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Abstract. We study the behavior of a large-eigenvalue limit of
eigenfunctions for the hyperbolic Laplacian for the modular quo-
tient SL(2; Z)\H. Féjer summation and results of S. Zeldicth are
used to show that the microlocal lifts of eigenfunctions have large-
eigenvalue limit a geodesic flow invariant measure for the modu-
lar unit cotangent bundle. The limit is studied for Hecke-Maass
forms, joint eigenfunctions of the Hecke operators and the hyper-
bolic Laplacian. The first modulus of continuity result is presented
for the limit. The singular concentration set of the limit cannot be
a compact union of closed geodesics and measured geodesic lami-
nations.

1. Introduction

Let ∆ be the Laplace-Beltrami operator for a finite volume Rie-
mannian manifold M . The large-eigenvalue limit of eigenfunctions of
∆ presents a model for the transition between quantum and classical
mechanics [8]. The operator eit

√
−∆ represents time evolution for the

quantum mechanical system; geodesic flow represents time evolution
for the classical mechanical system. In the large-eigenvalue limit the
eigenfunctions (quantum states) give rise to a geodesic flow invariant
measure (a classical state) on the unit cotangent bundle of M . The
quantum ergodicity question is to understand the limit in the presence
of a classical ergodic flow [2, 3, 4, 7, 16, 19, 20, 30, 31, 33]. The limit for
finite area quotients of the hyperbolic plane and in particular modular
quotients presents a setting where an explicit understanding is devel-
oping [11, 10, 13, 16, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 34]. The
quantum ergodicity question for hyperbolic quotients involves modular
functions, coefficient sums and the structure of SL(2; R).

A basic construction is the microlocal lift of a Laplace-Beltrami
eigenfunction. The lift is an almost measure (a distribution) on the unit
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cotangent bundle S∗(M); the first term of the lift is the eigenfunction
square. For large eigenvalue the lift is almost invariant under geodesic
flow. A. Schnirleman [22], Y. Colin de Verdière [7], and S. Zelditch [31]
showed for compact manifolds with ergodic geodesic flow that the spec-
tral average of the microlocal lifts is the uniform distribution on S∗(M);
a corollary provides for a full spectral density subsequence that the mi-
crolocal lifts converge to the uniform density on S∗(M). S. Zelditch
first considered non compact hyperbolic quotients. The correspond-
ing spectral decomposition for the hyperbolic Laplacian consists of the
continuous span of the Eisenstein series and the span of the square
integrable eigenfunctions, [5, 23, 27]. S. Zelditch found the appropriate
renormalization for the Eisenstein series and showed that the spectral
average again is the uniform distribution, [34]. For SL(2; Z) the Eisen-
stein series contribution in fact has smaller order of magnitude and does
not contribute to the spectral average, [34]. W. Luo and P. Sarnak were
able to directly analyze the modular Eisenstein series [16]. They found
that the absolute square of the Eisenstein series weak∗ converges to
48π−1 for large-eigenvalues; their analysis involved the subconvexity
bounds for the Riemann zeta function and the L-functions for Maass
cusp forms. D. Jakobson extended the considerations to include the
microlocal lift of the Eisenstein series [13]. In [29] the author found
that the microlocal lift to SL(2; R) ≈ S∗(H)1/2 of automorphic eigen-
functions can be obtained directly from their twisted Fourier coefficient
sums. The Luo-Sarnak and Jakobson result is equivalent to a limit-sum
formula combining the Riemann zeta values ζ(1 + it) and the elemen-
tary divisor values σ2it.

Z. Rudnick and P. Sarnak considered arithmetic compact hyperbolic
quotients [19]. An Eichler order in a quaternion algebra over Q gives
rise to a cocompact subgroup Γ ⊂ SL(2; R) with a commutative ring
of self-adjoint operators, Hecke operators, acting on L2(Γ\H) and com-
muting with the hyperbolic Laplacian. Closed geodesics for such a Γ
are associated with binary quadratic forms. There is a computational
scheme for determining the action of the Hecke operators on closed
geodesics. The authors show that a closed geodesic can be separated
from any finite set of closed geodesics by a Hecke operator. The re-
sult provides for joint eigenfunctions of the hyperbolic Laplacian and
the Hecke operators that a large-eigenvalue limit cannot have singular
support a finite union of points and closed geodesics, [19, Theorem 1.1].

S. Zelditch introduced a microlocal lift to SL(2; R) based on Hel-
gason’s Fourier transform [12, 33]. He found that the lift satisfies
an exact differential equation; see Lemma 2 below. Properties of the
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large-eigenvalue limit of SL(2; R) microlocal lifts can be obtained di-
rectly from Fejér summation and integration by parts: see Proposi-
tion 4 for the basic properties and Proposition 5 for Cauchy-Schwartz
and Minkowski type inequalities. We consider the Hecke operators for
SL(2; Z) and the congruence subgroups Γ0(m). We describe a sub-
tiling for the Hecke operators Tp, p ≤ q and a basic set of diameter
q−2. We combine the sub-tiling for the Hecke operators, the structure
of the microlocal lift and the partial-sums for

∑
p−1 to study limits of

the lifts. The measure of a set is estimated after tiling a region with
translates of the set. We find in particular for joint eigenfunctions of the
hyperbolic Laplacian and the Hecke operators that a large-eigenvalue
limit of microlocal lifts with compact singular support vanishes on each
closed geodesic and on each geodesic lamination for a finite index sub-
group. Our results and approach have similarities to the work of D.
Jakobson and S. Zelditch on semi-classical limits for eigenfunctions of
Hecke operators for the sphere S2 [?, Section 4.3]. In comparison to the
considerations of Z. Rudnick and P. Sarnak the present result provides
that even more general limit measures will be null on closed geodesics
and geodesic laminations. A limit measure is geodesic flow invariant
and hence determines a measure on the leaf space for the flow, the
space of geodesics for the hyperbolic plane. We present the first ex-
plicit modulus of continuity bound for such measures. The mass in a
ball of radius ε is bounded by (log log ε−1)−2; see Proposition 10 below.

2. Background

We recall the formalism for SL(2; R), [15], as well as the construction
of S. Zelditch for the microlocal lift [30, 31, 33]. An element B ∈
SL(2; R) has the unique Iwasawa decomposition

B =

(
a b
c d

)
=

(
1 x
0 1

)(
y1/2 0
0 y−1/2

)(
cos θ sin θ
− sin θ cos θ

)

which provides for an equivalence of SL(2; R) with S∗(H)1/2, the square
root of the unit cotangent bundle to the upper half plane, by the rule

x+ iy = y1/2eiθ(ai+ b), y−1/2eiθ = d− ic

for z = x + iy ∈ H and θ the argument for the root cotangent vector
measured from the positive vertical. The equivalence will play a basic
role throughout. The bi-invariant volume form (Haar measure) for
SL(2; R) is dV = y−2dxdydθ. The Lie algebra acts on the right of
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SL(2; R) with E± = H ± iV for

H =

(
1 0
0 −1

)
, V =

(
0 1
1 0

)
, W =

(
0 1
−1 0

)
, and X =

(
0 1
0 0

)
.

The infinitesimal generator of geodesic-flow is H = 1
2
(E+ + E−); W

is the infinitesimal generator of K, the fiber rotations of S∗(H)1/2. In
terms of the coordinates (x, y, θ) for SL(2; R) the operator E+ is simply
E+ = 4iye2iθ ∂

∂z
− ie2iθ ∂

∂θ
and the operator X is simply y cos 2θ ∂

∂x
+

y sin 2θ ∂
∂y

+ y sin2 θ ∂
∂θ

, [15].

A function u on H satisfying the differential equation Du + (1
4

+
r2)u = 0, D the hyperbolic Laplacian, lifts to a K-invariant function
on SL(2; R) satisfying Cu = (2ir+1)(2ir−1)u for the Casimir operator
C = E−E+ −W 2 − 2iW . The Casimir operator is in the center of the
enveloping algebra. A ladder of functions, the raisings and lowerings
of u, is determined by the scheme

(1)
u0 = u

(2ir + 2m+ 1)u2m+2 = E+u2m

(2ir − 2m+ 1)u2m−2 = E−u2m

for m integral. The function u2m is in the weight 2m irreducible rep-
resentation for K as demonstrated by Wu2m = i2m u2m. The sum

u∞ =
∑

m

u2m is a distribution that isN -invariant as well as an eigendis-

tribution of H [31, Prop. 2.2][33, pg.44;].
Elements of the Lie algebra sl(2; R) preserve the volume form and

can be integrated by parts. In particular the integral

∫

Q
BκdV vanishes

for B in the Lie algebra and Q = SL(2; R) or Q = Γ\SL(2; R), Γ a
discrete subgroup, with κ a smooth compactly Q-supported function.
Consider solutions u, v of the equation Cu = (2ir + 1)(2ir − 1)u and a
smooth function χ. Provided χ is smooth with compact support there
is the relation

(2) 0 =

∫

Q
((E+u2j)v2kχ+ u2jE−v2k)χ+ u2jv2kE

+χdV.

We are ready to consider the microlocal lifts of automorphic eigen-
functions. Let Γ ⊂ SL(2; R) be a cofinite subgroup and ϕ an L2(Γ\H)
eigenfunction with unit-norm. The function ϕ lifts to a K-invariant
function on SL(2; R) satisfying Cϕ = (2ir+ 1)(2ir − 1)ϕ. We consider
the ladder {ϕ2m} of raisings and lowerings, as well as the quantity
ϕ∞ =

∑
m

ϕ2m. The ladder {ϕ2m} is an orthogonal basis for an ir-

reducible principal continuous series representation of SL(2; R), [15].
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For the L2(Γ\SL(2; R)) Hermitian product 〈ϕ2m, ϕ2m〉 = 2π is satisfied
and from integration by parts 〈E+ϕ2j, ϕ2kχ〉+ 〈ϕ2j, E

−(ϕ2kχ)〉 = 0 for
a Γ-invariant test function χ.

A test function χ ∈ C2
c (Γ\SL(2; R)) has a K Fourier expansion

χ =
∑
m

χm with |χm| ≤ Cχ(1 + |m|)−2. For L2(Γ\H) eigenfunctions ϕ

and ψ from Parseval’s relation the pairing of χ with ϕψ∞ is the sum
∑

m

∫

Γ\SL(2;R)

χ2mϕψ2mdV.

The sum is bounded byCχ‖ϕ‖‖ψ‖. In consequence the quantity ϕψ∞ is

a distribution for C2
c (Γ\SL(2; R)). Equivalently ϕψ∞ is a distribution

for C2
c,Γ(SL(2; R)), the C2

c (SL(2; R)) subspace of Γ-invariant functions.

Relatedly the operator Θ : C2
c (SL(2; R)) → C2

c (Γ\SL(2; R)) defined
by Θχ =

∑
γ∈Γ

χ | γ is a continuous surjection relative to the Fréchet

topologies; furthermore for functions with support contained in a Γ-
fundamental domain ‖χ‖ = ‖Θχ‖. In consequence a distribution for
C2
c (Γ\SL(2; R)) has a natural extension, the formal adjoint of Θ, to a

distribution for C2
c (SL(2; R)); furthermore convergence of extensions is

equivalent to convergence of the original distributions. In the following
considerations we will use all three settings for the distribution ϕψ∞.

Definition 1. For L2(Γ\H) eigenfunctions ϕ and ψ set 2Q(ϕ,ψ) =
ϕψ∞ + ψϕ∞ and Q(ϕ) = Q(ϕ,ϕ).

The microlocal lift Q(ϕ) is a basic quantity for the ΨDO-calculus
based on Helgason’s Fourier transform [12, 33]. For σ ∈ C∞(SL(2; R)×
R), a complete symbol for a ΨDO compactly supported on SL(2; R)
(σ(A, τ ) is asymptotically a sum of homogeneous terms in the frequency
τ with bounded left invariant derivatives in A) the associated matrix
element is

2π〈Op(σ)v, u〉 =

∫

SL(2;R)

σrQ(u, v)dV

for σr the symbol evaluated at τ = r and −1
4
− r2 the eigenvalue for

u, v [30, 33]. S. Zelditch discovered that the essential properties of the
microlocal lift are given by an exact differential equation [33]

Lemma 2. For ϕ and ψ weight zero eigenfunctions of the Casimir
operator with eigenvalue −(4r2+1) then (H2+4X2+4irH)Q(ϕ,ψ) = 0.

A Lie algebraic proof of the Lemma is presented in [29].
We are interested in the large-eigenvalue limit of a sequence of au-

tomorphic eigenfunctions for Γ a cofinite subgroup. As noted above
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for a sequence {ϕn} of L2(Γ\H) unit-norm eigenfunctions the sequence
{Q(ϕ)} of C2

c (SL(2; R)) (and thus C2
c (Γ\SL(2; R)) ) distributions is

precompact. Provided the eigenvalues tend to infinity then from Lemma 2
[33] the limit of a convergent subsequence is a geodesic flow invariant
distribution for C2

c (SL(2; R)).

Definition 3. A sequence of normalized L2(Γ\H) real-valued eigen-
functions {ϕn} with eigenvalues tending to infinity has semi-classical
limit µϕ provided µϕ = lim

n
Q(ϕn) in the sense of C2

c (SL(2; R)) distri-

butions.

We now consider an alternate construction for the microlocal lift in
terms of Fejér summation of the ladder of SL(2; R) raisings and lower-
ings, [29]. For an eigenfunction ϕ and a positive integer M introduce
the sum

QM(ϕ) = (2M + 1)−1|
M∑

m=−M

ϕ4m|2.

The basic properties of the semi-classical limit are in fact simple con-
sequences of the Fejér summation and integration by parts.

Proposition 4. Notation as above. Let {ϕn} be a sequence with semi-
classical limit µϕ . The limit satisfies µϕ = lim

M
lim
n
QM(ϕn), is a pos-

itive real measure on SL(2; R) and is time-reversal invariant (right
( 0 1
−1 0 ) invariant). Let {(ϕn, ψn)} be a sequence of pairs of eigenfunc-

tions, ϕn and ψn with common eigenvalue, eigenvalues tending to in-
finity, such that {Q(ϕn)}, {Q(ψn)} and {Q(ϕn, ψn)} converge in the
sense of C2

c (SL(2; R)) distributions. The limit lim
n
Q(ϕn, ψn) is a real

time-reversal invariant measure on SL(2; R).

Proof. A semi-classical limit is determined on the subspace C∞
c of C2

c ;
furthermore theK expansions are convergent for a convergent sequence
of distributions. First we show that the terms ϕϕ2m with m odd do not
contribute to the limit. From (1) we have that u−2m = (−1)m(ū)2m +
O(r−1|u2m|) in the sense of distributions. Since ϕ is real we have that
ϕϕ−2m = −ϕϕ2m + O(r−1). Now by a repeated application of (2) we
have for m = 2q+1 that 4iϕϕ2m = (−1)qr−1E+((ϕ2q)

2)+O(r−1). The
leading-termE+((ϕ2q)

2) is itself a bounded distribution; in consequence
for m odd ϕϕ2m and ϕϕ−2m have magnitude O(r−1) and thus do not
contribute to a limit. In particular the limits µϕ and µϕ+ψ have K
expansions with non trivial terms only for weights congruent to zero
modulo 4; the limits are time-reversal invariant. From (2) we have
the additional relation ϕ2j+2ψ2k = ϕ2jψ2k−2 + O(r−1) in the sense of
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distributions. It follows for pairs of eigenfunctions that lim
n
Q(ϕn, ψn) =

lim
n
Q(ψn, ϕn) and consequently that a limit is real. It further follows

that lim
n
QM(ϕn) = lim

n

2M∑
m=−2M

(1 − |m|
2M+1

)ϕnϕn,4m and from the above

result on the K expansion that lim
M

lim
n
QM(ϕn) = µϕ. Finally since

QM is positive it follows that µϕ is a positive real measure. The proof
is complete.

We consider further properties for the semi-classical limit of tuples
of eigenfunctions. Consider a sequence {(ϕn, ψn)} of pairs of eigenfunc-
tions, ϕn and ψn with common eigenvalue λn, such that for eigenvalues
tending to infinity the microlocal lifts converge to measures on SL(2; R)

µϕ = lim
n
Q(ϕn), µψ = lim

n
Q(ψn), µϕ±ψ = lim

n
Q(ϕn±ψn) and µϕ,ψ = lim

n
Q(ϕn, ψn).

Proposition 5. Notation as above. The measures satisfy 2|µϕ,ψ| ≤
µϕ+µψ and (

∫
χµϕ,ψ)

2 ≤
∫
χµϕ

∫
χµψ for each positive χ ∈ Cc(SL(2; R)).

In particular µϕ,ψ is absolutely continuous with respect to µϕ and to µψ.

Proof. The pair of inequalities ±2µϕ,ψ ≤ µϕ + µψ are a consequence
of the positivity of the measures µϕ±ψ. The first assertion is now a
consequence of the Jordan decomposition of µϕ,ψ as a difference of
mutually singular positive measures [18]. For the second assertion
consider a non negative test function χ and the quadratic polynomial∫
χ(α2µϕ+2αµϕ,ψ+µψ) in the real parameter α. Since µαϕ+ψ is a posi-

tive measure for each α the second assertion now follows. The measures

µ∗ are outer regular: for a compact Borel set S then µ∗(S) = inf
χ

∫
χµ∗

for χ ∈ Cc(SL(2; R)) with χ = 1 on S, [18]. In particular for compact
Borel sets we find (µϕ,ψ(S))2 ≤ µϕ(S)µψ(S) and thus that µϕ,ψ is ab-
solutely continuous with respect to µϕ and µψ. The proof is complete.

Corollary 6. Notation as above. For a sequence of q-tuples of eigen-
functions {(ϕ1,n, . . . , ϕq,n)}, ϕj,n with common eigenvalues, and all pairs
Q(ϕj,n, ϕk,n) convergent for eigenvalues tending to infinity then µΦ ≤

q(
q∑
j=1

µϕj) for Φ =
q∑
j=1

ϕj.

Proof. The positive measure µΦ is given as a sum µΦ =
q∑
j=1

µϕj +

2
∑

1≤j<k≤q
µϕj ,ϕk

. The result follows from the inequality 2|µϕ,ψ| ≤ µϕ +

µψ. The proof is complete.
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3. Modular limits

We wish to investigate semi-classical limits for the congruence sub-
groups Γ0(m) = {( a bc d ) ∈ SL(2; Z) | c ≡ mod m}; Γ0(1) = SL(2; Z).
The Hecke operators Tp, p a prime, p - m act on L2(Γ0(m)\SL(2; R));
the operators are self-adjoint, mutually commuting and commute with
the Casimir operator as well as geodesic flow [1, 23, 27]. The Hecke
operators are defined from a left action on SL(2; R) and so necessarily
commute with the right action of the Lie algebra. For ϕ a Γ0(m)-
invariant function on H and p - m then

ϕ | Tp =

p−1∑

j=0

ϕ | A−1
p Sj + ϕ | Ap

for Ap =
(
p 0
0 1

)
and S = ( 1 1

0 1 ). Since Tp commutes with the action of
the Lie algebra it follows that (ϕ | Tp)∞ = ϕ∞ | Tp for an eigenfunction
ϕ on H. The spectral decomposition for the hyperbolic Laplacian act-
ing in L2(Γ0\H) consists of the continuous span of the Eisenstein series
and L2

int(Γ0\H) the subspace spanned by square-integrable eigenfunc-
tions, [5, 23, 27]. The family {D,Tp} consists of mutually commuting
operators on L2

int(Γ0\H). Mutual eigenfunctions of {D,Tp} are referred
to as Hecke eigenforms.

Consider now {ψn} a sequence of Hecke eigenforms with semi-classical
limit µψ. The measure µψ is invariant under geodesic flow and conse-
quently is a linear combination of Haar measure dV and a totally sin-
gular measure sing(µψ). The Hecke operator eigenequations give rise
to relations for the measure µψ.

Proposition 7. Notation as above. Let {ψn} be a sequence of Hecke
eigenforms with semi-classical limit µψ satisfying sing(µψ) has compact
support in Γ0(m)\SL(2; R). Given a compact set K ⊂ SL(2; R) for all

sufficiently large primes µψ(B) ≤ p
p−1∑
j=1

µψ(S
j/pB) for S = ( 1 1

0 1 ) and

each Borel set B ⊂ K.

Proof. We begin with the formula A−1
p SjAp =

(
1 j/p
0 1

)
= Sj/p and

in consequence for a Hecke eigenform ψ for p - m with ψ | Tp = αpψ
we have the equation

ψ = αpψ | Ap − ψ | A2
p −

p−1∑

j=1

ψ | Sj/p.

Given K compact in SL(2; R) for all sufficiently large primes Ap(K) is
disjoint from the support supp(σψ), σψ = sing(µψ), (this is apparent
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on considering the projection from SL(2; R) to H). In consequence
for p large µψ | Ap is absolutely continuous with respect to Lebesgue
measure and σψ(Ap(K)) = 0. Now from Proposition 5 the measures

lim
n
Q(αp,nψn | Ap − ψn | A2

p) and lim
n
Q(αp,nψn | Ap − ψn | A2

p,
p−1∑
j=1

ψn |

Sj/p) are absolutely continuous with respect to µψ | Ap = lim
n
Q(ψn |

Ap) (the eigenvalues αp,n are all bounded by p+1 from the elementary
bound of E. Hecke [23]). We thus deduce the equality of totally singular

measures sing(µψ) =sing(lim
n
Q(

p−1∑
j=1

ψn | Sj/p)) on K. The inequality for

sing(µψ) now follows from Corollary 6. The semi-classical limit µψ is
a linear combination of sing(µψ) and Haar measure; Haar measure is
SL(2; R) invariant and trivially satisfies the stated inequality. The
linear combination satisfies the inequality. The proof is complete.

We now wish to reformulate the above result for the space of com-
plete geodesics on the upper half plane. The reformulation will ena-
bale a later argument. Geodesic flow provides a fibration by trajec-
tories SL(2; R) → SL(2; R)/{etH | t ∈ R}. A geodesic on H has
two unit cotangent fields and four unit square-root cotangent fields;
SL(2; R)/{etH | t ∈ R} is a four-fold cover of G the space of geodesics.
The four-fold covering provides a (left SL(2; R) action) natural cor-
respondence for measures. In particular a measure κ on G corre-
sponds to the geodesic flow invariant, right ( 0 1

−1 0 ) invariant, measure
κ̃d` on SL(2; R) (for κ̃ the lift of κ to SL(2; R)/{etH | t ∈ R} and
d` the infinitesimal flow time). The naturality property is the relation

κ̃ | Bd` = (κ̃d`) | B for each B ∈ SL(2; R). The Hecke operators
on L2(Γ0(m)\SL(2; R)) are defined from a left action on SL(2; R) and
thus we can reformulate the above Proposition. From the discussion of
the prior section the semi-classical limit can be considered as a positive
measure on SL(2; R) and thus can just as readily be bounded in terms
of non Γ-invariant quantities.

Corollary 8. Notation as above. Let {ψn} be a sequence of Hecke
eigenforms with semi-classical limit µψ having compact singular support
in Γ0(m)\SL(2; R). For τψ the corresponding measure on G and K ⊂ G

compact for all sufficiently large primes τψ(B) ≤ p
p−1∑
j=1

τψ(Sj/pB) for

each Borel set B ⊂ K.

Proof. We choose a continuous section σ for the projection SL(2; R) →
T = SL(2; R)/{etH | t ∈ R}. The section provides a lifting of points
β ∈ T to intervals I(β) = {σ(β)etH | 0 ≤ t ≤ 1}; compact sets are
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lifted to compact sets and for a measure ν on G and Borel set B ⊂ G,
B̃ the lift to T , then 4 ν(B) = (ν̃d`)(I(B̃)). The desired result now
follows from the previous proposition. The proof is complete.

We wish to consider the consequences of the above Corollary for the
measure τψ. For this purpose consider the fibration ΓZ\G → H =
{St = ( 1 t

0 1 ) | t ∈ R}\G, ΓZ the group of integer translations. We say
that a Borel set B ⊂ ΓZ\G is height determined provided the projection
to H restricted to B is an injection (in particular ΓZ\B contains at
most one geodesic on ΓZ\H of each height). For an interval I ⊂ R
and the height determined set B we will consider the thickened set
BI = ∪t∈ISt(B) ⊂ ΓZ\G. We now combine the above inequality and
the observation that the parabolics Sj/p, 1 ≤ j ≤ p − 1, p ≤ q give a
sub-tiling of the set B(0,1) by the basic set B(−q−2, q−2). The result is an
explicit bound for the mass of the basic set.

Proposition 9. Notation as above. For τψ as above given a compact
set K ⊂ ΓZ\G there exists a positive constant C such that for a height
determined set B ⊂ K then τψ(B(−ε,ε)) ≤ C(log log ε−1)−1 for all ε <
e−1. In particular a height determinded set is a null set for τψ.

Proof. It suffices given K to provide a bound for all small ε. For
q the positive integer satisfying (q + 1)−2 < ε ≤ q−2 and B a height
determined set, consider the set Bq = B(−q−2, q−2). We have the inclusion

B(−ε, ε) ⊂ Bq, as well as disjointness of Sj/pBq from Sk/p
′
Bq for all p <

p
′ ≤ q/2 (since |j/p − k/p

′ | ≥ (pp
′
)−1 ≥ 4q−2 and q−2-neighborhoods

of j/p, k/p
′
are disjoint).

There are consequences for the values τψ(B∗). For p0 the threshold
for the conclusion of Corollary 8 for a compact set K we have the
inequality

q∑

p=p0

p−1τψ(Bq) ≤
q∑

p=p0

p−1∑

j=1

τψ(S
j/pBq).

The left hand side is immediately bounded below by the product of

τψ(B(−ε,ε)) and
q∑

p=p0

p−1 ≥ c log log q−1 for a positive constant [9]. For

the right hand side we have that Sj/pBq ⊂ B(0,1) for p0 ≤ p ≤ q/2, 1 ≤
j ≤ p − 1 and that the individual sets Sj/pBq are mutually disjoint.
It follows that the right hand side is bounded above by τψ(B(0,1)) ≤
τψ(K(0,1)). The set K[0,1] is compact and has finite τψ measure. The
proof is complete.

The previous result enables a modulus of continuity estimate for τψ.
Each cusp of Γ on H provides a one-parameter family of parabolics.
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We use a pair of transverse families to first thicken a point of G to
obtain an arc and to then thicken the arc to obtain a neighborhood.
To formulate the result we fix a Riemannian metric for G; a metric
determines ε-neighborhoods B(∗; ε).
Proposition 10. Notation as above. For τψ as above given a com-
pact set K ⊂ G there is a positive constant C such that τψ(B(γ; ε)) ≤
C(log log ε−1)−2 for γ ∈ K and ε < e−1.

Proof. The plan is to prescribe an ε-neighborhood by SL(2; R)
subgroup orbit segments. The considerations are local and thus G can
be substituted in place of ΓZ\G. We first show that given γ ∈ G
there exists a Γ-conjugate T of S such that the family {T tγ | −ε <
t < ε} is a height determined set. We consider the projection of the
family to H = {St}\G; the families for T and SδTS−δ have the same
projection. It suffices to consider a parabolic transformation fixing the
origin and after a possible parameter rescaling to simply consider the
special parabolic family {( 1 0

t 1 )}. We consider the action of the special

family on the height of a geodesic γ. If γ has endpoints a, b ∈ R̂ with
a < b ≤ ∞ then the height of γ is (b − a)/2 (∞ if b = ∞). The first
derivative of the height of {( 1 0

t 1 )}γ at t = 0 is (a2 − b2)/2 (for b = ∞
the height function satisfies height−1 = 2t(1 + at)). It follows for ξ
the fixed-point of T and ξ < a that the height of T tγ is an injective
function of t small; T tγ is height determined for ξ < a for t small. Now
the Γ-conjugates of S have fixed-points dense in R and we can select
a conjugate T = RSR−1, R ∈ Γ with fixed point located as desired
relative to γ.

We apply Proposition 9 for the singleton {γ} (and R-conjugates) to
conclude τψ({γ}(−ε, ε)) ≤ C(log log ε−1)−1 (the orbit segment relative
to T is an arc). From the above paragraph the arc {γ}(−ε, ε) is height
determined relative to S. We apply Proposition 9 a second time to
obtain an ε-neighborhood of γ and the desired bound. The proof is
complete.

Measured geodesic laminations furnish examples of locally height
determined sets of geodesics, [6, 14, 24, 25]. A closed set in H is a
geodesic lamination provided the set is a union of mutually disjoint
complete (isometric to R) geodesics. The individual geodesics of the
union are the leaves of the lamination. A geodesic lamination G has
a natural lift to the unit cotangent bundle and to SL(2; R) since a
point of G lies on a unique leaf which determines two unit cotangent
vectors and four root cotangent vectors. Accordingly G determines a
closed subset of the space of geodesics G. We are interested in mea-
sured geodesic laminations: Γ-invariant geodesic laminations (with no
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leaves ending in a cusp) which considered in G are the full support of
a Γ-invariant positive measure. A measured geodesic lamination de-
termines a geodesic flow invariant measure on SL(2; R) (a candidate
for a semi-classical limit). For the sake of exposition we cite two basic
results of W. Thurston. First for a surface of genus g with n punc-
tures the space of measured geodesic laminations is parameterized by
R6g−6+2n, [17, 26]. Second, the intersection of a measured geodesic lam-
ination G and a transverse arc is the union of a finite set (supporting a
sum of Dirac measures associated to closed simple geodesics on Γ\H)
and a Cantor set (supporting a totally singular measure with no point
masses) [6].

Proposition 11. The support of a measured geodesic lamination for a
cofinite group with a cusp at infinity is locally height determined.

Proof. Consider a neighborhood in G of a non vertical geodesic γ. A
translate Stγ is close to γ only if t is small in which case the endpoints
of Stγ and γ alternate on R and consequently Stγ intersects γ. Since
the leaves of a lamination are disjoint the conclusion follows. The proof
is complete.

We wish to consider flow invariant sets for Γ\SL(2; R) more general
than supports of measured geodesic laminations. The first are lifts
of non simple closed geodesics. The second are the supports of Γ

′

measured geodesic laminations for Γ
′ ⊂ Γ finite index subgroups. We

are ready to present the main result.

Theorem 12. A semi-classical limit for Γ0(m) with compact singular
support is null on each countable union of closed geodesics and geodesic
laminations for finite index subgroups.

Proof. It suffices to consider individual closed geodesics and geodesic
laminations since measures are countably additive. The vanishing of a
semi-classical limit on the lift of a closed geodesic is provided by Corol-
lary 10. It remains to consider vanishing for geodesic laminations.
Consider an arc on H transverse to a measured geodesic lamination
G. Since the intersection is a closed perfect set there exist arbitrarily
small subarcs non trivially intersecting G. By Proposition 11 for small
subarcs Proposition 9 can be applied to find that the set of intersect-
ing leaves has measure zero for any semi-classical limit. The proof is
complete.
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Birkhäuser Boston, Mass., 1981.

[13] Dmitri Jakobson. Equidistribution of cusp forms on PSL2(Z)\PSL2(R). Ann.
Inst. Fourier (Grenoble), 47(3):967–984, 1997.

[14] Steven P. Kerckhoff. The Nielsen realization problem. Ann. of Math. (2),
117(2):235–265, 1983.

[15] Serge Lang. SL2(R). Springer-Verlag, New York, 1985. Reprint of the 1975
edition.

[16] Wen Zhi Luo and Peter Sarnak. Quantum ergodicity of eigenfunctions on
PSL2(Z)\H2. Inst. Hautes Études Sci. Publ. Math., (81):207–237, 1995.

[17] R. C. Penner and J. L. Harer. Combinatorics of train tracks. Princeton Uni-
versity Press, Princeton, NJ, 1992.

[18] H. L. Royden. Real analysis. Macmillan Publishing Company, New York, third
edition, 1988.

[19] Zeév Rudnick and Peter Sarnak. The behaviour of eigenstates of arithmetic
hyperbolic manifolds. Comm. Math. Phys., 161(1):195–213, 1994.

[20] Peter Sarnak. Arithmetic quantum chaos. In The Schur lectures (1992) (Tel
Aviv), pages 183–236. Bar-Ilan Univ., Ramat Gan, 1995.

[21] Charles Schmit. Quantum and classical properties of some billiards on the
hyperbolic plane. In Chaos et physique quantique (Les Houches, 1989), pages
331–370. North-Holland, Amsterdam, 1991.

[22] A. I. Schnirelman. Ergodic properties of eigenfunctions. Usp. Math. Nauk.,
29:181–182, 1974.

[23] Audrey Terras. Harmonic analysis on symmetric spaces and applications. I.
Springer-Verlag, New York, 1985.



14 SCOTT A. WOLPERT

[24] William P. Thurston. Earthquakes in two-dimensional hyperbolic geometry.
In Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984),
pages 91–112. Cambridge Univ. Press, Cambridge, 1986.

[25] William P. Thurston. On the geometry and dynamics of diffeomorphisms of
surfaces. Bull. Amer. Math. Soc. (N.S.), 19(2):417–431, 1988.

[26] William P. Thurston. Three-dimensional geometry and topology. Vol. 1. Prince-
ton University Press, Princeton, NJ, 1997. Edited by Silvio Levy.

[27] Alexei B. Venkov. Spectral theory of automorphic functions and its applications.
Kluwer Academic Publishers Group, Dordrecht, 1990. Translated from the
Russian by N. B. Lebedinskaya.

[28] Scott A. Wolpert. Automorphic coefficient sums and the quantum ergodicity
question. preprint, 1999.

[29] Scott A. Wolpert. Semi-classical limits for the hyperbolic plane. preprint, 1999.
[30] Steven Zelditch. Pseudodifferential analysis on hyperbolic surfaces. J. Funct.

Anal., 68(1):72–105, 1986.
[31] Steven Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic

surfaces. Duke Math. J., 55(4):919–941, 1987.
[32] Steven Zelditch. Selberg trace formulae, pseudodifferential operators, and ge-

odesic periods of automorphic forms. Duke Math. J., 56(2):295–344, 1988.
[33] Steven Zelditch. The averaging method and ergodic theory for pseudo-

differential operators on compact hyperbolic surfaces. J. Funct. Anal.,
82(1):38–68, 1989.
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