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Chern forms and the Riemann tensor
for the moduli space of curves

Scott A. Wolpert *
Department of Mathematics, University of Maryland, College Park, MD 20740, USA

Two vector bundles associated to the moduli space of compact Riemann surfaces
have a Hermitian metric derived from the hyperbolic geometry of Riemann
surfaces. Briefly our purpose is to determine the connection and curvature forms
for these metrics.

The first bundle is the holomorphic tangent bundle of the Teichmiiller space of
genus g, g =2, Riemann surfaces; the metric is the Weil-Petersson metric. Weil
introduced a Kéhler metric for the Teichmiiller space 7, based on Petersson’s
Hermitian pairing for automorphic forms. Ahlfors considered the differential
geometry of this metric; in particular he obtained integral formulas for the
associated Riemann curvature tensor, [1,2]. As an application he found that the
Ricci, holomorphic sectional, and scalar curvatures are all negative. Royden latter
showed that the holomorphic sectional curvature is bounded away from zero, [16].
More recently Tromba found that the sectional curvature is also negative, [32].
After this result Royden and then the author also found proofs of the negative
sectional curvature, [17]. In the present work we develop a formalism for
computing second variations of a hyperbolic structure and consider as the first
application a formula for the Riemann tensor. Before presenting the formula recall
that the holomorphic tangent space of Teichmiiller space at the marked Riemann
surface {S) is naturally isomorphic to #(S), the space of harmonic Beltrami
differentials ((—1, 1) tensors) on S. Now denoting by dA4 the area element of the
hyperbolic metric on S and by D the Laplacian of the hyperbolic metric then the
Riemann tensor is given as

Ryps=~2[ (D=2)"" (i fty) (1, 25) dA 0.1)
S
~2§ (D=2)" (uafiy) (1, f1p) dA
S

for pu,, ug, u,, ns€#B(S) representing tangent vectors to 7. Recall that the
Laplacian D acting on I? functions is a self adjoint operator with non-positive
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spectrum; the inverse (D — 2) ~! exists and is a compact integral operator. Also note
that given i, v e Z (S) the product (uv) defines a function on S. Now the reader may
check that (0.1) defines a 4-tensor on T, with the appropriate symmetries. As an
application of the formula we find explicit bounds for the curvatures: the
holomorphic sectional curvature is bounded above by 27[—(5;1—1) a result
conjectured by Royden [16]. Furthermore we find that all sectional curvatures are
indeed negative (Theorem 4.5). In fact our considerations show that the curvatures
are governed by the spectrum of the Laplacian: the negative curvature is a
manifestation of the non-positivity of the Laplacian. We note that the above
formula and bounds have also been obtained by Royden.

In [28] we combine the negative curvature result and the observation that the
geodesic length functions are convex along Weil-Petersson geodesics to study the
geometry of 7. The main result is that Teichmiiller space is geodesically convex.
Each pair of points is joined by a unique Weil-Petersson geodesic. Given the
negative curvature it follows that the exponential maps are homeomorphisms of
their domains to 7.

The second bundle under consideration, a line bundle, is the vertical bundle of
the fibration n: 7, — T, of the Teichmiiller curve over Teichmiiller space. Briefly the
fibre of the projection © above a marked surface {S) is a compact submanifold
isomorphic to S. The kernel of the differential dn: 7% 7, —» T'° T, defines a line
bundle (v) on 7, the vertical bundle of the fibration. The restriction of (v) to a fibre
of m is isomorphic to the tangent bundle of the fibre. Consequently the
Uniformisation Theorem with parameters provides that the hyperbolic metrics of
the individual fibres piece together to define a smooth metric on the line bundle (v).
We compute the connection 1-form 0 and curvature 2-form @ for this metric. As the

first application of the formula we find that the Chern form c, (v)=2—ln-@ is

negative, a differential-geometric analogue of a result of Arakelov, [5]. Once again
we find that the curvature is governed by the spectrum of the Laplacian. As the
second application we investigate the characteristic classes

R:n(p)z j cl(v)"+19 nEZ+9 PETg,
="' (p)

¢, (v) the Chern form of (v), originally considered by the algebraic geometers, [5, 9,
10, 13, 14]. We derive the formula for &, as computed from the hyperbolic metric. In

. . . .y N 1
particular we find the pointwise equality of characteristic forms &, = 57 Owes
T
where wy, is the Kéhler form of the Weil-Petersson metric. This result was
. N 1
foreshadowed by our previous result: #; and 52 wwp represent the same

cohomology class on M,, the moduli space of stable curves, [26].

Our approach for the calculations is formal in nature and involves the SL (2; IR)
invariant first order differential operators L and K as well as the invariant
Laplacian D introduced by Maass. If k is the canonical bundle of the upper half
plane H and S (k) the space of smooth section of k**> ® k %%, k e Z then Maass
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introduced invariant differential operators K, : S (k) > S (k+1), L,: S(k) > S (k—1)
and D, : S (k) =S (k), [11]. Given feS (k) and y e SL (2; R) then y acts by pullback
on the tensor f, f —— y*f. The Maass operators commute with this action.
A heuristic principle due to Selberg provides that the general SL(2;IR) in-
variant linear operator should be thought of as a combination of: the L, K and D
operators, their inverses (When defined) and projections onto the eigenspaces of the
Laplacians D, [18]. Furthermore the inverse of L and K can be given in terms of
that for the Laplacian, when appropriate. For instance to solve the equation
K, f =g for the tensor f first note that D, —k(k+1)=L,,, K, and hence the
equation may be replaced by (D,—k(k+1))f=L,,, g which admits the formal
solution f'= (D, —k(k+1)) "' L, , g This example suggests an explanation for the
appearance of the operator (D,—2)"! in our formulas.

A basic observation is that the fundamental operators of Teichmiiller theory are
SL (2;IR) invariant. The above approach yields very nice results when considering
first variations, the case of linear operators. On the other hand second variations
are necessarily given by quadratic operators, a case not formally covered by the
Selberg approach. Nevertheless we find that many of the techniques are still valid
when applied to the specific operators of deformation theory. For example our
basic concern is the variation of the hyperbolic area element dA4 under pullback by a
quasiconformal homeomorphism f*, u = f/f, of the upper half plane H. We find for
1 e (S), harmonic, the expansion (Theorem 3.3)

(f™)*dAd=(1—e*(u+2(Dy—2)" ' uft) +0(*) d4 (0.2)

for the pullback of the area element, where 0 (¢%) is uniform on compact subsets of
H. The vanishing of the term linear in ¢ is an earlier result of Ahlfors [1, 2]; we note
that Royden has also obtained an expansion similiar to the above.

The manuscript is divided into five chapters. In the first we review Maass’
calculus of differential operators and use this to derive Ahlfors’ result on the first
variation of area. The second chapter is devoted to obtaining variational formulas
for the operators characterizing the complex structure of Teichmiiller space as well
as the projection operator of Beltrami differentials onto the harmonic differentials.
A brief review of Teichmiiller theory and the Weil-Petersson metric is contained in
sections 2.3, 2.4 and 2.5. In the following chapter we apply the preceeding
techniques and derive the above formula for the second variation of area
(Theorem 3.3). The fourth chapter is devoted to a discussion of the Riemann tensor
of the Weil-Petersson metric. The main formula may be found in Theorem 4.2 and
the estimates appear in Theorem 4.5 and Lemma 4.6. We start the final chapter with
a review of the Teichmiiller curve and its universal cover, the Bers fibre space, and
then we consider the characterestic classes of the Teichmiiller curve.

1. The Maass calculus and the first variation of area

1.1. Maass introduced a calculus of SL(2;IR) translation invariant differential
operators. These operators are essential to the organization of our calculations.
With this in mind we start by reviewing Maass’ approach. As the first application
we give a new proof of the Ahlfors’ result; the first variation of hyperbolic area
vanishes for the harmonic Beltrami differentials, [1, 2].
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1.2. Start by considering the space S (k) of smooth sections of k*/2 @ & ~*/2, where «

is the canonical bundle of the upper half plane H and k& is integral. Classically S (k) is

the space of tensors f= f(z) <dz

k/2
£> . An element y € SL (2;IR) acts naturally on
—_— d
Sk), y¥f=f(y2) ¥ (2)*y'(z) ~¥? where y'(z) is the complex derivative ‘Tw for
y4

w =7 (z). We shall write y* instead of y}*; the subscript will be given by the context.
A more general smooth section geS(2p,24q) of the bundle k? ® k4%, 2p and 2¢
integral, will be studied by considering (z—2)?*?geS (p—q). Note that 1€S5(2,2)

-4
where 1 = a3 is the hyperbolic volume element.
Z—

Maass introduced the differential operators

Kk=(z—z')a%+k:S(k)—>S(k+1)

L,=(:—2) a%-" k:S(k)—S(k—1)

and the Laplacians D,: S (k) — S (k)
D=L, K,+k(k+1)=K,_,L,+k(k—1), [11].
The operators satisfy the ide_nt_ities L ..K,=K,_,L,—2k, D, K,=K.D,,
D L.,,=L, 1D,y and K,=L_,: The SL(2;IR) invariance is as follows
Ky*f=v*K.f
Loy*f=y*Lf
for feS (k) and y eSL (2;IR). An immediate consequence is the invariance of the

Laplacian, D, y* = y* D, . The derivative of the product fg, feS(/),geS (k—1) also

satisfies a simple rule
K (fe)=gK f+ fKi 12
L.(fg)=gL,f+fLy_.8.

We assume now and for the remainder of the manuscript that I'=SL (2;IR) is
the uniformisation group of a compact Riemann surface. The hypothesis
guarantees that a square root x!/2 of the canonical bundle is I' invariant.
Furthermore it will vastly simplify the convergence considerations for our
variational formulas as well as the spectral theory of the Laplacian. Now given f
and g measurable I' invariant sections of k*? @& %2 define their Hermitian

product
fign= | fgdA (1.1)
HIr

for dA the hyperbolic area element. As above we shall write { , ) in place of ( , ), .

Definition 1.1. 3, is the Hilbert space of measurable I" invariant sections f of
kM2 @k %2 with (f, £ finite.
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Roelcke studied the Laplacian D, acting on 5, ; the operator is self adjoint on
the dense subspace #, NS(k), [15]. In particular D, is the classical Laplace-
Beltrami operator, having non-positive discrete spectrum on #,. The inverse
(Do —2)~ " exists and is a compact integral operator from #, to #,. Many of our
formulas will involve the operator 4 = —2(D,—2)"'. Finally for fes#, ,NC*
and g es#,NC' we may integrate by parts

K =L [ 8-

1.3. Our goal is to use the Maass calculus to obtain variational formulas for the
hyperbolic metric as well as those operators defining the complex structure of
Teichmiiller space. The idea of Selberg is simple enough. A SL(2;IR) invariant
linear operator can be thought of as a combination of the differential operators L, K
and D, the inverses (D —c¢) ™!, ¢ a constant, and the projections onto eigenspaces of
the Laplacians. Many of the operators of Teichmiiller theory are in fact SL (2;IR)
invariant.

Let f* be a x4 quasiconformal self homeomorphism of the upper half plane H
and dA the area element of the hyperbolic metric. The f* induced deformation of
the conformal structure is characterized by the Beltrami equation f, = uf,. Recall
that in one complex dimension a metric is determined modulo scaling by its
conformal structure; consequently the f* deformation of the hyperbolic metric is
completely determined by the Beltrami differential x4 and by the pullback (f*)*dA4
of the area form. Our goal is to obtain formulas valid to second order in ¢ for
(f*)*dA. The main result is Theorem 3.3. This question was considered previously
by Ahlfors; his formulas are in terms of iterated singular integrals, [2]. Our formula
is given in terms of the operator 4 = —2(D,—2)"".

Obtaining a first order expansion for (f**)*dA4 is equivalent to studying the
action by the Lie derivative of vector fields on the tensor dA4. Starting with X a

1 .
smooth vector field on H associate the section ® = —— X €S (—1) and indicate
the X Lie derivative by L(X). (z—2)

Lemma 1.2. L(X)d4A=2Re(K_,®P)dA.

Proof. For Q open, relatively compact in H we may integrate X to obtain a flow F*
defined for ¢ small. By definition of the Lie derivative
d <|Ff|2— |FEI1? i

d
L — ex ] 4 =2 ! _
T R dZ/\dZ>

e=0

: . 4
andusmgthatX:di F*¢|,_,weobtainRe <2Xz 1
&

2 z—1Z2)
will check that K_, ¢ =X, — —— X.
(z—2)

X ) dA. Finally the reader

1.4. In the study of Teichmiiller space deformations are parametrized by the
(—1,1) tensors X, rather than vector fields X on the upper half plane. The
advantage of this approach is twofold: first the hypothesis that X be an infinitesimal
deformation of a group I'c SL(2;1IR) is replaced by the elementary condition
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4= X,isa I’ invariant tensor and secondly it is straight — forward to characterize the
infinitesimally trivial deformations. But this approach requires an analysis of the
potential equation F,= u. We now review the elementary theory of this equation.

A Beltrami differential is a bounded measurable section of k ~ ! ® . Given , a
Beltrami differential, its absolute value |u| is independent of coordinates;
consequently the L® norm of yu is well defined.

Definition 1.3. Bis the complex Banach space of Beltrami differentials of finite L*
norm. B(I')< B is the subspace of I' invariant differentials.
The quotient H/I' has finite area; the inclusion B~ 3, is continuous.

Lemma 1.4. Let u € B be a Beltrami differential.

. 1
) If F=pthen L_ | ——= F)=—p.
(z—2)
i) Solutions of F,;= p are unique modulo holomorphic functions.
iil) There exists a unique solution F[u), a continuous function vanishing at 0,1 and
0(|z|?) at oo satisfying
F,=py inH

F,=p(Z) inC-H
in the sense of weak I derivatives.

Proof. Remarks i) and ii) are left to the reader. Remark iii) will be found in a
standard reference on Teichmiiller theory, [3,4].
The potential F[u]is a section of k™', a vector field.

Definition 1.5. Given u e B, define @ [u]= (z—lz‘j Flu), ®[uleS(—1).

In the study of Teichmiiller space the harmonic Beltrami differentials play a
central role. A Beltrami differential x is harmonic provided (D_, —2)u=0. Now
(D_,—2)=L_,K_,and for H/I' compact the operator L _ has trivial kernel. AT’
invariant harmonic Beltrami differential is a solution of the equation K_, =0 or
equivalently x is harmonic if it can be written in the form u=(z—2)?¢, ¢ a
holomorphic quadratic differential.

Definition 1.6. # < B is the subspace of harmonic Beltrami differentials. Z (I') = #
is the subspace of I' invariant differentials.

We shall see latter that #(I') is naturally isomorphic to the holomorphic
tangent space of Teichmiiller space at a point representing H/I.

We are ready to consider the first variation of (f*)*dA4. By Lemma 1.2 this is
equivalent to evaluating Re K_; @ [1]; the argument is also the prototype for our
latter calculations. Alternate proofs of the following appear in [1,2].

Lemma 1.7. Given ue#(I') then Re K_, @ [u]=0.

Proof. The first step is to verify that ReK_, ®[u] is a I' invariant function. For
u e (I') consider the potential F[u]; F[u] induces an infinitesimal deformation of
I'=SL(2;IR). The Lie algebra %% (2;1R) of SL(2;1IR) is represented by vector
fields on H with coefficients quadratic polynomials having real coefficients.
Accordingly for all yerl', FluJoyy' ™' — F[u]=p,(2), p, a quadratic polynomial.
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Now the hyperbolic area element d4 is SL (2;IR) hence £¥ (2;IR) invariant. Thus
forming Lie derivatives we find that L (Foyy' ~!)dA = L (F)dA or equivalently by
Lemma 1.2. we have that Re K _, (zl—z") F=ReK_,® is I invariant.

Now in order to determine the function Re K _,; @ we compute its Laplacian (for
uedB, p and thus @[u] are smooth). By definition Dy=K_,L, and thus
K (LyReK_®=ReK_ L K_ & =ReK_(K_,L_,+2)® =2ReK_,o,
where we have used the hypothesis ue# (I'). In particular K_,L_,®[u] =
—K_,pu=0Dby Lemma 1.4 and the definition of harmonic. The Laplacian D, has
non-positive spectrum in particular D,ReK_,® =2ReK_, P guarantees that
ReK_,® =0, the desired conclusion.

2. Second variations and the harmonic projection

2.1. The space B(I') of Beltrami differentials endowed with the L* norm is a
complex Banach space. By definition of the complex structure of the Teichmiiller
space T(I') the map taking ue B(I'), |lull, <1, to the equivalence class of the
marked Riemann surface H/f*I" (f*)~! is holomorphic. That the complex structure
of T(I') is independent of I' depends on analyzing the diagram

A

1 s
where f*, f* and f* are quasiconformal. In fact the diagram characterizes the

manifold structure of T(I') and is the focus of this chapter. Observe that the
Beltrami differential p will satisfy

—(fuo(fi)—l)i— n—A S -1
p(/"ai)_(‘f“o(]l)_l)z—— 1—2/1 Z_I (f) .
Our first result is that for y, ve #
d d —
_4p(£1"+52ﬂ»81")|a,=32=0=/1K—1‘D[V]—L—1(N¢[V])~
de, de,

With this calculation as a foundation we proceed to analyze the variation of the
harmonic projection operator P: B— 2. The operator P plays a central role in
defining the Weil-Petersson metric. The first result for the metric is due to Ahlfors
and will be stated in terms of the projection P.

2.2. Of course the starting point of the discussion is the solution of the Beltrami
equation.

Definition 2.1. Givenu e B, ||ull,, <1, denote by f* the unique homeomorphism f
C - C fixing 0, 1 and oo and satisfying

fi=uf, inH

fi=a@)f. nC—-H.
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The reader can consult [3, 4] for the following standard facts. By uniqueness f*:
H— H and provided that u is real analytic, f* will be real analytic for ¢ small and
z € H. In particular we shall use for x real analytic that the ¢ and z derivatives of f**
commute and converge in C*(H), the smooth compact-open topology for H.
Furthermore, the solution has an expansion f* =z + ¢ F[v] + 0 (¢), where Fis the
linear operator of Lemma 1.4 and for v e 8, 0 (¢) refers to the topology of C* (H).
An immediate consequence of the hypothesis 4, v e % is that

- E24 /S P
17(81"'*”32#,%")—<1_F (e, v+ 8, ) foV> (for)”

is real analytic for ¢,, ¢, small and ze H. Now set
d A
R = — =\ —5 — 1 .
(/’t’ V) d& p(v+8ﬂ9 v) |g=0 ( lvlz f ) (f) (2 1)

the result of one differentiation; in fact the reader can check that the derivative
converges in L®.

Lemma 2.2. For u, ve % then

d d e
dor ds PV e a) | =K O = L (u@D]).

Proof. Proceeding with the above calculation we have that

G o Plamnmo= P = FBL)+ 4 (0™ 4107 Do,
The inverse map (f**)~! is characterized by (f®) !0 f* = z; differentiating in ¢
yields ;—8 ((f™) "'+ ™) ],=0 =0, where we have used the expansion f* =z + ¢ F[v]
+ 0 (¢). The resulting formula is

d d

d51 de P|e1—sz_o ,U(F[V] — [v]z) —/JZF[V] _—ﬂfm~

Now the reader can check that (u F[v]),= L_, (u®[v]) and that for x4 harmonic,
——— u, thus

pFp), - Flvl=p (F[v] (2) [1) uK_, @[],

2
M= (z—2)

The calculation is complete.

2.3. Now we discuss the natural projection operator P: B— %. We shall see that the
first variation of P can be determined from its formal properties. P: B— # is the
bounded linear operator defined by integration

—3(z-2)? | #(©)

Plu]= ) (C_Z_)4

da (C)
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for ue B and do the Euclidean area element. We shall only use the following
properties of the operator [2, 3]

i) for ue, Plul=u

il) Py*=y*P for all yeSL(2:IR)
iii) P extends to # _, and is self adjoint
ivyon#_,nC?* D_,P=PD_,.

That P is actually a projection follows from the observation P: B— % and
property 1). An immediate consequence of property ii) is that P: B(I')— % (I'). By
an argument of Selberg property iv) follows from property ii) and the regularity of
the operator, [18]. Alternatively as an exercise we now derive property iv) from
properties i) and iii).

RecallthatD _,=L_,K_,+2and K_,% =0thusD_,P=2P. Now using the
self adjointness of Pand D _, we find {u, PD_,v) ={P[u},D_,v) =<{D_,P[u},v>
=Q2P[ul,v) =<{u,2P[v]) =<{u,D_, P[v]), for ue# _, and ve# _,NnC?% In as
much as # _, is a Hilbert space the conclusion follows.

2.4. Asbackground for the first result on the variation of P we introduce the Weil-
Petersson metric for Teichmiiller space. Accordingly we start with a brief sketch of
Teichmiiller theory. The reader should check the references [1-4, 6] for a more
complete description of the complex structure of 7(I') and the Weil-Petersson
metric.

The map IT from the open unit ball in B(I') to T'(I") given by assigning to u the
equivalence class of the marked Riemann surface H/T'*, T'*=f*I(f*)"!,
is fundamental to the study of Teichmiiller theory. IT is a differentiable map
from the Banach space B(I') to the manifold 7(I'). In order to better understand
the map II consider QD (I'), the space of I' invariant holomorphic quadratic

differentials, and the pairing B(I') x QD (I') ), C: for u eB(I'), QD)
define (u,¢)= [ u¢. Let N(T')=QD(I')Y*<B(I') be the null space of the

HII
quadratic differentials relative to the pairing. The basic fact is that the kernel at
the origin of the differential dIT is the subspace N (I') or equivalently the following
theorem.

Theorem 2.3, [1,3]. In the above notation, at the point of Teichmiiller space
representing I there are the natural isomorphisms

B(I)/N(I')~T"°T(I')
OD(I') =(T"°)*T(I')
and the pairing
B(I)/N(I'N)xQD(I') - ¢

represents the natural pairing T'° x (T"°)*— C.

0
Definition 2.4. Given u € B(I') denote by E
map dII. s

e T'°T(I') the image of u by the
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In order to study tensors on Teichmiiller space it will be far simpler if the coset
space B(I')/N(I") is replaced by a suitable space of tensors on H/I'. As we shall now
explain # (I') is naturally isomorphic to the quotient B(I')/N (I') and thus it will
suffice for all of our considerations to derive formulas valid for the harmonic
Beltrami differentials.

The basic observation is the diagram

B(I)—— A (I

di (22)

T'OT(I)

for the differential dIT and the harmonic projection P. To see this start by noting
that the kernel Ker P of P acting B(I') coincides with the subspace N(I'). In
— 5)2
—4
confirm by properties i) and iii) of the projection that (u, w) ={u,v> ={u, Pv]
={P[u],v). Consequently ue N(I') is equivalent to P[ule#B(I') <# _, but
PluleZ (I') and thus u € N(I') is equivalent to P [u] =0. Finally to establish the
commutativity of the diagram (2.2) note that P[u—P[u]]=0 and thus given
peB(I"), dIl (1) = dIT (P [u]+ (1 — P [u])) = dIl (P[u)).

Now a change of local coordinates on Teichmiiller space may be understood in
terms of the diagram 7

_—
/\l/fw—n;l

. d
of quasiconformal maps. Informally the tangent vector d—(v+f;,u)|8:(,eB(F )
e

particular for y e QD (I') set v= ( W €% (I') and for u € B(I') the reader will

considered as a deformation of I' corresponds to the rangent vector
% p(v+eu,v)|,—o€B('") considered as a deformation of I'*. Since B(I'") is
naturally isomorphic to the tangent space of Teichmiiller space at I"* the harmonic
projection of Zl,a;— Pl.=0= R(y,v) (see formula (2.1)) is the canonical representative

for the tangent vector. Accordingly, in order to better understand a change of
coordinates on Teichmiiller space we derive the variational formula for P [R(u, ¢v)].
We prefer to consider the pullback to H/I" of the tensor P [R(u, v)].

Definition 2.5. Given u, ve B(I') set o

Qe = PIRU I/ 23)
2.5. Now we are ready to introduce local coordinates and give the formulas for the
Weil-Petersson metric. We start by considering Ahlfors’ result: the harmonic
Beltrami differentials give geodesic coordinates, [1]. Finally we close the chapter by
deriving the variational formula for Q (u, &v).
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Given a basis k,, ..., k, for #(I") we wish to consider the associated local
coordinates for T(I'). Specifically for t = (¢,, ..., t,) € C" sufficiently small define

k()= 1;x;and consider the marked surface S, = H/T*®, [*® = f*O [ (f*0)~1,
The assijgnment of t e €" to the equivalence class of S, is a local coordinate chart for
T(I'), [1,2]. Recalling the notation R (i, v) = % p(v+eu,v)|,-o wehave foru=rx,,
a=1,..., nthat the assignment r — Po R (u, x(t)) € # (S,) represents the coordinate

0
vector field a for the above choice of local coordinates.
Definition 2.6. In the above notation, the Weil-Petersson metric ds* =2y gal;dtad‘t;
is defined by
gaﬁ(t):<PoR(Ka’K)a POR(K/;,K)> (24)

where k = k() and the Hermitian product is on S,.
The operator P is self adjoint and thus (2.4) can also be given as

gaﬁ(t) = <PD R(Ka’K)’ R(K/i’ K)>

A change of variables gives the following formulas (the integration is now on
S, = H|TI') for the metric with y=x, and v=1x;

23(0= [ Q(u,x)Q(v,x) (f)*dA

o S (2.5)
gD =] QUuK) Tz (f)*dA.

HII' "-|K|

Before proceeding recall that the derivatives of Q (u, k) and (f*)*dA, u, k e B(I'),
commute and converge in CZ (H).

0 )
Lemma 2.7, [1]. In the above notation, the derivatives -5%'—’5 (t) and ;g;'@ (t) vanish
at 1=0. v I

Proof. First note that the derivatives of Q and (f*)*dA converge uniformly on a
fundamental domain for I'. Now referring to Lemma 1.7 we recall that the first
derivatives of (f*)*dA are trivial. Using the formulas (2.5) we have that

-G om0
o —<0tyQ(ﬂ,K),v + /Aar}'Q(V»K)

Y
085 < 0 >
aty - @t), Q (ﬂ? K)a v .

Equating the two gives <,u, ai 0, K)> = 0 and the conclusion follows since u and v
ry - . .
are arbitrary. The analogous argument applies for the ¢ derivatives.

and



130 S.A. Wolpert

Corollary 2.8. For u, v, ke #B(I") then

d
<3; Q(u,ﬁ'c)lg:o,V>=0-

An immediate consequence of the lemma is that the Weil-Petersson metric is
Kéhler and that its Christoffel symbols vanish at the origin for the above local
coordinates [1, 2].

Theorem 2.9. For u,ve#(I')

5—8 O, eV |yeo=—L_Lo(Dy—2)" " (u7).

Proof. The proof has two steps: First we check that both of the above expressions
lie in the orthogonal complement of Ker (D_,—2)cs# _,, and then we compute
(D_,—2) of both expressions.

First observe that the operators (D_,—2)=L_,K_, and K_, have the same
kernel. The inclusion Ker K_, =Ker(D_,—2) is immediate. For the reverse
consider geKer(D_,—2) then L_,K_,g=0 or equivalently (z—2) K_,g),=0.
Now the tensor X =(z—2)K_, g is a I' invariant vector field and X, =0 provides
that X is a holomorphic vector field. By Riemann Roch Xis trivial and K_, g =0 or
geKerkK._,.

Next we observe that both expressions in the formulas are in the orthogonal
complement of # (I') = Ker (D _, —2). That the derivative satisfies this property is
the content of Corollary 2.8. For the right hand side consider integration by parts of
geH _,NC" arbitrary and ve Z(I'): (v, L_,g> = —<{K_,v,g> and v e # implies
K_,v=0. The claim is established.

At this point it will suffice to establish that

d
(D_,—2) i O, ev)|.—o= -—(D_2—2)L_1L0(D0—2)_1(,u\7)

=—L_,Lo(uv).
Start by differentiating the left hand side to obtain (recall the formulae (2.1) and
(2.3))

d d S—
A o(u, SV)la=o=d—8 P[R(u,&v)]l,= o+ p. Fv]+ u: Fv]

+u(FP), = Flv])
where u e # implies P [u] = u. As with Lemma 2.2 this can be written as

d
4 0t e)ca= L PIRGto,—g = 1K DD+ L, (B D).

Now we are ready to compute (D_,—2)=L_, K_,. The derivatives converge in

C>* (H) and thus J J
L_,K_, e P[R]=d_£ L_,K_,P[R]



Chern forms and the Riemann tensor for the moduli space of curves 131

where the latter vanishes since P[R]e%. The final step is to evaluate

L K ;(—puK_; @[]+ L_ (u®[v])). Substituting K_, ®[v]= —K_, P [v], the
result of Lemma 1.7, the desired expression — L _, L, (u¥) is easily obtained.

3. The second variation of area

3.1. Our goal is to use the techniques developed in the preceeding chapters to
obtain the formula

d d
—— == (v dA|, o, o= —2Re(ui+2(Dy—2) "' (u¥)) dA4

de, de,
valid for u, ve # (I'). Ahlfors derived an integral formula for the second variation
of area, [2]. The integral is over the product H x H and the kernel is a combination
of singular Hilbert kernels for one variable. Recently Royden has also obtained a
formula for the second variation of area, [7]. Apparently his formula is similar to
the above.

Our considerations begin with showing how the hypothesis u, ve#(I') in
. . d o .
particular the earlier result 7 (f*)y*dA|,-,=0 greatly simplifies the calculation.
3
Then as with the proof of Lemma 1.7 and Theorem 2.9 we find it easier to evaluate
the Laplacian of the desired expression.

3.2. Again consider the diagram

7’

—L
/\M‘ww

p=p(v+eu,v) for a triple of quasiconformal maps. Now by definition of the
pullback

* d v+ ey sk — VY sk i %
Sr o A= () (dg () dAlg:o>

and by Lemma 1.2. we then obtain
(f")*(2Re(K_; @ [R(u,v))dA) =2Re(K_; P[R(u,v)]) o [*(f)*dA.

Now we replace v by v and proceed to evaluate the e-derivative at ¢=0. By
Lemma 1.7 the e-derivative of (f*")*dA vanishes and it only remains to consider

d
e 2Re(K_,; D [R(u, ev)])o f],-odA. Recall the C(H) convergence; we proceed
&

and obtain

&

(Z? 2ReK_, D[R, ev)]|,—0+2(ReK_, ®[u]), Fv]+2(ReK _, ¢[,u])J'[T]>dA.
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Now we apply Lemma 1.7. one last time in particular Re K _, @ [u] = 0 and we have
that the second variation of area is given by

% 2ReK_ | P[R(u,ev)]|,=odA.

Before proceeding further we discuss convergence. The C* (H) convergence
guarantees that the e-derivative and K_, commute. Now for all ¢ small R(g, &v) is
bounded in L* norm; the integral for the potential @ [R] converges. On the other
hand the convergence of the ¢-derivative of R (u,ev) in L™ is a delicate question
which we wish to avoid. Consequently we shall not use that the ¢-derivative
commutes with @. The following result will serve as a substitute.

Lemma 3.1. Given u, ve B (I')

d d
Loy OIRU o] mo= = o RULeV|ecg= =K, O[]+ L (4D ).

.. d
Proof. By definition <I>[R(,u,sv)]=c—1;— Sf?le,=0s p=p(ev+e, u,ev) where all
71

expressions are real analytic in z and ¢. Consequently L_,; commutes with the ¢-

derivative: L_, % ) =Zjdz L o= _c;is R by Lemma 1.4. The second formula is

the result of Lemma 2.2.
3.3. The discussion of the previous sections is summarized in the following result.

Lemma 3.2. Suppose G, G €S(—1) satisfies

) L, G=—pK_ O]+ L_, (k@[]
and
ii) ReK_, G is I invariant.
Then 2Re K _, GdA is the second variation of the area element.

d
Proof. First observe that by Lemma 3.1 L _, (% D [R]|,=0— G) = 0. Furthermore

by (3.1) and hypothesis we have that g=ReK_l<gg <D[R]|£=O—G> isal

invariant function. Now as with Lemma 1.7 applying D, = K_, L, we find that
Dyg=2gandgis I invariant: consequently g vanishes identically. In particular we

have that 2Re K_; Gd4 =2ReK_, 5— ®[R]|,-0dA, the desired conclusion.
&

Theorem 3.3. Given u, ve #(I') then

L (puvsmpedd), . o= —2Re(ui+2(Do—2)" (7)) dd
de, de, 1T
Proof. The plan is to identify that function G satisfying the hypothesis of

Lemma 3.2. Certainly we should start by setting G = G + u® [v]. Computing the
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variation of area for the second term we find that 2Re K _, (u® [v]) =2Reu K, @ [v]
= —2Reuv, an invariant function. In particular we observe that it will
suffice to find G satisfying i) L_,G = —uK_,®[v] and ii) ReK _ , G is invariant.
Following this line of reasoning the quantity F=(D_,—2)G will satisfy i)
L F=—(D_,—-2) (uK_,;®[v]) and ii)) ReK_, F = (D0—2)ReK,1C;‘ is I
invariant, since the Laplacians commute with the Maass operators. Before
proceeding further recall from Chapter 1 that (D, —2) is an invertible operator and
thus in order to determine the area variation 2ReK_, G it will suffice to first
calculate 2(D,—2)ReK _, G and then apply the inverse (Dy—2)" "

With this in mind the obvious candidate for Fis —K_,(uK_,; ®[v]). In
particular (D_,—2)=L_,K_, and thus L_ F=—(D_,—2) (uK_,®[v]); our

choice of Fsatisfies i). We now compute K_ | F; recall that — K _, @ [v]=K_, ?[v] =

L, ®[v], thus F=K_,(uL,®[v]) and K_F = K_K_,(uL,®[v]) =
K_,(uK,L,®[v]). Substituting K,L,=L,K,+2 we find K,L @[]
=(L,K;+2)®[v] = (K_,L_,+2)®[v] = 2&[v] and therefore in brief
K F=K_2(u®p]) =2uL_,®[v] = —2uv. Indeed ReK_, F is an invariant
function. Therefore our choice of F satisfies the required hypothesis. In summary
wehavethat2 (D, —2)ReK_, G =2ReK_, F= —4Reuv; the final formula follows

from this result.

4. The Riemann tensor of the Weil-Petersson metric

4.1. Fixing a basis u, e 8 (I') for the harmonic Beltrami differentials consider the
associated local coordinates (see Section 2.5) te(t,, ..., t,) € C, for T(I"). Ahlfors’
result Lemma 2.7 provides that for these coordinates the first derivatives of the
metric tensor vanish at the origin. In this case, following Bochner’s conventions, the
Riemann curvature tensor at the origin is then

azgaﬁ
01,0t

8.

Raﬁ}‘5 =

The main result of this chapter is the formula

R,p5= -2 j (Do_z)_l(#aﬂ/}) (4, t5) dA

HIT

—2 [ (Do=2)"" (alts) (115) A
HIT
for the Riemann tensor of the Weil-Petersson metric. As the reader shall
see the elementary fact that —2(D,—2)" ' is a non-negative operator governs
the sign of the curvatures. In particular we find that the holomorphic sectional
curvature, the Ricci curvature, the scalar curvature and the general sectional
curvature are all negative; in fact we obtain upper bounds for the first three.
For example the curvature of the holomorphic section spanned by u,, (¢, 4y =1

. -1
isR,=4 | (Dy—2)"" |1,|? | 11,|* d4 and we find that R, < Tng—T) Tromba was

HIT
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the first to show that the sectional curvature is indeed negative, [32]. Royden has
obtained similar formulas and estimates for the curvatures. In fact Royden was the
first to show that the holomorphic curvatures are bounded away from zero and
he actually conjectured the above bound for the holomorphic sectional
curvature, [16]. Now proceeding in a slightly different vein we consider the
first chern form of the cotangent bundle (7"°)*T(I'). Given a unitary frame
U €B(I),a=1,...,nand v, ke (I') arbitrary then by definition

¢, = 2l—n 00 trace (g,p)

thus

0 0 i ) i )
“ (W ﬁ(x_)>=§? 2 <_2 [ (Dy=2)"" (afis) (VR) dA

HIr
=2 [ (Do=2)7" (1) (/1Y) dA)
H|I'
from which it follows immediately that ¢, is positive.
4.2. We refer the reader to Bochner’s paper for a review of Hermitian geometry,

[8]. Introduce local coordinates t = (¢, ..., t,) for a neighborhood of I' in T'(I") by
choosing a basis u,e#(I'), a=1, ..., n (see Section 2.5). By convention Greek

oL . ... 0 g,
indices will run from 1 to n. By Lemma 2.7 the derivatives égtaﬁ (0) and (;gt_ﬁ 0)
Y. Y
62
vanish and hence the curvature tensor is given by R ;5(0) = Eap (0), [8].
Py ot 0t
v

We start with the following formulas of Section 2.5 for the metric tensor

g5= | Q1K) Q(v,x) (f*)*dA

HIT

v o\ %
J Q(uk) e U)*dA

H/T
where k =k (1) =) t,k, for te C" small and Q (u, ) is defined by (2.3). In order

. v . o
to obtain a more general formula we consider the second real derivative
2

77 8o (¢e,)|.=o for g,; restricted to the line  =c¢e,, e, the yth basis vector of C”,

equivalently k = ex,. As already discussed the above quantities vary smoothly in
CZ(H) and I" has a compact fundamental domain: we may differentiate under the
integral. At this point the calculation is formal; we denote an ¢ derivative evaluated
at the origin by placing a dot above the corresponding expression.

Given the above formulas (4.1) and the inner product{ , > on# _, we have that

§ap= <0 (1, k), V) +2<Q (1, 1), Q (v, 1)) +<pt, O (v, 1)) + v (f¥)* dA
Lap=<O (1, 1), V) + 2, v|we ) + [uv (f¥)*dA

where we have used Lemma 1.7, (f%)* d4 = 0 and that Q (p, k (0)) = p, forp e B (I').
Equating the two expressions we obtain the following formula

Eap=4<uvIKl?> =240 (1, 1), Q (v, K)> + [ uv (f¥)*dA . 4.3)

(4.2)
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We are essentially done. The second term is given by Theorem 2.9; the resulting
expression will be simplified by integration by parts. The third term is given by
Theorem 3.3. In particular Q(u,k) = —L_,Ly(Dy—2)"'(uk) and therefore
intergrating by parts <Q(u,k), Q(v,k)) =<K_,K_,L_,Ly(Dy—2)"'(ur),
(Dy—2)""(viK)); recalling that K_,K_,L_, L, = (Dy—2)*+ 2(D,—2) and that
(Do —2) is self adjoint we find that {Q, Q) = {uk,vk) + 2<uk, (Dy—2) " (vk)).
Now combining this result with the formula (4.3) and Theorem 3.3 we have that

§up= —4Cuk,, (Dy—2)" " (V&,)) —4<uv, (Do —2)" !k, |*). (4.4)

We observe that the Hermitian product is now for J,; in particular given pu,
ve# (I') then uv e . To simplify our further considerations we introduce the
following notation.

Definition 4.1. A= —2(D,—2)"" is an operator on #,.
Recall that 4 is a self adjoint compact integral operator with a positive kernel.
Furthermore we note that 4 is the identity on constant functions.

Theorem 4.2. Given a basis pu,e B(I'), let t=(t,, .. .5 1,) be the associated local
coordinates for Teichmiiller space and ds* =2 g,3dt,dt s the Weil-Petersson metric,
then

02&3
0t,0t;

gaﬁ

1,01,

0)=

0)=

i) the Riemann tensor is given as

Ry =7, 2 g;” (0) = <A (afig): () + <A W), ()

2

d . .
m g“B(O) 18 Obtalned

from the above formula (4.4). Property i) is an immediate consequence of the
observation that (4.4) is unchanged if x, is replaced by ix,. And finally the formula
for the Riemann tensor is an immediate consequence of formula (4.4) and the
definition of complex derivatives. The proof is complete.

Before proceeding we wish to remark on the assumption p,e# i.e.
that the Beltrami differentials are harmonic. We are also interested in evaluating
tensors for the general Beltrami differential pe% (I'). In fact we see that
R(p,.pp,p,.P5)=R(Plp,, Plpsl, Plp,], Plps]) for the projection operator P. This
follows from two basic observations Ris a tensor i.e. depends only on a choice of

vectors in T"°T(I') and —— @t( ) 6t( ) for u=Plp], p e B(I') (see diagram 2.2)).

4.3. Now we shall derive estimates for the sectional, Ricci and scalar curvature of
the Weil-Petersson metric. The following inequality is required to show that the
sectional curvature is negative.

Proof. First note that by polarization the real derivative

Lemma 4.3. Given f, ge#, then
AR < 14f%1'2 4822,
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Proof. The operator A= —2(D,—2)"" is integral with kernel G (z, w) defined on
the complement of the diagonal in H/I' x H/I', [15]. The Green’s function G is

strictly positive and in a neighborhood of the diagonal G (z, w) + o log|z—w]is
T

continuous, [15]. Given f, gei#,, 4(fg) is defined, the integral converges. G
possesses a positive square root and so we may write G|fg| = G''?|f]| G'/?|g| and
apply the Holder inequality:

|[GfgdA| < [GlfgldA < (JGf*dA)' > ([Gg>dA)' .

This is the desired inequality.
We introduce one last bit of notation in order to simplify the discussion.

Definition 4.4. Given u, e B(I") set
(@B, y0) = <A (taftg)s (AyH5)> -

Theorem 4.5. The Weil-Petersson metric has negative sectional curvature.

. . 0 0 .
Proof. Given holomorphic tangent vectors —, — e T"° T(I') associate the real

ot,’ 0t,
tangent vectors v, = 4 + d v,=—+ 4 € TrT(I'). Bochner shows that the
& Yot o1, P o, o, ROV

curvature of the section spanned by v, and v, is R/g where [8, formulas 24 and 25]
R= Riz3— Rini — Rypiz + Ry
and
g=4g118:—21gil* — 2Re(g1y)?

for R,;; the curvature tensor and g,; the metric tensor. It is an immediate
application of the Cauchy-Schwarz inequality that g is positive provided that v, and
v, are linearly independent. Now we write out the denominator R in terms of the
notation of Definition 4.4 R=4Re(12,12) —2(12,21) — 2(11,22). Starting with
Lemma 4.3 we have that |4 (u, fi,)| < (4|p,|*)?(4|u,|*)""* and thus

|(12,12)| < [1Ap iy |y o] dA < §( A1y 1) (Ao 1) |1y 5 1dA

and applying the Holder inequality we obtain < ([4|u,|? |u,|?dA)'?
([Alpz1? | uy12dA)"?. The operator 4 is self adjoint and so we finally have that
[(12,12)| £(11,22). Now for the remaining terms let us write u, i, =f+ ig,
fand g real valued functions. Then certainly Re (12,12) =<A4f,f> —<{A4g, g> and
(12,21) =<{4f.f> +<4g,g) in particular Re(12,12) <(12,21), recall that 4 is
positive. Combining the inequalities |(12,12)| < (11,22) and Re (12,12) < (12,21)
we have that R <0; the reader can check that equality is not a possibility.

In the conventions of Bochner we have the following additional bounds for the
curvatures of the Weil-Petersson metric.

Lemma 4.6.

1) The holomorphic sectional curvature and Ricci curvature are bounded above by
-1

2n(g—1)
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_3QGg- 2)
47

il) The scalar curvature is bounded above b

Proof. Bochner shows that the curvature of the holomorphic section spanned by
u,€B(), Lty pty =118 —Rgu= —24A|u,)? |1 1*>. To estimate the integral

consider the orthogonal expansion |u,|? Z w; of | u,|? in terms of eigenfunctions

of the Laplacian D,. Indeed we have that - ma—4z <W’ ’w’ , with the

eigenvalues 4;, Dol//,— ;¥;, non-positive. If y, is the constant function then
certainly the sum is bounded by its first term, — R ;,; < — 2<{y,, ¥, and equality is
ruled out since |u,|> has zeros. Now y,, is determined by [w,dA4 = {|u,|*dA

1 . .
=, 1y =1; yo= Aren and the estimate follows. The Ricci and scalar
curvatures are treated in a similar fashion.

4.4. Recall that associated to a Hermitian metric on a holomorphic vector bundle
there is a unique connection compatible with the holomorphic structure, [19]. The
Chern forms of the bundle may then be computed from the curvature of this
connection. We are interested in QD the bundle of quadratic differentials over T(I")
endowed with the Weil-Petersson metric.

Corollary 4.7. Let u, be a unitary basis for #(I') and n, ve B (I') arbitrary. Then
i . - _ _
ey (s v) =5 3 (A (afte), ) + AV (1o 12)))

where ¢, (1, v) is the first Chern form of QD evaluated on the holomorphic tangent

0
vectors ——— eT"OT(I).

ot (p)” 0t (v)
Proof. First recall that for a suitable choice of local holomorphic frame for V, a
Hermitian vector bundle, the metric can be written as 4(t) = I+ 0(]¢|?), ¢ a local
coordinate varies in a neighborhood of the origin. Given this normalization the

curvature matrix is @ (0)=00h(0) and the first Chern form c,(0)=l~ trace
(G0h (0)). 2n

For the Weil-Petersson metric Lemma 2.7 provides that a unitary basis
u, €A (I') gives the desired local frame of 71-° T(I"). The formula now follows from
Theorem 4.2 and the observation that QD is the dual of the tangent bundle and thus
¢, (QD) = — ¢, (T"°T(I')) for the dual metric.

5. Characteristic classes of the Teichmiiller curve

5.1. Consider the Teichmiiller curve 7, the natural fibre space over the genus g, g
22, Teichmiiller space with prOJectlon n: J,~T,. The fibre above peT, is a
compact Riemann surface, a representative of the conformal equivalence class D
Forming the universal cover of 7, one obtains the Bers fibre space #%,. The
mapping class group M, has an extenswn by the fundamental group of a genus g
surface to a group M acting holomorphically and discontinuously on #%,.
Forming quotients the 1nduced projection n: 8%, /M —T,/M, defines a ﬁbratlon
of V-manifolds, the universal curve over the moduh space ,/lg =T,/M,.
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We shall study the vertical bundle of the fibration n: 7, — T, . The differential
dn:TJ,—TT,(T=T"°) has everywhere 1 dimensional kernel, the tangent to the
fibre. In particular Ker dn < T'7, defines a line bundle (v) over 7; informally (v) is
the linearization of the fibration. Obviously the restriction of (v) to a fibre is
isomorphic to the tangent bundle of the fibre. Consequently the Uniformisation
Theorem with parameters provides that the hyperbolic metrics for the fibres piece
together to define a smooth Hermitian metric on the line bundle (v), [4]. Now
following a general construction for fibre spaces if ¢, (v) is the Chern class of (v) then
classes are defined on T, by setting K, = | ¢, (v)"*'. Theclasses k, = (—1)"" 'k, are

M, invariant and have been studied ir?b;ehe work of Mumford, Harris as well as
others [5,9,10,13, 14].

Our goal is to calculate the Chern form ¢, (v) starting with the hyperbolic metric
on (v). We present the result in Theorem 5.5. An immediate consequence is that the
line bundle has negative curvature form, a differential geometric analogue of
Arakelov’s result [5]. Then we compute the forms &, defined by integration over the

. . 1 . .
fibre. An immediate result is that k, = 57 COwes where w,; is the Weil-Petersson

Kahler form. Previously we showed that the cohomology classes of the extensions
K;, Oyp to the moduli space .#, of stable curves satisfy the relation [x,]

=32 [wwp], [26]. By contrast the present result is for the pointwise equality of the
characteristic forms.

5.2. The universal cover of 7 is the Bers fibre space #.#, [7]. Our calculations are
local and hence it will suffice to consider ##,. Bers showed that the Teichmiiller
space 7, may be embedded as a bounded domain in €" and that the fibre space # .7,
embeds in €"x C as follows

BF, —— C'x C

“l

T, s C"

p

for p the projection onto the first factor. In the study of one complex variable
variational calculations are generally in the context of maps between domains. We
shall follow this approach. Consequently we require the existence of a map between
a fixed and the general fibre of 7. Formally this is a local trivialization of the
bundle 7, . One knows at the outset that the fibres of n: 7, — T, are not complex
isomorphic. Consequently a trivialization of T is (at best) given by quasiconformal

maps between fibres. We shall now describe a trivialization of this type.

Definition 5.1. Given u€ B, ||ul|l, <1, denote by w* the unique homeomorphism
w: € — C fixing 0,1 and oo and satisfying

ws;=uw, in H
w,=0 inC—H

. ... d
Denote by w[u] the derivative pe w*|.—o; LEB.
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The image w*(H) is a quasi-halfplane and the map w* conjugates I into a
quasifuchsian group I'*= w"I" (w*)~! acting on w*(H).

Fix p,€ % (I') a basis and U a neighborhood of the origin in C" such that for
t=(ty,...,t,)eU then |lu()l|., <1 where u(t):th,uj. Consider the map
¥:Ux H—RBF, defined by (1,2) — (1, w*V(2)).

Theorem 5.2, [7]. In the above notation, the map W . UxH—RBF isa I —T*
equivariant local trivialization of the fibre space BF . ¥ (t, z) is holomorphic in t and
quasiconformal in z.

Throughout the following discussion we shall use z as the coordinate for the 0-
fibre of #%, and w as the coordinate for the general fibre. A few remaining
preliminary remarks are in order before we proceed with the calculation. We begin
with the diagram

BF, —— C"xC

1
I, —— C"

. o 0 .
where p is the projection onto the first factor. We observe that e provides a
w

holomorphic section of the pushforward of the line bundle (v). Let be the

G . . . "

length of — in the hyperbolic metric, the associated connection 1-form is 6 = d log
2 w 2

and then the Chern

-~
A

ow
, [19]. In the following paragraphs we shall derive

, the associated curvature 2-form is ® = 00 log

1 2
form is ¢, = 57 ddlog
i

w

0

ow
explicit formulas for these quantities.
2

. The

w
typical fibre of #% cC"x € is a quasi-halfplane. Perhaps it is easiest to
understand the hyperbolic metric for a fibre by considering its uniformisation by
the halfplane H. To find this consider f* the first solution of the Beltrami equation
(see Definition 2.1) and w* the second solution of the Beltrami equation (see
Definition 5.1). It is immediate that there is a diagram of maps

H " wt(H)c C
Vs : }g

H

5.3. The first point is to obtain a suitable expression for the norm

where g is conformal. Writing A(w)|dw| for the hyperbolic metric in w*(H)
and A(()|d(| for the hyperbolic metric in H then by conformal invariance
A(g)g'|=A(w) and from the above f*=gow* thus fF=g (w)wt. By

definition ”é%ll = A(w) and therefore from the above A(w*)= A(g(w")) | f*|/|wk].
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Equivalently we have that A% (w) = A% (g (W*)) [f#1? (1 — | i |?)/|w¥]*(1 — | |?). Since
f*=g(w") it is immediate that A2(f*) | f*]* (1 —|ul?) —;: dz A dz =(f*)*dA, dA the

hyperbolic area element. As a matter of notation let us write [(f*)*dA] for the

coefficient of the tensor (f*)*d4. The above considerations are summarized in the
2

following result. This represents the formula that we shall use for

Lemma 5.3. In the above notation

0

ow

2=[(f"M*dA)/Iwk > (1—pl?).

Now for A (1, w) a function on the fibre space # % < C" x C we wish to evaluate
the differentials 04 or dh in terms of derivatives of the composition A (1, w(t,z))
where w (¢, z) = w*(z) is holomorphic in f and quasiconformal in z. It is immediate

that (h(t,w(t,2),= h,+ hw,

(h(t,w(1,2)));= hi + hgw;
or equivalently
hl = (h(ts W(t’ Z)))I - hwwi

hi= (h(t,w(t,2));— hy ;.

5.4. For the remainder of the discussion we shall use the local coordinates on 2%,
given by the trivialization ¥ introduced above. Again note that we indicate the
coordinate of the 0-fibre by z and the general fibre by w. Before stating the first

(5.1)

0
result recall that for ue#(I') we denote by PPy the associated holomorphic

tangent vector of T,cC" and also of @ﬂgc@'“ (we are using that the

trivialization given by ¥ (¢, z) is holomorphic in ).

2
evaluated

0
Lemma 5.4. [n the above notation, the connection 1-form 0 = 0 log F

at (t,w)=(0,2)eBF, is
0 -2
9(52)’“(2_2—)
0 2
9(@7@5) ((z 5 - M’)'

Proof. We start with the expression from Lemma 5.3. In particular at (=0,

2 —4 0 —4 -2
=log —— s and immediately — 3z log ——— = ——, the first result.

(z—2? (z—-2)
For the second result again start with log =log [(f*)*dA]/|w"*|* (1 —|ul?).

[(f*)*dA]=0 and

log o

o]
Lemma 1.7 applied in the present situation provides that

0
2 at(u)

= —w[ul],,att=0since w*"(z)is holomorphicin¢, w°(z) =z

thus ——1lo
o1 ( ) o8

and |u(2)|? is quadratic in t. Applying the formulas (5.1) the desired result follows.
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Before proceeding further with the calculation we wish to consider the second
order analogue of the formulas (5.1). The reader will verify that for # = h(z, w(t, 2)),
w holomorphic in ¢,

hrf(t’ W) = (h(h W(l, Z)))rf - hwi'wlwl - hwl_wt - htith . (52)

We are now ready to consider the following.

a2 2

Theorem 5.5. With the above notation, the curvature 2-form @ =00 log
evaluated at (t,w) =(0,z) e BF is

0 0 -2
© (54;’ 8_z> - (z—2)?
Jd 0 2 .
0 (5 i)~ W

0 p, 2 o
oL _ T
(@t(v)’f’f(ﬂ)> Gz VDR DT+ A

A

for u, ve#(I).
. . . J 0 0
Proof. We start with the first term. Certainly @ PR b e and the result
0z 0z z)).

follows. Similarly @ (6%’ %) is <6 <5;6(7‘5>> = <(ziz‘) wlul —w [,u];>f and we
2 )

recall that w [u]. = p. Differentiating we obtain

2
wiul+ ——=sp—n. ).

(z—2)? (z—2)°

Now uis harmonic and thus (

2
(z—2) (z—2)

0 0
We are ready to consider the third term @ <:, ——); this term is a Hermitian
- ot (v) 0t (W)

.0 - . .
form in P and thus it will suffice to consider the case u = v. Referring to formula

(5.2) we shall consider separately the four terms of the right hand side. Now for
the first term h=log[(f*)*dA]/|w*|>(1—|u|*) and we start by observing
(log [(f*)*dA]); = [(f*)*dA],;/[dA] as an immediate application of Lemma1.7.
Now by Theorem 3.3 we have that [(f*)*dA],;= (— uit+ A(uir)) [d4]. Furthermore
w"® is holomorphic in ¢ and thus — (log [w*|? (1 —|x|*)),; = pji. In summary the
first term is simply 4 (ui). The second term for (5.2) has been considered in the

2 . -— .
preceeding discussion. The result is — /A, w,Ww, = F?F w [u] w [¢]. The third and

fourth terms are obviously conjugates; it will suffice to consider the fourth. Indeed

1
n— ,u:> = — K_, u=0;the result follows.

2
hg = <0 ((%)) which was also evaluated above; we have that h; = =27 wu]
z B ) <

and certainly —h;w, = ——_72— w [u] wu]. Collecting terms the calculation and
zZ—Z

(

proof are now complete.
5.4. Now we wish to consider the formal properties of the Chern form ¢, = El— 0.
n

In order to better understand the form we introduce a new basis for the tangent
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space T% # , along a fibre of the projection to 7, . In particular the basis will project
to a basis for T, and relative to this basis it will be immediate that ¢, is negative.
We start by defining vector fields along the fibres of 2%, . Our calculations will be
pointwise; it will suffice to consider vector fields defined only on the # = 0 fibre of
BF,.

Definition 5.6. Given ue % (I') define 7, =w [,u] =— +
the =0 fibre of BF,. ()’

We wish to show that 7, is invariant under the action of the group I on % .
Equivalently 7, is the lift of a vector field defined along the fibre of .7, . The action of
ron#%,is holomorphxc in particular % /F and 7, are complex 1somorphlc [7].
Briefly in order to describe the action, con51der pne®B ), lull, <1 and let w be
given by Definition 5.1. Now by the I' invariance of u, w* and w*(y), y € I satisfy the
same differential equation (but with different normalizations); in particular
y* € PSL (2; €) exists such that w*(y) = y* w*. Now by definition given a point (¢, w)
eBF,cC" " and y el its action is defined by § (1, w*) = (1, y*(w")).

a vector field along

Lemma 5.7. [n the above notation, the vector field T, is I invariant.

Proof. We recall the description of the trivialization of #%,: ¥: Ux H— 3% by
the rule (1, z) = (¢, w*®(z)). Now I'acts on U x H by: (t,z)—— (1,7(2)), y € I' and as
FonBF ,by: (2, w)—j-+ (t,y*“(w)), y* e I'*. As already mentioned the trivialization
is I' — I equivariant: Yoy =70 ¥ for all y eI'. In particular we have that ¥, o Vs
=7, ¥, for the action on tangent vectors. The proof is now the consequence of

0 0
t bservations: 7, =¥ | ——— ], and for the acti f I on UxH T
wo observations: T, N <6t(,u)> and for the action of I' on UxH 7, <6t(,u)>

0 . 0 . 0
= m, y€el'. In brief we have that 1,=% oy, (6@) =7, o ¥, <5T(71—)>
=7J,(t,), the desired conclusion.

We note in passing that the assignment y—t,, €% (I') defines a canonical
lifting of TT, to T7,. The results of Theorem 5.5 can now be reformulated as

0 0 -2
@<0_2’ a_z>=(z~z‘)2

0
o (5—2:, 1u> =0 (5.3)
0 (t,,1,) = 4 (1)
where 4 = —2(D,—2) " '. Recall that 4 is an integral operator with positive kernel,
A4 (up) is everywhere positive. The Chern form of (v) is given as ¢, (v) = =— © and

the following is an immediate consequence. 2

Lemma 5.8. The vertical bundle of the fibration n: 7,— T, is a negative line bundle.

It was known previously that the dual line bundle, the relative dualizing sheaf, is
numerically effective, on the compactification of the universal curve, [14].
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5.5. Finally we wish to consider the characteristic classes K,= [ ¢}"'. The

fibre
characteristic forms &, are of type (n,n) and invariant under the action of the
mapping class group M, . We shall derive the formula for K, starting with the above

. . . L . 1
expression for ¢, (v). As an immediate application we have that K, = 572 Owe where
Y

oypis the Kéhler form of the Weil-Petersson metric. The exterior power ¢} * 'isa (n
+1, n+1) form. We wish to emphasize the type decomposition; accordingly we
shall evaluate forms on 7"°.7.

Lemma 5.9. In the above notation, given p;e #(I'),j=1, ..., nset 1, =1; and then

0 0
ertl <£,¥, Tys Tqs ""T"’f">

Jd 0 -
=m+1)! @(—a—z—, 62‘) Y e(0) O(ty, Toq) - O(T,, Tyim)

oce,

where ¥, is the permutation group on n letters and ¢ is the sign character.

Proof. The exterior power @"*! is evaluated by summing over all permutations.
6—2_"

_ g . . .
Now the vanishing @ ( rj> =0 (see (5.3)) immediately reduces the expression to

0z’ 0z
(1,1) the quantities O (;, 7,), © (7;, 7,) will also vanish. We are left to consider

0 . . . .
O" l=(n+1)0 <—— ——> ® @"where ® is the symmetric tensor. Since @ is of type

0 0 . _
Ol =(m+1) @(E’ 6_2> Z e(0p) O (509 Tpq)) - -+ O (T,(m» Tom) -

(o.p)e L x &,

Transferring the action of permutations to the second index we find the desired
formula

0 0 S .
0" =m+1)! @<6—~' E) Y €(0) Oy, Tyq) -+ O(T,, Tym)-

ce,

In order to relate our results to those of other authors we now shift our attention
to the dual of the vertical line bundle, often referred to as the relative dualizing sheaf.
Specifically we consider the classes

( 1 >n +1 5
K,=|=— o+t (5.4)
2 i fibre

By polarization it will suffice to obtain a formula for k, (4, iy, ..., i,, 1,) Where

we have abbreviated , LERB, by simply writing u.

0
ot (w)
Lemma 5.10. In the above notation

Kn(/’tlsl'—t;a ooy ﬂn»ﬁ;)

: n+1
=(n+1)!<ﬁ> (=) [ X &) AW Hoy) -+ A(Hybom) dA.

HII 6€¥%,
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Proof. To start the considerations recall the formulas (5.3) and Lemma 5.9. And
note that if dA4 is the hyperbolic area element on H, an exterior 2-form, then

dz A d5
! —Z—A——f— and thus

~2 (Im2)
o 9 2 -1 . (8 @
© (a_z’ E) = G=5  2(mop (a— 5’)

Combining these remarks with the definition (5.4) the formula follows.

Corollary 5.11. [n the above notation, K, = wyp, where wy, is the Weil-Petersson
Kdhler form.

Proof. Starting from the above result we find that x, (u, V) = 21—2 fA(uv)dA, u,
T

Ve (I'). Now for an arbitrary function fe#, we have that | AfdA = | fdA

H/T H/r

and the result follows since w =i | uvdA is the Kéhler form given on 7"°T,.
HIr
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