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Disclaimer

This report is released to inform interested parties

of ongoing research and to encourage discussion

of work in progress. The views expressed are the

author’s and not necessarily the Census Bureau’s.
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Overview

1. CPS Data on 1-month Labor Force Transitions

2. Generalized Logistic Model (3 outcome) with Random State

Effects

3. Fixed effects, Random Effects, & Posterior Fixed Effects

4. Model Comparisons (AIC) & Predictive Metrics (ROC curves)

5. R Packages and Bayesian MCMC

6. Conclusions
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Current Population Survey – Gross Labor Flows

Large survey (75,000 HU’s per month) focused on Labor force

(age 16+)

Longitudinal rotating panel design: in 4 months, out 8, in 4

(issue of matching persons in HUs across months )

Labor categories: 1=Employed, 2=Unemployed, 3=NILF

Other variables: geography (ST, 16 states NE, SW, South), Educ

(College or no), Age (4 groups: 65+, 55-64, 35-54, 34- ),
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Data Structure and Problem

Y6, Y7 3-category labor status Lab (Emp, Unemp, NILF)

June and July 2017 (18K matched cases only)

Age6, Educ6 (= college indicator), ST (16 states)

Objective: estimate/predict # in small cross-classified cells, e.g.

(NILF6, EMP7), 35-54, No-college, NewMexico

Large X cells obtained using survey weights: N̂x =
∑
iwiI[Xi=x]

Model cross-classified conditional probabilities for Y7 given

predictors X (including Y6 )
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Model – Generalized Logistic

Let y values 1 = Emp, 2 = Unemp, 3 = NILF, and for y = 1,2 define

P (Y7,i = y |Xi = x) = exp(x′β(y)) /
(

1 +
2∑

z=1

exp(x′β(z))
)

⇒ separate logistic regressions Emp vs NILF, Unemp vs NILF

Models to compare wrt covariate sets:

F0: Lab6+Age6+Educ6, F1: F0+ST, F2: F1+Lab6:Age6

2 · (1 + 2 + 3 + 1) 14 + 2 · 15 44 + 2 · (32̇) df

with # coef’s = 14 for F0 , 44 for F1, 56 for F2
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Fixed-Effect Model Comparisons

Comparisons for separate logistic models Emp07 vs. NILF07 and

Unemp07 vs. NILF07 based on CPS June-July 2017 dataset.

Emp07 vs NILF07 Unemp07 vs NILF07

df Dev ResDf ResDev df Dev ResDf ResDev

NULL 327 18857 333 1912
F0 6 18365 321 492 6 1530 327 382
ST 15 35 306 457 15 18 312 364
Lab:Age 6 75 300 381 6 35 306 329
Lab:ST 30 31 270 350 30 39 276 290

adequacy questionable OK
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Random-Effect Models

Can instead assume β(y) = (β(y)
ST , γ

(y)) in models (F1), (F2),

with random ST coefficients of State dummy indicator that

label si of i’th subject is equal to j

βST = (u(y)
j , j = 2, . . . ,16, y = 1,2)

e.g., βST ∼ N (0, V ) for V of prescribed form, e.g. V diagonal

with 1st and 2nd sets of 15 entries ≡ σ(y)2, y = 1,2

Then estimate θ = (γ(y), σ(y)2, y = 1,2) by Max. likelihood.

Packages to do this ML estimation discussed in later slide
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Random-Effect Models, continued

Suppose Xi includes ST dummy components; for states j,

denote β
(y)
ST,j = u

(y)
j for y = 1,2, and u ≡ βST , uj = {u(y)

j }
2
y=1.

For Xi = x = (ξ, s) predictor values within state s, have random

P (Yi = y |Xi = x, u) = π(y,x, u, γ) ≡ eξ
′γ(y)+u

(y)
s /

(
1+

2∑
z=1

eξ
′γ(z)+u

(z)
s

)
and Best Linear Unbiased Predictor (for fixed parameter values)

of unconditional P (Y = y |X = x) is = Eθ

(
π(y,x, u, γ)

∣∣∣∣ {Yi,Xi}i
)

This becomes the Empirical Bayes predictor when θ̂ replaces θ.
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Bayesian Point of View

Within fixed-effects model (F1) or (F2) adopt prior either flat

or with fictitious observations (ny in Lab7 status y = 1,2,3 with

covariates X replaced by average covariate).

Posterior distributiions for all coefficients jointly obtained by

MCMC: posterior distributions of state effects are like those of

other parameters, but enter predictions by being averaged within

π(y,x, u, γ)
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Using State-Effect Coefficients for Prediction

Fixed-effect case: N̂(x,y) =
∑
i wi I[Xi=x] P̂ (Yi = y |Xi = x, β)

∣∣∣∣
β=β̂

Random-effect case: with x = (ξ, s),

N̂(x,y) =
∑
i

wi I[Xi=x]E

(
π(y,x, u, γ)

∣∣∣∣ {Yi, Xi}i) ∣∣∣∣
θ=θ̂

Bayes prediction: like fixed-effect case but P̂ (Yi = y |Xi = x, β̂)

replaced by posterior-averaged π(y,x, u, γ)
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Alternate Interpretations of State Effects

(1) Fixed Effects – unknown constants estimated directlly

β̂ = (γ̂(y), û(y), y = 1,2) ∼ N (β, (I(β))−1)

Fixed state effects u
(y)
j (coefficients for I[si=j], j = 1, . . . ,16)

(2) Random state effects u
(y)
j ∼ N (0, σ(y)2)

model random variation around mean state effect µ(y), y = 1,2

(3) Posterior-distributed u effects based on simple prior or

simple variants)
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Summary of Results Related to State Effects

(a) Correlations across different ML state effects small (almost
all < 0.05), but between same-state effects for Emp7 and Unemp7 
outcomes around 1/3. Same holds for Bayes posteriors.

(b) Models with all indep. state effects did not fit materially 
worse than the fixed-effect models (several criteria ... prediction 
criteria can be applied to Bayes fits as well).

(c) MLEs of state fixed intercept effects (minus average effect) 
from −0.38 to 0.58 for Emp7 outcome, and from −0.72 to 0.43 
for Unemp7.

(d) In separate random-intercept logistic-regression model fits for 
Emp7 vs. NILF7, found σ̂ = 0.164 with SE = 0.060, and for  Unemp7 
vs.  NILF7  found σ̂ = .033 with SE = 0.28.
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Bernstein-von Mises Theorem & Implications

B-vM Theorem says under large-sample regularity conditions for

MLE theory, for general continuous broadly supported priors,

the posterior density given data of the parameter θ within a well-

specified parametric model is approximately distributed as
√
n (θ − θ̂) ∼ N

(
0, (I(θ̂))−1

)

Two implications:

(1) can check applicability of asymptotic ML theory by checking

whether posterior distributions for parameters look normal, and

(2) Metropolis-Hastings algorithm computations become easy

and accurate.
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Technique for MCMC in Large Samples

Problem: to simulate Markov Chain θ(t) with density g(θ) =

π(θ|y) ∝ π(θ) L(y, θ) as equilibrium distribution

Algorithm: at each step, simulate independent τt ∼ N (θ̂, (Î(θ̂))−1)

and Ut ∼ Unif(0,1), and define for t ≥ 1:

θ(t) = θ(t−1) + (τt − θ(t−1)) I
[
Ut ≤

g(τt) q(θ(t−1)

g(θ(t−1)) q(τt)

]

That is, a very good proposal density q ≈ g is the B-vM asymp-

totic normal ! Acceptance ratio = Pr(bracket) high even for

high-dimensional θ.
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Software Packages for Analysis

• SAS PROC GLIMMIX, NLINMIX logistic, generalized logistic models

& random effects (Stroup 2013), adaptive Gaussian quadrature

• generalized logistic fixed effects in R packages nnet, mlogit

• glmmML, GLMMadaptive, lme4 (function glmer): accurate logLik &

MLEs approximation, logistic regression with 1 random effect

• other R packages do more general models with approx. logLik

• Bayes packages BRugs, rjags in R, or Stan outside
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Some Conclusions

Very different analyses of somewhat different models (fixed vs

mixed) give different interpretations but similar conclusions

Can use Bayes to check status of large-sample theory predictions

and random-effect model specifications

‘Hybrid’ survey and model-based conclusions still of great re-

search interest at the statistical agencies
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Thank you !

evs@math.umd.edu
Eric.V.Slud@census.gov
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