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Theoretical and empirical properties of model assisted 
decision-based regression estimators 

Jun Shao, Eric Slud, Yang Cheng, Sheng Wang, and Carma Hogue1 

Abstract 

In 2009, two major surveys in the Governments Division of the U.S. Census Bureau were redesigned to reduce 
sample size, save resources, and improve the precision of the estimates (Cheng, Corcoran, Barth and Hogue 
2009). The new design divides each of the traditional state by government-type strata with sufficiently many 
units into two sub-strata according to each governmental unit’s total payroll, in order to sample less from the 
sub-stratum with small size units. The model-assisted approach is adopted in estimating population totals. 
Regression estimators using auxiliary variables are obtained either within each created sub-stratum or within 
the original stratum by collapsing two sub-strata. A decision-based method was proposed in Cheng, Slud and 
Hogue (2010), applying a hypothesis test to decide which regression estimator is used within each original 
stratum. Consistency and asymptotic normality of these model-assisted estimators are established here, under a 
design-based or model-assisted asymptotic framework. Our asymptotic results also suggest two types of 
consistent variance estimators, one obtained by substituting unknown quantities in the asymptotic variances and 
the other by applying the bootstrap. The performance of all the estimators of totals and of their variance 
estimators are examined in some empirical studies. The U.S. Annual Survey of Public Employment and Payroll 
(ASPEP) is used to motivate and illustrate our study. 

 
Key Words: Asymptotic normality; Bootstrap; Decision-based estimator; Probability proportional to size; Stratification; 

Variance estimation. 

 
 

1  Introduction 
 

The U.S. Annual Survey of Public Employment and Payroll (ASPEP) provides current estimates for 
full- and part-time state and local government employment and payroll classified by government functions 
(such as: elementary and secondary education, higher education, police protection, fire protection, 
financial administration, judicial and legal, etc.). This survey covers state and local government units 
(89,526 according to the 2007 Census of Governments), which include counties, cities, townships, units 
called “special districts”, and school districts. ASPEP is the only source of public employment data by 
government function and job category, providing data on numbers of full- and part-time employees and 
payroll, as well as on hours worked by part-time employees. Data collection usually begins in March and 
continues for about seven months, with the pay period containing March 12 as reference period. 

Let U  denote the finite population of N  units stratified into H  strata, 1, , ,HU U…  where hU  

contains hN  units and 1 = .HN N N+ +⋯  The traditional sampling design for the ASPEP is a stratified 

probability proportional to size (PPS) design, where the strata are constructed using state and the 
government types, which are county, subcounty (city or town), special district, or school district. The size 
of each unit is the total payroll, and sampling across strata is independent. In 2009, a modified sampling 
design was developed, which cuts some strata hU  into two sub-strata, 1hU  and 2hU  with 1hN  and 2hN  

units, respectively, where 1hU  contains smaller-size units (Cheng et al. 2009). The idea was to save 
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resources and reduce respondent burden by selecting a sample from 1hU  with smaller sample size under 

the modified than under the traditional design. Let hjS  be a PPS sample of size hjn  from ,hjU = 1, 2,j  

1 2 = .h h hn n n+  Note that 1hn  may still be larger than 2hn  because 1hN  is usually much larger than 2.hN  

For unit ,i U∈  let iy  be a key survey variable (e.g., the full-time employment, full-time payroll, part-

time employment, part-time payroll, part-time hours), ix  be an auxiliary variable, say the same variable as 

iy  from the most recent census, and let iz  be the covariate used as the size variable in PPS sampling. The 

covariate values ix  and iz  are observed for all ,i U∈  whereas iy  is observed only for each sampled 

unit .i  

The Horvitz-Thompson estimator of the unknown total = ii U
Y y

∈∑  is 

                                                                 HT
ˆ = ,i i

h j i Shj

Y y
∈

π∑∑∑  (1.1) 

where iπ  is the first-order inclusion probability of unit i  in ,hjS  a known function of ’s.iz  To utilize the 

auxiliary variable ix  and increase the accuracy of estimation of ,Y  the model-assisted approach (Särndal, 

Swensson and Wretman 1992) is adopted. Applying regression within each hjS  leads to the regression 

estimator of Y  as  

                                               reg,2

ˆ ˆ
ˆˆ = ,

ˆ ˆ
hj hj hj hj

hj hj
h j hj hj

N Y N X
Y X

N N

  
+ β −  

  
∑∑  (1.2) 

where = ,hj ii U hj
X x

∈∑ ˆ = ,hj i ii Shj
Y y

∈
π∑ ˆ = ,hj i ii Shj

X x
∈

π∑ ˆ = 1 ,hj ii Shj
N

∈
π∑  and  

( )
( )2

ˆ ˆ
ˆ = .

ˆ ˆ

i hj hj i ii Shj
hj

i hj hj ii Shj

x X N y

x X N

∈

∈

− π
β

− π

∑

∑
 

Alternatively,  combining the two sub-strata  1hS   and  2hS  results in the following regression estimator. 

(A referee correctly points out that reg,1Ŷ  in (1.3) is not the pooled estimator one would use if regression 

lines in stratum h  were combined but the two sub-strata were not; however, it is the natural estimator 
when not only regression lines but also sub-strata are combined.) 

                                                    reg,1

ˆ ˆ
ˆˆ = ,

ˆ ˆ
h h h h

h h
h h h

N Y N X
Y X

N N

  
+ β −  

  
∑  (1.3) 

where ˆ ˆ= ,h hjj
Y Y∑ ˆ ˆ= ,h hjj

X X∑ ˆ ˆ= ,h hjj
N N∑  and  

( )
( )2

ˆ ˆ
ˆ = .

ˆ ˆ

i h h i ij i Shj
h

i h h ij i Shj

x X N y

x X N

∈

∈

− π
β

− π

∑ ∑

∑ ∑
 

Since both reg,1Ŷ  and reg,2Ŷ  are model-assisted estimators, they are consistent with respect to repeated 

sampling, whether or not the regression model holds. If the least-squares regression lines in two sub-strata 
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’shjU  are the same, reg,1Ŷ  may be more efficient than reg,2
ˆ .Y  On the other hand, if the regression lines are 

different, reg,2Ŷ  may be more efficient than reg,1
ˆ .Y  

A decision-based method was proposed in Cheng et al. (2010), which applies hypothesis testing to 
decide whether we combine 1hS  and 2.hS  Within stratum ,h  the slopes of the regression lines in 1hU  and 

2hU  are tested for equality. Let  

( )

( ) ( )

22

2
, 22

2 22
,2

1 2 4
=1

ˆˆˆ ˆ ˆ ˆ
ˆ = , ˆ = ,

ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆˆ = , = 4 .
ˆ ˆ

i hj hj ihj hj hj hj hj
hj xe hj i

i S ihj hj hjhj

i hj hj xe hj
xhj h h h h h

i S j hj xhji hjhj

y xY X n X
x

N N N

x X N
t n n

nN

∈

∈

− α − β− β  
α σ −  π 

− σ
σ − β − β

σπ

∑

∑ ∑

 

If 1 2, 4>h nh
t t −τ − , where 1 2,t −τ ν  is the 1 2− τ  quantile of the t-distribution with ν  degrees of freedom, 

then we reject the hypothesis of common slope and use ˆ
hjβ  (and set = 1hζ ). Here τ  is a nominal 

significance level set by default to 0.05, although we will consider other choices of τ  in the simulations 
section. The test-statistic definition involving 4hn −  degrees of freedom is a slightly artificial choice 

designed to make the moderate-sample rejection probabilities closer to nominal, but the large-sample 
asymptotic distribution theory justifying this test is given in part (c) of Theorem 1. If 1 2, 4,h nh

t t −τ −≤  

then we accept the hypothesis of common slope, combine sub-strata 1hS  and 2 ,hS  and use ̂ hβ  

( )setting = 0 .hζ  Tests are performed independently across strata = 1, , .h H…  The decision-based 

estimator of Y  is then  

           ( )dec

ˆ ˆ ˆ ˆ
ˆ ˆˆ = 1 .

ˆ ˆ ˆ ˆ
hj hj hj hj h h h h

h hj hj h h h
h j hhj hj h h

N Y N X N Y N X
Y X X

N N N N

     
ζ + β − + − ζ + β −      

    
∑∑ ∑  (1.4) 

Since two regression lines with a common slope can have different intercepts, one might test a further 
hypothesis regarding intercepts to decide whether to combine the two sub-strata. However, population 
points ( ),i ix y  falling on two parallel but not identical substratum regression lines would be 

discontinuous around the cut-off point between the two sub-strata 1hU  and 2 ,hU  which seems to occur 

only rarely in practical situations. In ASPEP, for example, Cheng et al. (2010) investigated the slopes and 
intercepts for sub-strata in 2002 and 2007 Census data sets, noting that the hypothesis of a common 
intercept could never be rejected when the hypothesis of a common slope could not be rejected. Thus, the 
decision-based estimator in (1.4) depends only on hypothesis testing for equality of sub-stratum regression 
slopes. 

The two-stage estimators studied here are particular instances of procedures previously termed 
estimators following preliminary testing. There is a large literature on such procedures in surveys, 
including a bibliography by Bancroft and Han (1977), a book by Saleh (2006), and a treatment by Fuller 
(2009, Section 6.7). An idea from Saleh (2006) is to estimate coefficients by a convex combination of the 
estimated coefficients from the separate strata with proportions depending on a test statistic. Such 
smoothed estimators might be more efficient than our decision-based procedures. If the stratum-specific 
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intercepts and slopes were regarded as random, then a model-based empirical-Bayes approach to survey 
estimation might also be tried. 

The decision-based estimators (1.4) are novel because they are model-assisted design-consistent in the 
survey-sampling context, making explicit use of the known substratum population sizes. In a somewhat 
similar spirit, Rao and Ramachandran (1974) previously made an exact comparison of the separate and 
combined ratio estimators under a ratio model similar to the regression model of this paper. 

The purpose of this paper is to show some asymptotic and empirical properties of the estimators of Y  
described above and their variance estimators. Consistency and asymptotic normality of reg,1

ˆ ,Y reg,2
ˆ ,Y  and 

decŶ  are established in Section 2, in terms of either design-based or model-assisted asymptotic theory. 

Although the first-order asymptotics favor reg,2
ˆ ,Y reg,1Ŷ  may be better when some substratum sample sizes 

2hn  are moderate, a second-order asymptotic effect. The virtue of the decision-based estimator decŶ  is in 

adapting to be close to the better of reg,1Ŷ  and reg,2
ˆ .Y  As the discussion in paragraph (III) of Section 4.4 

indicates, simulations show that the benefit of this adaptivity is to reduce MSE up to a few percent under 
reasonable parameter settings, and by larger amounts in stranger settings. 

Variance estimation for the decision-based estimator is treated in Section 3. While the asymptotic 
theory in Section 2 suggests that consistent variance estimators are obtained by substituting for unknown 
quantities in the asymptotic variance formulas, we also study bootstrap variance estimators suggested in 
Cheng et al. (2010), which are generally found to have better finite sample performance than the 
substitution estimators. Empirical results are presented in Section 4, with Section 4.4 providing 
interpretations and concluding remarks. All technical proofs are given in the Appendix. 

 
2  Consistency and asymptotic normality 
 

To consider asymptotics, we view the population U  as one of a sequence of populations 
( ){ }, = 1, 2, ,mU m …  where the number of units in ( )mU  increases to infinity as .m → ∞  This paper treats 

only the case of strata in which a large sample hn  is drawn; that is, we assume that for each stratum ,h  the 

sample size hn  depends on m  and increases to infinity as ,m → ∞  but we omit the index m  for 

simplicity. All limiting processes are considered as .m → ∞  Following authors such as Isaki and Fuller 
(1982) and Deville and Särndal (1992), we term this a superpopulation asymptotic framework. Under the 
design-based framework considered in Section 2.1, the attribute vectors in the underlying populations 
need not be viewed as random vectors. However, under the model-assisted framework considered in 
Section 2.2, regression models are assumed for attribute vectors. 

Since each estimator is a sum of independent estimators constructed within each stratum, for simplicity 
we present asymptotic results for the case of = 1.H  The results and conclusions immediately apply to 
the case of a fixed H  and can also be extended to the situation where H  increases to infinity. (It is 
typical for large-scale surveys to have many strata, although the number of ASPEP government-by-type 
strata that were split into substrata was somewhat less than 100.) Since we only consider = 1,H  we omit 

the index h  for stratum in this section, e.g., = ,hj jn n = ,hn n = ,hj jN N  and = .hN N  Also, for 
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 = 1, 2,j  the estimators ̂ jβ  and β̂  are defined by the displayed formulas following equations (1.2) and 

(1.3), with subscript h  suppressed, together with  

( )

( ) ( ) ( )

22 1 1

222 2 2
,

ˆˆ ˆ ˆ ˆ ˆˆˆ = , = ˆ , ˆ = ˆ

ˆ ˆˆˆ = ˆ .

xj j j j j j j xj xj j i i xj
i S j

xe j j i xj i j j i i j
i S j

X N Y N N x

n x y x N

− −

∈

∈

µ α − β µ σ π − µ

σ − µ − α − β π

∑

∑
 

Furthermore, for simplicity we consider asymptotics only under with-replacement sampling. The results 
can be applied to the case of without replacement sampling if the sampling fraction n N  is negligible. 

 
2.1  Design-based asymptotic framework 
 

First, we establish the asymptotic normality of reg,1Ŷ  and reg,2Ŷ  under repeated sampling, that is, when 

iy  and ix  are fixed for ,i U∈  and jS  is a random PPS sample. 

 

Theorem 1 Suppose that 1S  and 2S  are independent PPS samples with replacement from 1U  and 2 ,U  

respectively, where unit ji U∈  has probability = > 0ij i ii U j
p z z

∈∑  of being selected, and sampling 

weight ( )1 = 1i j ijn p−π  for = 1, 2,j  and that the following four conditions hold, as the population 

sequence index m  goes to .∞  
 

(C1) There exist constants jϕ  and jω  such that j jn n → ϕ  and .j jN N → ω  

(C2) For  = 1, 2,j  there exist constants ,yj xjµ µ  and jβ  such that 

                                = = , = =j j j i j yj j j j i j xj
i U i Uj j

Y Y N y N X X N x N
∈ ∈

→ µ → µ∑ ∑  

exist, as do the limits ( ) 21 2 > 0,j i xj xji U j
N x−

∈
− µ → σ∑  and in addition, 

                               ( ) ( )( ) 0 as , .j j i i j j j i j j
i U j

n N x y Y N x X N n N
∈

− − β − → → ∞∑  

(C3) The limits 2= T
N ij ij ij j ji Uj j

D p b b N D
∈

→∑  exist, where for ,ji U∈  

                                                   = 1 , , ,
T

ij ij j i ij j i ij jb p N x p X y p Y− − −    

Tv  denotes the vector transpose, and jD  is positive definite. The limit 2
, =xe jσ  

( ) ( )2 22lim j i xj i j j i iji U j
N x y x p−

∈
− µ − α − β∑  also exists, for = .j yj j xjα µ − β µ  

(C4) The elements of 4= T
j ij ij ij ji U j

p c c N
∈

Λ ∑  form a bounded sequence, where for ,ji U∈  

( ) ( ) ( )2 2 2
= 1 , , .

T

ij ij j i ij j i ij jc p N x p X y p Y − − −   
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Then, as  ,m→ ∞  the following conclusions hold. 
 

(a) For = 1, 2,j ˆ ˆ, , , ,ˆ ˆxj xj yj yj j j j jP P P P
µ → µ µ → µ β → β α → α  and 2 2 ,ˆ xj xjP

σ → σ  where 

P
→  denotes convergence in probability. 

(b) The combined-stratum estimator ˆ  β  has the exact expression 

                                             
( ) ( ) ( )

( ) ( )

2 2
2 1 2 1 1 2 1 2=1

22 2
2 1 1 2 1 2=1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
ˆ =

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

j xj jj

xj jj

N X X Y Y N N N N

N X X N N N N

β σ + − − +
β

σ + − +

∑
∑

 (2.1) 

and the in-probability limit 

                                                
( ) ( )

( )

2 2
2 1 2 1 1 2=1

2 22
2 1 1 2=1

= .
j xj j x x y yj

xj j x xj

β σ ω + µ − µ µ − µ ω ω
β

σ ω + µ − µ ω ω

∑
∑

 

(c) ( ) ( )2 4
, ,

ˆ 0, ,j j j d xe j x jn Nβ − β → σ σ  where d→  denotes convergence in distribution, and 
2 2

, , .ˆ xe j xe jP
σ → σ  

(d) For = 1, 2,k  

                                                                  ( ) ( )2
reg,

ˆ 0,k d kn Y Y N N− → σ  (2.2) 

where 
22

=1
= T

k kj j kjj
a D aσ ∑  and 

                      ( ) ( )1 2= , ,1 , = , ,1 ,
T T

j j j y x j j j yj j xj ja aω ϕ − µ − βµ −β ω ϕ − µ − β µ −β        

1 1 2 2= ,x x xµ ω µ + ω µ 1 1 2 2= ,y y yµ ω µ + ω µ  and jD  is given in condition (C3).  

 

The conditions (C1)-(C4) of Theorem 1 provide a general formulation of the superpopulation 
framework for large-sample design-based statistical inference, within which the survey regression 
coefficients estimate well-defined frame-population descriptive parameters. The results in parts (a)-(b) 

show that the in-probability limits ,j jβ α  of ˆ ˆ,j jβ α  have the standard interpretation as superpopulation 

least-squares slopes and intercepts. (These slope and intercept parameters also keep their usual model-
based interpretations under the model (2.7) introduced in Section 2.2.) The asymptotic distribution theory 
for ˆ  jβ  in conclusion (c) allows us to deduce the large-sample behavior of dec

ˆ  Y  from that provided in 

(d) for reg,
ˆ .kY  

Under the further conditions  

                                                                    1 2 1 2= , = ,β β α α  (2.3) 

it is clear from Theorem 1(b) that  = ,jβ β  and 2 2
1 2=σ σ  in (2.2), so that reg,1Ŷ  and reg,2Ŷ  and decŶ  are all 

asymptotically the same up to remainders of smaller order than ,N n  as we now show. Also, if 
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1 2,β ≠ β  then reg,2 dec
ˆ ˆY Y−  continues to be ( ) ,Po N n  and the test of equality of slopes rejects, i.e., 

( )dec reg,2
ˆ ˆ= 1,P Y Y →  and therefore decŶ  has the same asymptotic distribution as reg,2

ˆ ,Y  which is more 

efficient than reg,1Ŷ  according to the result in Section 2.2.  

 

Theorem 2 Assume the same hypotheses (C1)-(C4) as in Theorem 1. 
 

(a) When (2.3) holds, then as  m → ∞  

                                             ( ) ( )
22

,2 2
2 1 2 4

=1

ˆ ˆ 0, , = ,xe j
d d d

j j xj

n N
σ

β − β → σ σ
ϕ σ∑  (2.4) 

and the estimators reg,1 reg,2
ˆ ˆ , ,Y Y  and decŶ  are all asymptotically normally distributed and 

equivalent in the sense that  

                                               ( ) ( )2 2

reg,1 reg,2 reg,2 dec2
ˆ ˆ ˆ ˆ 0.

P

n
Y Y Y Y

N
 − + − →
 

 (2.5) 

(b) When 1 2,β ≠ β ( )dec reg,2
ˆ ˆ= 1P Y Y →  and ( ) ( )2

dec 2
ˆ 0, .

d
n Y Y N N− → σ  

 

A more refined study of the asymptotic behavior of the estimators dec
ˆ  Y  can be undertaken in the spirit 

of Saleh (2006), as with contiguous or Pitman alternatives for non-survey statistical models, by assuming 
that ( )1 2  n rβ − β →  for a constant .r  Under this assumption, it can be shown that 

( )reg,1 reg,2
ˆ ˆ = PY Y o N n−  and, therefore, the three centered and scaled estimators ( )dec

ˆ ,n Y Y−  

( )reg,2
ˆ ,n Y Y−  and ( )reg,1

ˆn Y Y−  all have the same asymptotic normal distribution with mean 0. 

Furthermore,  

                                     ( ) ( ) ( )dec reg,2 /2 /2
ˆ ˆ= ,d dP Y Y z r z rτ τ→ Φ − + σ + Φ − − σ  (2.6) 

where 2
dσ  is given in (2.4), and 2z τ  and Φ  are respectively the standard normal percentage point and 

distribution function. Thus, ( )dec reg,2
ˆ ˆ=P Y Y  has a limit different from 1. In particular, the limit in (2.6) 

equals τ  when 1 2=β β  (i.e., when = 0r ). 

 
2.2  Model-assisted asymptotic setting 
 

We elaborate in this section the behavior of estimators reg, dec
ˆ ˆ,kY Y  under the assumed probabilistic 

model that the triples ( , , )i i ix y z  in the finite population, ,ji U∈  are independent and identically 

distributed (iid), where the size-variables  > 0iz  are used in defining PPS with-replacement draw 

probabilities  = ,ij i ii U j
p z z ′′∈∑  and where ix  and iy  follow the model  

                                                           = , ,i j j i i jy x i Uα + β + ε ∈  (2.7) 

with jα  and jβ  as unknown intercept and slope parameters for the regression within stratum .jU  The 

errors , ,i ji Uε ∈  are assumed to be iid with mean 0 and finite variance 2
εσ  and to be independent of 
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( , ),i ix z  and the variables ix  for  ji U∈  are assumed to have finite variance. Also, to enable PPS 

sampling, we assume that max < 1 
ji U j ijn p∈  with probability approaching 1 for large ,m  i.e., for large 

 , .j jn N  

In this section, asymptotic properties of estimators reg, dec
ˆ ˆ ,kY Y  are considered with respect to the 

regression model and repeated sampling. By Theorem 1, the model-assisted estimators reg,1Ŷ  and reg,2Ŷ  are 

still consistent and asymptotically normal for triples ( , , ) i i ix y z  iid within strata, since the conditions 

(C1)-(C4) are satisfied under moment assumptions on  ,1  i iz z  even if model (2.7) is incorrect. However, 

the estimators reg,
ˆ

kY  are efficient when model (2.7) is correct. 

 

Theorem 3 Assume model (2.7) along with (C1), with ( ) ( )4 4< , < ,i iE x E∞ ε ∞ ( ) < ,iE z ∞  and 

( )( )4 31 < .i iE x z+ ∞  Then all conclusions in Theorem 1 and Theorem 2 still hold. In particular, when 

1 2,β ≠ β 2
1 ,σ  the asymptotic variance of ( )reg,1

ˆ ,n Y Y N−  is larger than 2
2 ,σ  the asymptotic variance 

of ( )reg,2
ˆ .n Y Y N−  Furthermore,  

                                           ( ) ( )( )2 2
dec 1 2

ˆ 0, 1 ,dn Y Y N N− → − π σ + πσ  (2.8) 

where π  is the limit of ( )dec reg,2
ˆ ˆ= .P Y Y  

 
Note that π  in (2.8) is equal to 1 when 1 2β ≠ β  and equal to τ  when 1 2= .β β  

According to Theorem 3, under model (2.7), all three estimators defined in (1.2)-(1.4) have the same 
asymptotic efficiency when 1 2=α α  and 1 2=β β  (condition (2.3)). Furthermore, reg,1Ŷ  is asymptotically 

worse than reg,2Ŷ  when 1 2.β ≠ β  Thus, why would we not always use reg,2
ˆ ?Y  

The assertions in Theorem 3 are first-order asymptotic results. A more refined, second-order 
asymptotic result under the conditions in Theorem 3 and condition (2.3) when the sizes iz  are all equal is 

that, up to a term of order 2 2
1 2 ,n n− −+  

                               
( )22 2

reg,1 reg,2 1 2 1 2
ˆ ˆ

mse mse 1 ,
n

Y Y n n X X

N n N n nD
ε ε       σ σ −

− ≤ − −      
       

 (2.9) 

where mse is the mean squared error conditional on ’s,ix 1= ,j j ii U j
X N x−

∈∑  and  

( ) ( )22
2 1 2 1 2

=1

= .n i j
j i U j

n n X X
D x X

n∈

−
− +∑∑  

Result (2.9) indicates that, when weights are equal and 1 2=β β  and 1 2= ,α α  the finite sample 

performance of reg,1Ŷ  may be better than that of reg,2Ŷ  for moderate 1n  and 2n . See the simulation results 

in Section 4. The proof of (2.9) is a special case of a more general result in Slud (2012) and, thus, is 
omitted. 
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In applications, we do not know whether 1 2= .β β  Hence, the decision-based estimator decŶ  is an 

adaptive procedure to select a good estimator. In view of (2.8), the performance of decŶ  is close to 

(slightly worse than) that of reg,2Ŷ  when 1 2,β ≠ β  and is close to (slightly worse than) that of reg,1Ŷ  when 

1 2=α α  and 1 2= .β β  This is also supported by the simulation results in Section 4. 

 
3  Variance estimation 
 

It is common practice to report a variance estimate or standard error for each survey estimate. Variance 
estimation is also crucial for statistical inference when setting a confidence interval for an unknown 
parameter of interest. 

The asymptotic results in Section 2 suggest a variance estimator for reg,
ˆ

kY  by substituting into (2.2) 

estimators for unknown quantities in 2 .kσ  Since the total variance is a sum of H  within-stratum 

variances, without loss of generality we consider one stratum ( )= 1 .H  For  = 1, 2,j  let  

( )
ˆ ˆ

ˆˆ ˆ ˆ ˆ= , = 1 , , , ,
ˆ1

T
Tij ij

n ij ij j i ij j i ij j jj
i S j jj

b b
D b p N x p X y p Y i S

n N∈
 − − −  ∈ −∑  

( ) ( )
1 2 1 2

1 21 2 1 2

ˆ ˆ
ˆ ˆ ˆ ˆˆ = , ,1 , ˆ = , ,1 ,

ˆ ˆ
T Tj j

j j j j j j
j j

N n N n
a y x a y x

Nn Nn
   − − β −β − − β −β     

( ) ( )
2 2

1 2 1 2
=1 =1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= , = , = , = .j j j j j j j j
j j

y Y N x X N y Y N N x X N N+ +∑ ∑  

Then, under the conditions in Theorem 1,  

2
2 2

=1

ˆˆ = ˆ ˆ , = 1, 2.T
k kj n kj kj P

j

a D a kσ → σ∑  

That is, 2ˆ kσ  is consistent for 2 .kσ  The results in Theorems 2 and 3 also show that 2
2σ̂  is a consistent 

variance estimator for the decision-based estimator dec
ˆ ,Y  because we have either 2 2

1 2=σ σ  or 

( )dec reg,2
ˆ ˆ= 1.P Y Y →  

These substitution variance estimators, however, may not perform well when one of 1n  and 2n  is 

moderate (see Section 4). An alternative method is the bootstrap as suggested by Cheng et al. (2010). Let 

θ̂  be the estimator under consideration. Its bootstrap variance estimator can be obtained as follows.  
 

1. Draw a bootstrap sample *jS  as a simple random sample of size jn  with replacement from ,jS  

where *
1S  and *

2S  are independently obtained. If there are jk  self-representing units in ,jS  as 

discussed in Section 4.1 below, then with-replacement samples of sizes j jn k−  are drawn, 

= 1, 2.j  
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2. The survey weights and observed data from the original data set are used to form a bootstrap 

data set * *
1 2 .S S∪  From this dataset, calculate the bootstrap analog *θ̂  of ˆ.θ  

3. Independently repeat the previous steps B  times to obtain *1 *ˆ ˆ, , .Bθ θ…  The sample variance of 
*1 *ˆ ˆ, , Bθ θ…  is the bootstrap variance estimator for ˆ.θ  

 

Under the conditions in Theorems 1-2, the bootstrap variance estimators for reg,1
ˆ ,Y reg,2Ŷ  and decŶ  are 

consistent estimators. The proof for the bootstrap is similar to the proofs of the theorems and is omitted. 

 
4  Simulation results for = 1H  
 

Large sample theory as presented above is not adequate to tell whether the asymptotic results 
adequately describe the behavior of the estimators reg,1

ˆ ,Y reg,2Ŷ  and decŶ  and their variance estimators in 

moderate samples, or whether reg,1Ŷ  and decŶ  ever provide useful Mean-Squared-Error improvements in 

moderate sized samples. We present some simulation results to study these questions, as well as the small-
sample issues arising in applying these methods in the context of the ASPEP survey. 

In the simulations, values in the frame population   U  are either generated under some model or are 
taken from the 2002 and 2007 Government censuses with 2007 ASPEP sample weights. The first set of 
simulations (reported in Tables 4.1-4.6) summarizes average behavior over many model-generated frame 
populations. In the second set of artificial-data simulations, summarized in Table 4.8, the frame population 
remains fixed throughout the simulation. All frame populations consist of a single stratum ( )= 1H  

broken into two substrata ( )= 1, 2j  according as a size variable falls below or above a specific quantile, 

usually the 0.8 quantile. Sampling from the frame populations is done PPS with-replacement in all 
simulations in this section. 

 
4.1  Small sample considerations 
 

Before proceeding to describe the simulations, we discuss some special features of PPS with-
replacement (PPSWR) sampling which, when done in settings with small samples and unbalanced size 
variables, requires special computational handling. Numerically erratic results can arise when the small 
drawn samples are used stratumwise and then bootstrapped to estimate variances. 

The weights ( )1 = 1  i j ijn p−π  in PPSWR are all greater than 1 only when the single-draw 

probabilities  =ij i ii U j
p z z ′′∈∑  are all below 1 .jn  To avoid anomalous small-sample results, and to 

maintain the relevance of PPSWR designs in imitating PPS without-replacement designs, any units 

ji U∈  with 1j ijn p ≥  are made self-representing (SR), i.e., are sampled with certainty but only once, 

and if there are jk  such units, then the probabilities { }: , < 1ij j j ijp i U n p∈  are renormalized to draw a 

size   j jn k−  PPSWR sample. If any of the remaining renormalized probabilities are 1 ( ) ,j jn k≥ −  

then their units also become self-representing and a new renormalization is done. This is repeated as often 
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as necessary. Thus, small samples with very unequal size-variable distributions may not be compatible 
with PPSWR sampling, a condition arising in some of the real-data ASPEP cases considered below. 

Although a different choice could have been made, we conform with ASPEP practice in including all 

SR units in the fitting of the survey-weighted regression estimators 2
ˆ  β  and ˆ .β  However, with this 

choice, PPSWR sampling followed by bootstrap resampling of small samples can lead to extremely erratic 
behavior, which must be recognized in summarizing the behavior of bootstrap variance estimators. The 
problem is that when a small number m  of non-self-representing items are sampled PPSWR, in addition 
to a set of SR items, and then bootstrapped, the probability can be surprisingly large that there is only one 
unique non-SR item in the bootstrap sample, leading to very high bootstrap variability. This phenomenon 
was observed in the simulations reported below, with large-size substratum containing 20 or fewer 
elements and very skewed size-variables, either in the cases with lognormal or ASPEP ix  variables. 

 
4.2  Artificial model-generated data 
 

All of the artificial frame populations were generated with =N 2,000 iid triples ( , , )i i ix y z  satisfying 

(2.7), for 1U  consisting of the 1 =N 1,600 for which ix  fell below their empirical 80’th percentile 

( ) ( )( )1,600 1,601= 2 ,c x x+  and 2U  consisting of the other 400 indices. In most cases, iz  were generated 

as ( )30 ,100iN x+  variates conditioned to be positive (which required occasional re-simulation in the 

lognormal- ix  models below) and were conditionally independent of iy  given .ix  (However, in some 

cases, unweighted samples were drawn by taking iz  identically equal.) PPS with-replacement stratified 

samples of sizes ( ) ( ) ( )1 2, = 100, 50 , 100, 20 ,n n  or ( )50, 20  were drawn in successive simulation runs, 

with size-variables ,iz  from the same frame. 

The models generating ( , ) i ix y  are indexed as follows. In those with prefix ,M1  the predictors ix  

are Gamma(4, 0.1) distributed, with 0.8 quantile 55.2, while in the models ,M2  the ix  variables are 

Lognormal(1,6.25), with 0.8 quantile 22.3. The M1  populations, and the M2  models with suffix ,E  have 

conditional variance 100 for iy  given ,ix  while the M2  models without suffix E  have conditional 

variance 20 .ix  Conditional means ( )i iE y x  are all linear, equal to 20 1.5  ix+  in models indexed H0  

and to ( ) [ ]=220 0.5  i i jx x c I+ + −  within the substratum jU  in models .H1  The intercepts of the 

regression models are so chosen that whether or not the slopes are the same, the lines intersect at =x c  
(see the discussion in Section 1). Table 4.1 exhibits the average and standard deviation for the totals Y  

generated from the frame-population attributes{ }2,000

=1  i iy  under the various models. The variates ix  as well 

as the totals Y  are much longer-tailed under the Lognormal models.  

 
Table 4.1 
Means and standard deviations for totals Y  under simulation models. 
 

  Gamma Lognormal  
Model M1.H0  M1.H1  M2.H0  M2.H0E  M2.H1  M2.H1E  
E(Y)   160,000   123,177   225,603   225,603   173,485   173,485  
SD(Y)   1,414.2   653.5   94,380   94,368   62,362   62,344  
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Simulated population models 
 

.M1 H0 :  ( )Gamma 4, 0.1ix ∼  (shape parameter 4, scale 10),  

( )20 1.5 ,100i iy N x+∼  (variance 100), all  .i U∈  

.M1 H1 :  ( )Gamma 4, 0.1 ,ix ∼ ( )( )20 0.5 ,100 ,i i i x ci
y N x x c I

 ≥ 
+ + −∼  all  .i  

.M2 H0 :  ( ) ( ) ( )log 1, 6.25 , 20 1.5 , 20 , all .i i i ix N y N x x i+∼ ∼  

.M2 H0E :  ( ) ( ) ( )log 1, 6.25 , 20 1.5 ,100 , all .i i ix N y N x i+∼ ∼  

.M2 H1 :  ( ) ( ) ( )( )log 1, 6.25 , 20 0.5 , 20 , all .i i i i ix ci
x N y N x x c I x i

 ≥ 
+ + −∼ ∼  

.M2 H1E :  ( ) ( ) ( )( )log 1, 6.25 , 20 0.5 ,100 , all .i i i i x ci
x N y N x x c I i

 ≥ 
+ + −∼ ∼  

 
The simulation and bootstrap results in Tables 4.2-4.5 were generated by the following design and 

reporting scheme. For each population type, 60 distinct frame populations were generated, and 50 
independent sampling experiments were conducted with each of those. In those cases where results of 
weighted and unweighted sampling were compared, these samples were drawn independently from the 
same set of 60 frame populations. Thus there were 3,000 independent replications for Monte Carlo 
averaging of statistical results, done for each of three different stratified sample sizes, and 400 bootstrap 
iterations were performed for each such generated sample. 

 
Table 4.2 
Empirical and estimated SD’s and CI coverage, from model M1  simulations. 
 

    M1.H0  M1.H1  
Sizes Stat reg ,1Ŷ  reg ,2Ŷ  decŶ  reg ,1Ŷ  reg ,2Ŷ  decŶ  
 100,50   SDMC    1,785.5   1,794.3   1,788.0   1,817.6   1,773.5   1,774.4  

  �SDS   1,757.1   1,751.5   1,755.6   1,794.6   1,735.2   1,735.8  

  �SDB   1,752.4   1,762.0   1,758.4   1,788.1   1,742.9   1,747.0  

  CPS   94.47   94.37   94.50   93.93   93.73   93.77  

  CPB   94.60   94.53   94.67   93.93   94.03   94.07  

 100,20   SDMC    1,930.0   1,944.8   1,934.0   2,008.4   1,944.4   1,960.4  

  �SDS    1,888.3   1,876.6   1,884.1   1,944.4   1,861.0   1,866.5  

  �SDB    1,878.8   1,901.4   1,895.8   1,936.1   1,885.6   1,897.9  

  CPS   94.20   93.83   94.13   93.53   93.20   93.07  

  CPB   93.80   94.00   93.97   93.60   93.83   93.97  

 50,20   SDMC    2,583.5   2,610.7   2,593.5   2,591.3   2,522.8   2,535.4  

  �SDS    2,509.2   2,490.8   2,505.1   2,562.2   2,465.0   2,474.5  

  �SDB    2,498.5   2,538.0   2,522.9   2,550.3   2,508.5   2,525.6  

  CPS   93.70   93.13   93.57   93.97   93.63   93.43  

  CPB   93.63   93.73   93.87   93.83   93.77   94.10  
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Table 4.3 
Empirical and estimated SD’s and CI coverage, from model M2  simulations. 
 

    M2.H0  M2.H1  

Sizes Stat reg ,1Ŷ  reg ,2Ŷ  decŶ  reg ,1Ŷ  reg ,2Ŷ  decŶ  

 100,50   SDMC    3,400.1   3,475.4   3,406.8   3,481.9   3,483.8   3,482.2  

  �SDS   3,420.6   3,400.0   3,417.0   3,537.8   3,405.0   3,463.7  

  �SDB   3,590.0   3,715.2   3,623.4   3,852.0   3,921.9   3,898.4  

  CPS   95.10   93.43   94.83   95.03   93.40   94.13  

  CPB   95.67   95.77   95.77   95.63   95.77   95.70  

 100,20   SDMC    5,655.2   6,184.0   5,698.6   5,853.0   6,181.1   5,955.6  

  �SDS    5,644.9   5,575.7   5,640.9   5,798.3   5,587.3   5,697.3  

  �SDB    5,565.1   6,687.3   5,857.8   5,907.8   6,838.0   6,466.6  

  CPS   93.83   88.47   93.40   92.77   88.30   90.70  

  CPB   92.33   93.67   93.37   92.63   94.33   94.17  

 50,20   SDMC    5,773.2   6,319.2   5,833.9   5,934.2   6,230.6   6,009.8  

  �SDS    5,800.2   5,677.2   5,785.8   6,012.6   5,755.4   5,919.2  

  �SDB    5,728.5   6,825.2   6,086.0   6,102.2   6,978.1   6,522.1  

  CPS   94.60   88.67   93.97   94.07   89.37   92.27  

  CPB   93.40   94.23   94.27   93.47   95.03   94.80  

 
Table 4.4 
SD’s for HTŶ  vs. dec

ˆ ,Y  and coverage for Bootstrap Percentile Confidence Intervals for dec
ˆ ,Y  for = 0.05τ  vs. 

0.20 , for models M1  and M2, H0  and H1 . 
 

    dec
ˆ , = 0.05Y τ  HTŶ   dec

ˆ , = 0.20Y τ  

Model Samples SD MC  CPBP  HTSD  SD MC  CPBP  

.M1 H0   100,50   1,788.0   94.23   2,774.0   1,745.5   94.60  

  100,20   1,934.0   93.50   3,032.6   1,915.9   94.10  

  50,20   2,593.5   93.17   3,000.7   2,500.1   94.43  

.M1 H1   100,50   1,774.4   93.70   2,387.3   1,737.3   94.43  

  100,20   1,960.4   93.27   2,678.9   1,948.0   93.23  

  50,20   2,535.4   93.90   3,035.0   2,509.8   94.23  

.M2 H0   100,50   3,406.8   95.20   4,160.0   3,398.8   94.83  

  100,20   5,698.6   91.13   6,720.2   5,705.7   92.57  

  50,20   5,833.9   92.60   7,080.0   5,979.8   92.17  

.M2 H1   100,50   3,482.2   95.13   4,393.6   3,423.9   94.03  

  100,20   5,955.6   92.07   7,413.1   5,917.3   92.40  

  50,20   6,009.8   92.33   7,840.4   6,105.6   92.17  
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Table 4.5 
Comparisons of SD estimates and CI coverage for H0  and H1  for three lognormal settings, weighted (W) 
and unweighted (U) within M2,  and weighted (E) within M2.E.  CI % coverages are given for both the 
Bootstrap SD and Percentile Intervals. 
 

Model Size Stat SD �SD S  �SD B  CPS  CPB  CPBP  

H0.W   100,50   reg,1Ŷ    3,400.1   3,420.6   3,590.0   95.10   95.67   94.93 

    reg,2Ŷ    3,475.4   3,400.0   3,715.2   93.43   95.17   95.33 

    decŶ    3,406.8   3,417.0   3,623.4   94.83   95.77   95.20 

H0.U     reg,1Ŷ    5,481.6   3,674.8   5,571.9   81.43   93.50   92.07 

    reg,2Ŷ    5,782.8   3,646.6   6,076.3   80.13   93.67   91.90 

    decŶ    5,525.5   3,669.0   5,726.8   81.07   93.83   92.20 

H0.E     reg,1Ŷ    1,888.8   1,930.1   1,904.7   94.73   94.53   94.23 

    reg,2Ŷ    1,888.6   1,911.1   1,893.2   94.43   94.30   94.20 

    decŶ    1,892.9   1,926.5   1,905.0   94.67   94.57   94.20 

H0.W   50,20   reg,1Ŷ    5,773.2   5,800.2   5,728.5   94.60   93.40   92.00 

    reg,2Ŷ    6,319.2   5,677.2   6,825.2   88.67   94.23   92.60 

    decŶ    5,833.9   5,785.8   6,086.0   93.97   94.27   92.60 

H0.U     reg,1Ŷ   10,000.3   5,136.5   9,905.6   71.10   90.73   89.80 

    reg,2Ŷ   11,192.8   5,085.0  12,806.8   68.70   92.90   89.37 

    decŶ   10,134.1   5,120.7  11,245.9   70.73   92.37   90.27 

H0.E     reg,1Ŷ    2,811.4   2,831.6   2,769.5   94.13   94.00   93.93 

    reg,2Ŷ    2,811.9   2,753.8   2,741.1   93.47   93.77   93.30 

    decŶ    2,817.4   2,821.8   2,777.0   93.83   93.90   93.77 

H1.W   100,50   reg,1Ŷ    3,481.9   3,537.8   3,852.0   95.03   95.63   95.27 

    reg,2Ŷ    3,483.8   3,405.0   3,921.9   93.40   95.77   95.10 

    decŶ    3,482.2   3,463.7   3,898.4   94.13   95.70   95.13 

H1.U     reg,1Ŷ    5,631.4   3,774.8   5,614.6   80.90   92.33   91.07 

    reg,2Ŷ    5,838.3   3,699.6   6,010.5   79.13   92.73   91.37 

    decŶ    5,727.0   3,732.8   5,870.5   80.40   92.93   91.63 

H1.E     reg,1Ŷ    2,005.5   2,094.2   2,019.1   95.60   94.97   94.60 

    reg,2Ŷ    1,909.9   1,908.2   1,892.5   94.83   94.77   94.17 

    decŶ    1,931.9   1,941.7   1,934.6   94.97   95.20   94.83 

H1.W   50,20   reg,1Ŷ    5,934.2   6,012.6   6,102.2   94.07   93.47   91.97 

    reg,2Ŷ    6,230.6   5,755.4   6,978.1   89.37   95.03   92.23 

    decŶ    6,009.8   5,919.2   6,522.1   92.27   94.80   92.33 

H1.U     reg,1Ŷ    9,315.8   5,350.9  10,040.0   74.17   93.10   90.57 

    reg,2Ŷ   10,583.8   5,229.6  12,476.8   71.23   94.57   90.87 

    decŶ    9,989.6   5,295.4  11,479.5   72.53   94.33   91.47 

H1.E     reg,1Ŷ    3,096.1   3,137.7   2,795.6   94.63   93.43   93.37 

    reg,2Ŷ    2,880.6   2,766.8   2,745.7   93.10   93.40   93.47 

    decŶ    2,977.3   2,929.2   2,882.0   93.77   93.77   93.77 
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We calculated the following quantities for each combination of model, weighting, and sample size: the 
percentage biases of reg,1

ˆ ,Y reg,2
ˆ ,Y decŶ  (with =τ 0.05 in all tables except Table 4.4, and =τ 0.05 or 0.20 

in Table 4.4) as estimators of ;Y  the Monte Carlo standard deviations (SD), SD ,MC  of these three 

estimators; the estimated SD’s of the estimators, respectively using the substitution �( )SDS  and bootstrap 
�( )SDB  SD estimators described in Section 3; the coverage probability, C ,uP  of the nominal 95% 

confidence intervals for :Y �ˆ 1.960 SD ,uY ± ⋅  where Ŷ  is one of the three estimators of ,Y  and =u S  or 

;B  and the bootstrap percentile confidence intervals (and their coverage percentages C BPP ) obtained from 

the empirical 0.025 and 0.975 quantiles of the (400) bootstrapped values of each of the three estimators Ŷ  
of .Y  In addition, we calculated empirical biases of the Horvitz-Thompson estimates HTŶ  in (1.1) and 

their empirical standard deviations HTSD . (Of these calculated quantities, only the biases are not shown, 

since all of the biases were well below 0.5% except in the model . . ,M2 H1 U  and even there the largest 

magnitude of bias was about 1%.) Two further statistics, computed and displayed in Table 4.6 for each of 
the estimators ̂Y  of ,Y  are the standard errors across randomly generated frame populations of the Monte 

Carlo and Bootstrap within-population estimated SD’s of estimators ˆ.Y  

 
Table 4.6 
Cross-population Standard errors of Empirical and Bootstrap SD’s estimated for the estimators reg ,1 reg , 2

ˆ ˆ, ,Y Y  
and dec

ˆ ,Y  for selected models and weighting. 
 

     reg ,1Ŷ    reg ,2Ŷ    decŶ   

Model Sizes SD �SD B  SD �SD B  SD �SD B  
.M1 H0   100,50   198   35   196   35   197   35  

  50,20   210   52   208   51   210   51  
.M1 H1   100,50   204   39   183   40   184   41  

  50,20   319   57   298   62   302   62  
.M2 H0   100,50   404   345   450   383   405   351  

  50,20   825   518   1,075   916   889   631  
. .M2 H0 E  100,50   187   49   185   45   184   47  

  50,20   294   85   293   71   298   82  
.M2 H1   100,50   409   409   410   421   408   414  

  50,20   767   624   946   929   841   730  
. .M2 H1 E  100,50   208   59   196   46   204   50  

  50,20   258   141   261   82   239   102  
. .M2 H1 U  100,50   1,676   1,351   1,773  1,539   1,726   1,467  

  50,20   2,397   2,543   3,425  3,454   3,102   3,159  

 
4.3  Real government-census data 
 

Our simulations based on repeated sampling from real-data frames rely on a national state-wise dataset 
assembled by Yang Cheng. For the ASPEP survey of governments for sample year 2007, which was also a 
census year, the ASPEP frame is the same as the 2007 Census of Governments file. Our dataset consists of 
the 2002 and 2007 ASPEP variable values (full- and part-time employees, payroll and hours) derived from 
the censuses in those years, plus the 2007 sample weights and in-sample indicators for ASPEP. Weights 
equal to 1 imply that governmental units were self-representing (SR), in the sense that they were chosen 
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for inclusion with certainty in ASPEP. The size-variable iz  for PPS sampling within ASPEP is the sum of 

full- and part-time payroll from the most recent census, so we restrict attention to the 53,402 governmental 
units in the file for which this variable was positive. Table 4.7 gives the subcounty and special-district 
governmental types (the only ones that are subdivided into Small and Large unit substrata) in nine selected 
states, giving also the SR counts and numbers sampled in 2007. As mentioned in subsection 4.1, the final 
SR count for PPS with-replacement sampling can exceed the number of units initially chosen for certain 
inclusion, and the larger numbers, corresponding to the sample size actually drawn in 2007, are shown in 
the SR columns of Table 4.7. Inspection of this Table shows that several of the state by type combinations 
either have no population in a substratum or have too few non-SR units to be useful in simulating repeated 
samples. We take 15 as a rule-of-thumb minimum for the number of non-SR units, and suggest that 
substratum pairs with fewer non-SR units in the large-unit stratum should be collapsed without recourse to 
the decision-based strategy studied in this paper. 

 
Table 4.7 
Census population, ASPEP sample sizes and SR counts of Subcounty and Special-District governmental units 
by substratum in 2007, for 9 selected states. 
 

   Subcounty   Special District  
   Small   Large   Small   Large  
   Pop   Samp   Pop   Samp   SR   Pop   Samp   Pop   Samp   SR  

AL   378   15   55   45   26   0   0   400   102   64  
CA   0   0   475   104   86   1,595   39   107   107   107  
CO   0   0   265   34   18   627   16   65   55   33  
FL   317   16   81   54   36   0   0   330   48   24  
GA   461   17   49   36   20   0   0   293   70   32  
MO   980   25   101   101   101  799   27   106   66   42  
NY   1,473  25   69   69   69   606   16   33   23   4  
PA   2,409  55   123   81   31   921   21   37   37   37  
WI   1,702  36   129   71   44   281   16   61   40   20  

 
For nine government-by-type combinations with 15 or more non-SR units and at least 17 non-sampled 

non-SR large-substratum units (except for AL, CO, and GA for which there were respectively 9, 10, and 
11 non-sampled non-SR units), Table 4.8 displays results for the decision-based estimators and variance 
estimates in substratum pairs. In each of the state-type combinations, 3,000 stratified PPSWR samples of 
the indicated sizes were drawn from the ASPEP and government census frame described above, with ix  

and iy  respectively the full-time payroll amount for the governmental unit as recorded in the 2002 and 

2007 governmental censuses, and iz  the total (full-time plus part-time) payroll in 2002. Within each 

simulated sample, the estimators reg,1 reg,2 dec
ˆ ˆ ˆ, ,Y Y Y  were calculated, and the empirical variances estimated. 

The variance of decŶ  was also estimated by the substitution formula and bootstrap methods as in the 

artificial-data simulations. (But note that, as described above, the bootstrap samples were drawn only from 
the non-SR units in each substratum sample.) The results are shown in Table 4.8. The relative efficiencies 
between the combined and separate stratified regression estimators can be gleaned from the corresponding 
ratio of SD’s given in column 5 of the table. The remaining SD’s shown are the empirical, substitution, 
and bootstrap SD estimators of dec

ˆ .Y  
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Table 4.8 
Summary of repeated-sampling simulations from ASPEP 2007 frame. Total full-time pay ( )Y  given in 
multiple of $100 million, and estimated SD’s of decŶ  given in columns 6-8 in units of $1 million. 1 2SD SD  in 
column 5 is ratio of empirical SD of reg ,1Ŷ  over that of reg ,2Ŷ . 
 

State Stratum Y Size 1 2SD SD  �SD  �SD S  �SD B  
AL   SubCty   1.2   25,46   2.14   4.90   3.67   5.71  
CA   SpcDst   4.3   30,90   0.98   29.4   21.2   26.8  
CO   SpcDst   0.6   25,55   1.14   3.77   2.58   3.00  
FL   SubCty   4.3   25,54   1.16   11.9   9.4   12.2  
GA   SubCty   1.5   25,38   1.15   4.38   3.26   4.88  
MO   SpcDst   0.6   40,70   2.13   2.99   2.20   2.99  
NY   SubCty   23.6  35,52   1.53   13.6   12.0   14.1  
PA   SubCty   3.0   40,70   1.12   7.28   5.79   7.60  
WI   SubCty   1.4   40,70   2.06   5.00   4.45   5.17  

 
4.4  Discussion of simulation results 
 

The following is a summary and interpretation of the results in the Tables, as well as of other results 
not shown. 
 

(I) Many of the artificial-data simulations serve to confirm the large-sample theoretical results of the 
Theorems. It has already been mentioned that in Tables 4.2 and 4.3 the biases for all three Y -estimators 

( )reg,1 reg,2 dec
ˆ ˆ ˆ, ,Y Y Y  are generally small. Within Table 4.2, referring to models with predictors and weights 

related to the Gamma distribution in models ,M1  the substitution and bootstrap variance estimators for 

each Y -estimator are quite accurate and close to one another, and the confidence intervals all have close 
to nominal coverage. Under both .M1 H0  and . ,M1 H1  there is a tendency with smaller 2n  sample size 

for the �SDS  and �SDB  estimators to be slight underestimates of the actual or empirical SD’s, but �SDB  

seems to track SD more closely than �SDS  for reg,2Ŷ  and dec
ˆ .Y  

(II) The lognormal ix  values in models M2  are much more dispersed and skewed than the values in 

,M1  but the simulation results still support the asymptotic theory when 2 = 50,n  although not when 

2 = 20.n  The substitution-estimator based confidence intervals for Y  in terms of reg,2Ŷ  have coverage 

probability far too small when the substitution variance estimator is used. In Table 4.3, for each type of 
Y -estimator there is a pronounced tendency for the substitution variance estimator to underestimate the 
true (empirical) variance, and for the bootstrap estimator to overestimate. 

Table 4.5 clarifies that the extreme behavior of variance estimators under models M2  occurs partly 
because the predictors and iy  are dispersed and skewed, and partly because the size-variable used in PPS 

weighting shares these properties. The cases with suffix W  in this Table are the same as in Table 4.3. The 
cases with suffix E  have ( ),i ix z  the same as in Table 4.3, but the conditional variances of iy  given ix  

have the constant value of 100; and with this change, the erratic behavior of SD estimators disappears. 
However, when the conditional iy  variances are as in the basic model M2  but the PPSWR sampling is 

done unweighted, i.e., with all iz  replaced by 1, the empirical and bootstrap SD estimators track each 

other and are very large, while the substitution variance estimator is too low by dramatic factors of 1 2 to 
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3 4. This weird phenomenon applies equally to all three Y  estimators. (However, an unweighted-

sampling variant in model M1  does not materially change the results from those shown in Table 4.2.) 

(III) One objective of the simulations was to learn whether there can ever be any Mean-squared Error 
(MSE) benefit in using reg,1Ŷ  rather than reg,2

ˆ ,Y  without which there would be little motivation for decŶ . 

Indeed, the large-sample Theorems say that the main large-sample variance term is always optimal for 

reg,2Ŷ  (whether because it is the same as for reg,1Ŷ  under the null hypothesis or because it is strictly better 

under model (2.7) with distinct slopes). However, we indicated following Theorem 3, in the bound (2.9), 
that reg,1Ŷ  can have smaller second-order MSE than reg,2

ˆ ,Y  and the H0  columns of Tables 4.2 and 4.3 do 

show a small but consistent SD advantage for reg,1Ŷ  versus reg,2
ˆ ,Y  an advantage which is more pronounced 

in .M2  This advantage disappears under the fixed alternative .M1 H1  but interestingly, not under 

. .M2 H1  The slight but real conditional MSE advantage for reg,1Ŷ  when the substratum slopes are very 

close to equality is discussed further by Slud (2012). 

The estimators reg,1 reg,2 dec
ˆ ˆ ˆ, ,Y Y Y  considered here are of regression type, and it may be of interest to 

compare their MSE behavior in the simulated populations with that of the simpler Horvitz-Thompson 
estimator HTŶ  in (1.1). All of these estimators are nearly unbiased, so that MSE’s are essentially the same 

as variances, and a comparison of the third and fifth columns of Table 4.4 shows that the HTŶ  variances 

are considerably larger than those of dec
ˆ .Y  The difference is least pronounced with the larger sample sizes, 

but even there is 30-55%. The advantage of decŶ  is still very pronounced in model ,M2  where model 

variances and distributional skewness are larger, but less so than in model .M1  

(IV) The definition of decŶ  contains the arbitrary nominal significance level ,τ  which in all tables 

other than Table 4.4 was taken to be 0.05. As the large-sample theory suggests, the properties of the 
decision-based estimator fall between those of reg,1Ŷ  and reg,2

ˆ ,Y  and larger values of τ  make decŶ  more 

often equal to reg,1
ˆ .Y  As can be seen from comparison of columns 6 and 7 of Table 4.4, the choice =τ

0.20 seems in the simulated models to lead to very slightly smaller SD of decŶ  under model ,M1  but in 

model M2  the SD is if anything larger at the smaller sample sizes. The conclusion is weak because the 
differences are quite small compared to the differences between SD’s from one frame population to 
another. Our preference is to let smaller τ  dictate the frequent pooling of substrata except when there are 
pronounced differences in estimated slope between the substrata. This finding that larger significance 
levels τ  do not improve performance of decŶ  differs from the finding of Saleh (2006) that larger 

significance levels are highly beneficial in other preliminary-testing contexts. 

(V) Table 4.6 gives information about the variability across frame populations of SD estimators for the 
Y  estimators. The bootstrap variance estimators appear less susceptible to variation across frame 
populations, because the bootstrap averaging stabilizes them. The key finding in this table seems to be that 
the variability across frame populations is moderate except in the unweighted M2  setting, where it is 
remarkably large. This seems to account for the extreme inflation of variances under .M2 U  seen in 
Table 4.5. 

(VI) In many bootstrap applications with approximately normally distributed statistics, failure of 
coverage of normal-theory-based confidence intervals due to nonnormality of the bootstrapped statistic 
can be mitigated by using the bootstrap percentile (BP) intervals (Shao and Tu 1995, Section 4.1). In the 
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present simulations, Table 4.4 (columns 4 and 6) gives the coverage percentages of BP intervals for decŶ  

in settings where Tables 4.2 and 4.3 give the coverages of normal-theory CI’s based on the bootstrap-
estimated SD. For whatever reason, the tables show that the normal-theory coverage CPB  tends 

systematically to be slightly below nominal and yet slightly larger than the BP interval coverage CP .BP  

Thus, our simulations indicate the preference in this setting for the simpler interval �
dec

ˆ 1.96 SD .BY ± ⋅  

(VII) It remains to draw lessons from the simulations with real government-census data in Section 4.3. 
The first necessary comment is that the spread and skewness of the full-time payroll predictors ix  and the 

total-payroll size-variable iz  are very large, much more like the lognormal models M2  than the gamma 

models .M1  Table 4.8 indicates (in column 5) a consistent MSE advantage for reg,2Ŷ  over reg,1Ŷ  except in 

the CA Special-district case, although the difference is small in the CO Special-district and the FL, GA 
and PA Subcounty cases. It is notable in almost all of these examples that the bootstrap SD estimator for 

decŶ  is more accurate than the substitution-formula estimator, despite the rather small numbers of sampled 

and unsampled non-SR units and (in several cases, as shown in Table 4.7) relatively large numbers of SR 
units. The substitution SD estimates are consistently too small while the bootstrap estimates are usually 

slightly high (i.e., generally � � � SD < SD < SDS B ). The relative error of �SDB  versus �SD  is no more than 
about 5% in these examples, except in the cases (AL, CO, GA) where there are particularly few non-
sampled non-SR units in the large-unit substratum. 

The large-unit substrata in ASPEP usually have small total frame population and often have relatively 
large numbers of SR units. While we have seen in these simulations that this does not quite invalidate 
inferences drawn with reg,1 reg,2

ˆ ˆ,Y Y  or dec
ˆ ,Y  these statistics have distributions rather different from those of 

large-sample theory, and perhaps future substratum splits should allow slightly larger large-unit substrata 
for well-behaved statistical inferences. 

More broadly, the simulation results indicate that the decision-based estimator with interval estimator 
defined from bootstrap variances is well-behaved and can be recommended except in extremely dispersed 
and skewed populations or in populations with large-unit sample sizes less than 20-25. 
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Appendix 
 
Proof of Theorem 1. Under PPS sampling, =i j ijn pπ  for unit ,ji U∈  and on each with-replacement 

draw, the sampled index  , = 1, ,  t j ji U t n∈ …  has ( ) = =  t ijP i i p  for each  .ji U∈  By calculating 
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the means and variances (under repeated sampling) of ˆ ,jN ˆ ,jX ˆ ,jY 1
j i i ii S j

N x y−
∈

π∑  and 

1 2 ,j i ii S j
N x−

∈
π∑  we find the variances to be of order 1jn−  by means of the limits in (C2)-(C3) and the 

bounds in (C4). The assertions in part (a) follow directly. 

For assertion (b), we have by definition of ˆ  β  that  

( ) ( )( )
( ) ( )( )

( )( ) ( ) ( )( )
( )( ) ( )

2
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= ,
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j
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x X X N N

N N N N N N

N N N N N N

∈

∈

−

−

− µ + µ − + + π
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− µ + µ − + + π

β σ + + µ − µ µ − µ

 σ + + µ − µ 
 

∑ ∑

∑ ∑

∑

∑

 

from which the equality (2.1) in (b) follows immediately by substituting the limits in part (a) along with 
the limits .j jN N → ω  

Let NΣ  be the block diagonal matrix with two diagonal blocks 
1ND  and 

2
,ND  and for  = 1, 2,j  let  

                    

( )

1 2

,
3 4

1 1 1
= , = ,

1 1
= , = .

i
j j j j

i S i Sj j ij j j ijj j

i x ji
j j j i j j i

i S i Sj j ij j j ijj j

x
N X

N n p N n p

xy
Y y x

N n p N n p

∈ ∈

∈ ∈

   
Ω − Ω −   

   

− µ 
Ω − Ω − α − β 

 

∑ ∑

∑ ∑
 (A.1) 

Since 1S  and 2S  are independent, { }4
1 =1 k kΩ  is independent of { }4

2 =1 .k kΩ  Note that, here and throughout 

this proof, sums over ji S∈  used to define ̂ ,jX ˆ ,jY ,kjΩ  and variance estimators should be understood as 

sums with multiplicity in view of the with-replacement PPS sampling framework. Condition (C4) makes 
Liapounov’s Central Limit Theorem applicable to show that  

                      [ ] ( ) ( )1 2 2
11 21 31 12 22 32 6 4 ,, , , , , 0, , 0, ,T

N j xe jd d
N I N−Σ Ω Ω Ω Ω Ω Ω → Ω → σ  (A.2) 

where 6I  is the 6 6×  identity matrix, and 2
,xe jσ  is given in the statement of (d). The limits defining the 

asymptotic variances in (A.2) exist according to (C3). 

 
Proof of (c). It is straightforward to check from the definition that  

22

ˆ ˆ1
= .

ˆ ( )ˆ ˆ ˆˆˆ

j j i j j ii xj

i S xj i xj xj ij xjj j j

y xx

xN ∈

 β − β − α − β− µ 
     σ − − µ µ πσα − α   

∑  

Since it was established in (a) that 2 2ˆ xj xjP
σ → σ  and ˆ 1,j j P

N N →  it follows that the limiting 

distribution of ( )ˆ  j j jn β − β  is the same as that of  
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( ) ( ) ( )12 ,j j xj i xj i j j i i
i S j

n N x y x
−

∈

σ − µ − α − β π∑  

which is clearly the same as that of 2 4  xj j
−σ Ω  in (A.1). The first assertion of (c) follows immediately from 

(A.2). The consistency of 2 ,ˆ xe jσ  follows by noting by (a) that  

                                         
( ) ( )

2
22 2

, 0.ˆ i xj
xe j j i j j i P

i S i ijj

x
N y x

p
−

∈

− µ
σ − − α − β →

π∑  (A.3) 

The second term on the left-hand side of (A.3) has PPS with-replacement sampling variance calculated to 
be bounded by 1 jn  according to (C4), and by (C3) has expectation converging to 2

,  .xe jσ  

 
Proof of (d). From (1.2) and (a), ( )reg,2

ˆ 0,
P

Y Y N− →  which can also be seen from the representation  
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where the second equality follows from the notational definitions of kjΩ  along with = ,i j ijn pπ  
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∈ ∈
π π∑ ∑  and the third from  
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By (A.2), 1 = (1)pOΩ  and ( )2 = 1 .pOΩ  By condition (C2), ( )2= 1 .T T
nj j pd a o+  Therefore, by (A.2), 

condition (C3) and the delta method,  

( ) ( ) ( )2
reg,2 21 1 22 2 2

ˆ = 1 0, ,T T
p dn Y Y N a a o N− Ω + Ω + → σ  

where the asymptotic variance 
22
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which agrees with formula (9) of Cheng et al. (2010). The proof that ( ) ( )2
reg,1 1

ˆ 0,dn Y Y N N− → σ  is 

similar. 
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Proof of Theorem 2. By Theorem 1 conclusion (c), 

                                       ( ) ( )
2

2 2 4
2 1 2 1 ,

=1

ˆ ˆ 0, .d xe j j xj
j

n N
 β − β − β + β → σ ϕ σ 
 
∑  (A.4) 

The conclusion (2.4) in (a) of this Theorem follows immediately. 

In the proof of Theorem 1, we showed that 

                                              ( ) ( )reg,2 21 1 22 2
ˆ = 1 ,T T

pn Y Y N a a o− Ω + Ω +  (A.5) 

where the constant vectors kja  (and  ,x yµ µ ) were defined in Theorem 1 (d). Similarly,  

                                               ( ) ( )reg,1 11 1 12 2
ˆ = 1 .T T

pn Y Y N a a o− Ω + Ω +  (A.6) 

When (2.3) holds, =jβ β  (by Theorem 1 (b)) and ( )2

2 2=1
 = = ,y x j yj j xj y xj
µ − βµ ω µ − β µ µ − βµ∑  

so that 1 2=j ja a  for = 1, 2.j  It follows immediately from (A.5)-(A.6) that 

( )reg,1 reg,2
ˆ ˆ 0,

P
n Y Y N− →  and therefore that the estimators reg,

ˆ
kY  have the same asymptotic 

distribution, which was shown to be normal in Theorem 1 (d). Finally, the definition of decŶ  implies that 

( )dec reg,1 reg,2
ˆ ˆ ˆ= or = 1P Y Y Y  and (A.5)-(A.6) imply  

                                             ( ) ( )dec 21 1 22 2
ˆ = 1 ,T T

pn Y Y N a a o− Ω + Ω +  (A.7) 

which completes the proof of (2.5) in (a). 

 

Proof of (b). If 1 2,β ≠ β  then (A.4) implies that ( )dec reg,2
ˆ ˆ = 1,P Y Y →  i.e., that the t-test for equality of 

ˆ
jβ  rejects with certainty in the limit. Then (A.7) continues to hold, and the asymptotic distribution of decŶ  

is still as same as that of reg,2
ˆ .Y  

 
Proof of Theorem 3. In this Theorem, the hypotheses (C2)-(C4) are replaced by the assumptions that the 
iid triples ( ), ,i i iy x z  satisfy moment conditions and the model (2.7). The assertions in (C2)-(C4) are then 

results holding with probability tending to 1 with large ,n N  which are established with the aid of the 

(strong) law of large numbers. 

Beyond the conclusions of Theorems 1-2, it remains to show that reg,2Ŷ  has a smaller asymptotic 

variance than reg,1
ˆ .Y  Let ( )1 2= ,ϑ ϑ ϑ  and  

( ) [ ] [ ]1 2 1 2= , ,1 , ,1  .T
j jF Dϑ −ϑ −ϑ −ϑ −ϑ  

According to the definition of 2
1σ  and 2

2σ  in (2.2), it suffices to show that ( )jF ϑ  has its minimum value 

at ( )= , .j jϑ α β  We now prove this for = 1.j  The proof for = 2j  is similar. Let iim ′  be the ( ),i i′  

element of 1.D  Since 1D  is symmetric and positive definite under condition (C3), 12 21=m m  and there 
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exists a unique ( )1 2= ,∗ ∗ ∗θ θ θ  such that ( ) ( )1 1= minF F∗
ϑθ ϑ  and ( ) =1 0.TF ∗ϑ θ∂ ϑ ∂ϑ =  This implies 

that ∗θ  is the solution to the following two equations:  

                                               11 1 12 2 13 12 1 22 2 23= , =m m m m m mϑ + ϑ ϑ + ϑ  (A.8) 

Therefore, it suffices to show that ( )1 1= , .∗θ α β  Since 1D  is positive definite, the equation system (A.8) 

has a unique solution. By the definition of 1,D  

( )

2

11 1 12 1 1 1 1 1 1 1 12
1 1 1 11 1 1

1 1 1 1 1 1 1 1 12
1 11 1

1 1 1
= lim

1 1
= ,lim

i
i i

N i U i Ui i i

i i i
N i U i

x
m m N p N X p

p p pN

N N p x p X
pN

→∞ ∈ ∈

→∞ ∈

      α + β − α + − − β      
       

  − α − α + β − β  
   

∑ ∑

∑

 

and  

( )

( )

13 1 1 12
1 1 1 11

1 1 1 1 1 1 1 1 12
1 1 11

1 1 1 1 1 1 1 1 12
1 1 11

1 1
= lim

1 1
= lim

1 1
= ,lim

i
i

N i U i i

i i i i
N i U i

i i i
N i U i

y
m N Y p

N p p

N x N p p X
N p

N N p x p X
N p

→∞ ∈

→∞ ∈

→∞ ∈

    − −    
     

  − α + β + ε − α − β  
   

  − α − α + β − β  
   

∑

∑

∑

 

where the last equality follows from the assumption that iε  is independent of ix  and iz  and has mean 0 

and a finite variance, and each of the sequences ,iz 1 ,iz  and i ix z  is iid with finite expectation. 

Therefore, 11 1 12 1 13= .m m mα + β  Similarly one proves that 12 1 22 2 23= .m m mα + β  Therefore, ( )1 1,α β  

is the unique solution to equation system (A.8), i.e., ( )1F ϑ  achieves its minimum value at ( )1 1= , .ϑ α β  

Hence, 2 2
2 1< .σ σ  This finishes the proof of Theorem 3. 
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