\mathrm{I}(\widehat{ heta}))^{-1} \Big)$$

Two implications:

(1) can check applicability of asymptotic ML theory by checking whether posterior distributions for parameters look normal, and

(2) Metropolis-Hastings algorithm computations become easy and accurate.

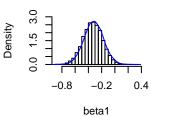
Technique for MCMC in Large Samples

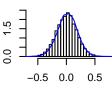
Problem: to simulate Markov Chain $\theta^{(t)}$ with density $g(\theta) = \pi(\theta|\mathbf{y}) \propto \pi(\theta) L(\mathbf{y}, \theta)$ as equilibrium distribution

Algorithm: at each step, simulate independent $\tau_t \sim \mathcal{N}(\hat{\theta}, (\hat{\mathbb{I}}(\hat{\theta}))^{-1})$ and $U_t \sim \text{Unif}(0, 1)$, and define for $t \geq 1$:

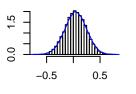
$$\theta^{(t)} = \theta^{(t-1)} + (\tau_t - \theta^{(t-1)}) I \left[U_t \le \frac{g(\tau_t) q(\theta^{(t-1)})}{g(\theta^{(t-1)}) q(\tau_t)} \right]$$

That is, a very good proposal density $q \approx g$ is the B-vM asymptotic normal ! Acceptance ratio = Pr(bracket) high even for high-dimensional θ .

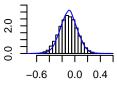




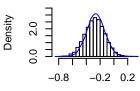
beta2



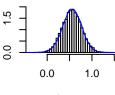
beta3



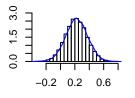
beta4



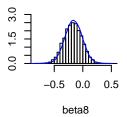
beta5



beta6



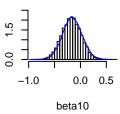
beta7



Density 0.0 0.5 0.5

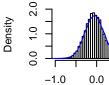
).5 0. beta9

beta13

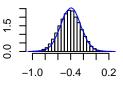


0.7 0.7 -0.8 -0.2 0.4 beta11

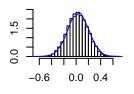
beta12

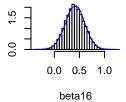


1.0



beta14





beta15

Software Packages for Analysis

- SAS PROC GLIMMIX, NLINMIX logistic, generalized logistic models & random effects (Stroup 2013), adaptive Gaussian quadrature
- generalized logistic fixed effects in R packages nnet, mlogit
- glmmML, GLMMadaptive, lme4 (function glmer): accurate logLik & MLEs approximation, logistic regression with 1 random effect
- other R packages do more general models with approx. logLik
- Bayes packages BRugs, rjags in R, or Stan outside

Some Conclusions

Very different analyses of somewhat different models (fixed vs mixed) give different interpretations but similar conclusions

Can use Bayes to check status of large-sample theory predictions and random-effect model specifications

'Hybrid' survey and model-based conclusions still of great research interest at the statistical agencies

References

Hand, D. and Till, R. (2001), *Machine Learning* journal (multi-outcome ROCs)

Pfeffermann, Skinner, & Humphreys (1998), JRSS A

Rao and Molina (2015), Small Area Estimation, 2nd ed.

Stroup, W. (2013), Generalized Linear Mixed Models, CRC

Thibaudeau, Slud & Gottschalck (2017), Ann. Appl. Stat.

Thank you !

evs@math.umd.edu Eric.V.Slud@census.gov