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Abstract. A hydrodynamical model based on the theory of extended thermodynamics is pre-
sented for carrier transport in semiconductors. Closure relations for fluxes are obtained by employing
the maximum entropy principle. The production terms are modeled by fitting the Monte Carlo data
for homogeneously doped semiconductors.

The mathematical properties of the model are studied. A suitable numerical method, which is a
generalization of the Nessyahu–Tadmor scheme to the nonhomogeneous case, is provided.

The validity of the constitutive relations has been assessed by comparing the numerical results
with detailed Monte Carlo simulations.
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1. Introduction. The study of carrier transport in semiconductor devices is
of great interest for the design of modern electron devices. Detailed Monte Carlo
simulations are based on a semiclassical kinetic formulation and provide an accurate
description of charge transport in submicron devices [1, 2]. Their use, however, is not
practical for computer aided design because of the large computer times needed for
each simulation.

In engineering applications simpler models are routinely used. They give a less
detailed description of the system, which is, however, adequate to describe the gross
properties of transport phenomena.

Among these models, the more popular ones are the drift-diffusion models [3, 4, 5],
their extensions including the carrier energy (called energy models) [1, 3, 6, 7], and
hydrodynamic models [3, 8]. The drift-diffusion and energy models can be derived
formally by a Chapman–Enskog type expansion of the transport equation [9, 10] and
thermodynamically from linear irreversible thermodynamics [6]. They give satisfac-
tory answers for device sizes of the order of a few microns and moderate applied
voltages, because in this case the assumption of local thermodynamical equilibrium
is a reasonable approximation. The energy model essentially comprises the balance
equations for the carrier density and energy density, supplemented by linear constitu-
tive laws relating the particle and energy fluxes to the gradient of chemical potential
and energy density. For submicron devices high field effects must be taken into ac-
count and linear relations are no longer valid as shown, for instance, by the loss of
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validity of the Onsager reciprocity relations for fields exceeding about 104 V/cm [11].
Hydrodynamic models aim to provide a description of such nonequilibrium effects
without the overhead of large computational costs typical of kinetic models.

Among the various hydrodynamical models, the one introduced by Blotekjaer [8],
and subsequently thoroughly investigated by Baccarani and Wordeman [12] (which we
shall denote by BBW), is incorporated in several commercial simulation packages. It
comprises the balance equations for carrier density, momentum, and energy, obtained
as moment equations of the underlying kinetic Boltzmann transport equation. The
closure of the moment equations is achieved by postulating a phenomenological con-
stitutive relation of Fourier type for the heat flux. Thermal conductivity contains a
free parameter, whose value is chosen ad hoc by comparison with Monte Carlo results
[13].

Numerical simulations indicate, however, that the adopted expression of the heat
flux is not in qualitative agreement with Monte Carlo results (see, for example, [14,
15]). Furthermore, the Onsager reciprocity relations are not satisfied [11] in this
model.

A more accurate hydrodynamical model has been recently developed by Lee and
Tang [15]. They determine the constitutive relations with a calibration of the free
parameters from Monte Carlo data without imposing a priori a Fourier law for the
heat flux and by considering the energy flux as an additional independent dynamical
variable. This model can be very useful for problems such as linear stability analysis,
which is more easily performed in a hydrodynamical context, but it is heavily depen-
dent on Monte Carlo results. It is therefore desirable to have constitutive relations of
general validity obtained on the basis of fundamental physical laws.

In this sense a considerable improvement on the BBW model has been introduced
in [16], in which the closure of the moment equations is obtained from the entropy
principle of extended thermodynamics [17, 18]. Apart from the usual balance equa-
tions for carrier density, momentum, and energy, the model (hereafter called the AP
model) comprises evolution equations for the heat flux and shear stress. The resulting
system is hyperbolic in a suitable domain of the space of variables. In the stationary
case, by linearizing the heat flux equation for small temperature gradients (Maxwellian
iteration) one obtains an extension of the Fourier law which also includes a convective
term. With the addition of this term, the Onsager relations for small deviations from
thermodynamical equilibrium are restored. Furthermore the heat conductivity turns
out to be directly related to the energy-flux relaxation time and does not contain any
undetermined free parameters.

The AP model gives a better prediction for the heat flux than the BBW model,
but the results for velocity and energy are not fully satisfactory.

In this article we investigate an improved version of the extended hydrodynamical
model previously introduced in [11] by considering also nonlinear closures and a more
accurate representation for the production terms. In the previous formulation the
closure relation for the deviatoric part of the flux of energy flux was a linear one, i.e.,
it contained terms up to first order in the deviation off a suitably defined state of
local thermal equilibrium. The explicit form for the linear constitutive relation was
obtained from the entropy principle [16, 17] with the same procedure followed in the
case of a monoatomic gas.

However, in the case of semiconductors some differences arise because a full de-
scription involves a mixture of electron, hole, and phonon gases. In the applications
which will be considered the generation-recombination of electrons and holes can be
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neglected and therefore it is a reasonable approximation to ignore the hole subsystem.
Also to a first approximation, it is possible to neglect the crystal heating due to the
electrons, so therefore we consider the crystal as a thermal bath. As a consequence a
natural preferred frame exists which is the rest frame of the crystal. Therefore, the
electron velocity appears as the relative velocity to the crystal and must be consid-
ered, in order to determine the constitutive equations, as an effective thermodynamical
variable.

The constitutive equations have been obtained by applying the maximum entropy
approach advocated by Levermore [19], which under suitable assumptions is equivalent
to extended thermodynamics.

The production terms have been obtained with a fitting of the Monte Carlo data
in the homogeneous case on the basis of representation formulas for tensor-valued
functions.

Mathematically, the equations have the structure of a quasi-linear hyperbolic
system with source. The latter contains a relaxation term and a nonlocal drift term,
which is due to a self-consistent electric field. We have investigated this system for
the case of a one-dimensional quasi-ballistic n+ − n − n+ diode, which is a sort of
benchmark problem for models of submicron electron devices.

In order to perform the simulations a suitable numerical scheme has been pre-
sented for the numerical solution of one-dimensional nonstationary problems. The
equations contain a hyperbolic term and a term representing diffusive, relaxation,
and drift effects. A splitting technique has been used. The convection step takes care
of the hyperbolic part, while the other effects are treated in a second, relaxation step.
The hyperbolic step has been solved by the scheme proposed by Nessyahu and Tadmor
(NT scheme) [20], which has the advantage over upwind-based schemes that it does
not require the knowledge of the characteristic speeds of the system. This property
is crucial, since in this case there is no simple explicit expression for the eigenvalues
of the hyperbolic part of the system. This instead is the case for the BBW model,
whose hyperbolic part coincides with the Euler hydrodynamical equations and for
which shock-capturing schemes can be naturally adopted [21, 22]. The numerical re-
sults have been compared with those obtained by the Monte Carlo code DAMOCLES
[2, 23] and a good agreement is observed in the field variables for realistic lengths of
the channel.

The plan of the paper is the following. The basic assumptions are presented in
section 2, and the constitutive relations are outlined in sections 3 and 4. Section 5 is
devoted to the study of the formal properties of the model. Sections 6 and 7 illustrate
the computational scheme and show the numerical results. Section 8 presents some
conclusions.

2. Basic assumptions. In a semiclassical approximation, a kinetic description
of the electrons is given by the semiclassical Boltzmann transport equation for the one
particle distribution function f(x, t,k), which represents the probability of finding an
electron at time t in an elementary volume dxdk, around position x, and with crystal
momentum k [4],

∂f

∂t
+ ui(k)

∂f

∂xi
− eEi ∂f

∂ki
= C[f ].(1)

Similar equations should be included for holes and phonons (the latter account for the
energy transport inside the lattice). In what follows we neglect the motion of holes
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and consider the crystal as a thermal bath at constant temperature T0. Thereafter
all the relations will be understood to hold in the rest frame of the crystal.

In (1) e is (the absolute value of) the electron charge, and k represents the crystal
momentum of the electron belonging to the first Brillouin zone1, E is the electric field
and is related to the electron distribution by Poisson’s equation

Ei = − ∂φ

∂xi
,

ε∆φ = −e(ND −NA − n),

where φ is the electric potential, ND and NA are, respectively, the donor and acceptor
density, and n is the electron density. The latter is related to f by

n =

∫
fdk.

C[f ] is the collision term, which takes into account scattering with acoustic and
optical phonons and with impurities (see [24]). Its expression is of the form

C[f ] =
∫

dk′ [s(x,k′,k)f ′(1− f)− s(x,k,k′)f(1− f ′)] .(2)

The first term gives the total probability that an electron at x with momentum k′ is
scattered to the state (x,k), while the second term gives the total probability that an
electron in (x,k) is scattered to (x,k′). The terms 1−f and 1−f ′ describe the effect
of the Pauli exclusion principle. Note that the distribution function f is normalized
in such a way that it represents the occupation probability of the quantum state
denoted by the wave vector k. This normalization is justified also in the semiclassical
approach. In fact, if the distribution function represents a probability at the initial
time (i.e., if 0 ≤ f(x, k, 0) ≤ 1), then this bound is maintained by the solution of the
transport equations (1),(2) for later times (0 ≤ f(x, k, t) ≤ 1) [4].

The electron velocity u(k) depends on the energy E measured from the conduction
band minimum by the relation

ui(k) = ∇kiE .

In general the band structure may be very complicated, and it depends on the ma-
terial. In the approximation of a single parabolic conduction band (which we adopt
in the rest of the paper), the effective mass is a constant scalar m∗, and the relation
between energy and wave vector is

E = |k|2
2m∗ ,

and therefore

ui =
ki

m∗ .

Consistently, the first Brillouin zone is extended to R3.

1Einstein summation convention over repeated indices is used, and physical units are such that
� = 1.
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Equation (1) is a nonlinear integrodifferential equation in seven independent vari-
ables. Simpler approximate models can be derived from the kinetic equation. The
main approximations are based on the expansion of the distribution function around
the Maxwell–Boltzmann equilibrium distribution (e.g., drift-diffusion model) and the
moment method (hydrodynamic models). The latter are introduced as follows. We
define the moments of the distribution function f :

Fi1i2···in =
1

(m∗)n

∫
dkfki1ki2 · · · kin .

By multiplying (1) by ki1ki2 · · · kin/(m∗)n and integrating in k space, after having
employed a suitable vanishing condition for f as |k| → ∞ in the parabolic band
approximation (or in the general case, the periodicity condition in the Brillouin zone),
one obtains the generic moment equation

∂

∂t
Fi1i2···in +

1

m∗
∂

∂xk
Fi1i2···ink = Qi1i2···in − eEi

∫
dk

f

(m∗)n
∂

∂ki
ki1ki2 · · · kin ,(3)

where Qi1i2···in are the moments of the collision term.

Qi1i2···ink =
1

(m∗)n

∫
dk C[f ]ki1ki2 · · · kin .(4)

In this way there are only four independent variables, but the system is infinite,
because the first N equations comprise the first N + 1 moments. An approximate
system is obtained by a suitable truncation of the hierarchy. This procedure can be
used at different levels. We shall take into account models whose moments have an
immediate physical interpretation. Let us consider the following first moments:

numerical density n = F,

particle flux Fi =

∫
fui dk,

energy density per unit mass
1

2
Fii =

1

2

∫
fu2 dk,

momentum flux density per unit mass Fij =

∫
fuiuj dk,

energy-flux density per unit mass
1

2
Fill =

1

2

∫
fuiu

2 dk.

Neglecting generation-recombination effects, which on the hydrodynamical time scale
are negligible, the balance equations in conservation form for the first 13 moments
are given by2

∂F

∂t
+

∂

∂xk
Fk = 0,(5)

∂Fi

∂t
+

∂

∂xk
Fik = Qi − neEi

m∗ ,(6)

∂Fll

∂t
+

∂

∂xk
Fllk = Q− 2ne

m∗ v ·E,(7)

2Double parentheses indicate symmetrization. For example, for a double tensor, it is A(ij) =
1
2
(Aij +Aji).
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∂F〈ij〉
∂t

+
∂

∂xk
F〈ij〉k = Q〈ij〉 − 2ne

m∗ E〈ivj〉,(8)

∂Fill

∂t
+

∂

∂xk
Fikll = Q̂i − e

m∗
(
2FilE

l + F llEi

)
,(9)

where Qi, Q, Q〈ij〉, Q̂i are the production terms of momentum, energy, deviatoric
part of the stress tensor3, and energy flux. By introducing the notation

FA = (F, Fi, Fll, F〈ij〉, Fill), A = 1, 2, . . . , 13,

FAk = (Fk, Fik, Fkll, F〈ij〉k, Fikll),

PA =

(
0, Qi − neEi

m∗ , Q− 2ne

m∗ v ·E,

Q〈ij〉 − 2ne

m∗ E〈ivj〉, Q̂i − e

m∗
(
2FilE

l + F llEi

))
,

the balance equations write in a compact form

∂FA

∂t
+
∂FAj

∂xj
= PA.(10)

We remark that the balance equations have not been postulated or based on general
principles of continuum mechanics, but they have been derived as moment equations
of the transport equations for electrons.

By defining the mean and random component of electron relative velocity by

ki = m∗ui = m∗(vi + ci),

we can introduce the usual thermodynamical variables

stress tensor σij = m∗
∫

fc〈icj〉 dk,

thermodynamic pressure p = nm∗kBT =
1

3
m∗
∫

fcici dk,

heat flux qi =
1

2
m∗
∫

fcic
rcr dk,

where T is the electron absolute temperature.
The components of FA may therefore be rewritten in the more familiar form

Fij = nvivj +
1

m∗ (σij + pδij),(11)

Fll = nv2 +
3p

m∗ ,(12)

Fill = nv2vi +
1

m∗
(
5pvi + 2qi + 2σijv

j
)
,(13)

Fijll = nv2vivj +
1

m∗
[
3pvivj + v2σij + pv2δij(14)

+ 4vkv(j(σki) + pδki)) + 4v(iqj) + θ̂ijll + 2θ̂ijrvr

]
,(15)

3The deviatoric part of a tensor is the symmetric traceless part of the tensor. For example, for
a double tensor one has A〈ij〉 = 1

2
(Aij +Aji)− 1

3
Allδij .



80 A. M. ANILE, V. ROMANO, AND G. RUSSO

where

θ̂ijr =
m∗

2

∫
dkfcicjcr,

θ̂ijrs =
m∗

2

∫
dkfcicjcrcs.

In order to have a closed system for (10), it is necessary to express θ̂ijk, θ̂ijll, and
productions PA in terms of FA.

It is important to stress that, at variance with the monoatomic gas, here θ̂ijk, θ̂ijll,
and the productions PA can depend also on the relative velocity, and such dependence
cannot be determined by resorting to Galilean invariance because we are working in
a frame where the crystal is at rest.

3. Maximum entropy principle and closure relations for fluxes. In order
to close system (10), in agreement with information theory and extended thermody-
namics [17, 18, 19, 25] we shall use the maximum entropy principle (MEP). This states
that if a certain number of moments is known one can evaluate the unknown moments
by mean of the distribution fME which makes stationary the entropy functional under
the constraint that it yields exactly the known moments. Then one can use fME to
evaluate the unknown quantities appearing in the balance equations as functions of
the moments assumed as fundamental variables. Another advantage of considering
the maximum entropy principle is that it gives a first guess of the exact distribution
function and therefore it can be useful in devising hybrid numerical algorithms, where
in the rarefied regime the transport equation is solved, while in the fluid regime the
macroscopic balance equations are considered. For general results relating the solu-
tion of the transport equation to the distribution function obtained by employing the
MEP, see [26]. In the present paper we shall use fME only to obtain a reasonable and
physically sound approximation to the closure relations for the balance equations.

Our system of electron gas and thermal bath of lattice impurities and phonons
obeys Maxwell–Boltzmann statistics with the following entropy functional [27, 28]
which ensures a positive entropy production for the Boltzmann–Poisson system:

s = −kB
∫
R3

(
f log f − f +

m∗u2

2kBT0
f

)
d3k.(16)

Now we seek the extremal fME of the functional s under the constraints

FA =

∫
R3

ψAfMEd
3k(17)

with

ψA =

(
1, ui, u〈iuj〉,

1

2
ulu

l,
1

2
uiulu

l

)
,

ui being the particle velocity ui = ki/m∗.
As usual we introduce the Lagrangian multipliers ΛA and the Legendre transfor-

mation of s,

s′ = s− ΛAF
A,
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and maximize s′ without constraints.
From the conditions

δs′ = 0,

one has

fME = exp

[
− m∗u2

2kBT0
− ΛAψ

A

]
,

that is,

fME = exp

[
−
(
λ+ uiλ

i +
1

2
ulu

lλrr + u〈iuj〉λ〈ij〉 +
1

2
uiulu

lλirr

)]
,(18)

where λ, λi, λ〈ij〉, and λill are the Lagrangian multipliers relative to the number
density, the velocity, the energy, the stress tensor, and the energy flux, respectively,

while λll = λ
(el)
ll + 1/kBT0 is the Lagrangian multiplier relative to the energy. The

latter is the sum of a term due to the electron gas, λ
(el)
ll , and a term due to the

interaction with the crystal, 1/kBT0.
Monte Carlo simulations for electron transport in silicon show that due to the

predominance of the nonpolar optical phonon scattering (which is isotropic) the dis-
tribution function is almost isotropic [2, 23]. Therefore, we shall assume that

fME = exp

{
−
[
λ+

1

2
ulu

lλrr + δ

(
uiλ

i + u〈iuj〉λ〈ij〉 +
1

2
uiulu

lλirr

)]}
(19)

with δ a formal small parameter. By expanding up to second order in δ, we can write

fME = exp

[
−
(
λ+

1

2
ulu

lλrr

)](
1− δx+ δ2

x2

2

)
+ o(δ2),(20)

where

x = uiλ
i + u〈iuj〉λ〈ij〉 +

1

2
uiulu

lλirr.

We remark that the distribution function (20) is integrable on R3.
Now in order to express fME as functions of the moments FA, we must express

the Lagrangian multipliers in terms of the FA by inverting the following algebraic
nonlinear system:

n =

∫
dkfME ,(21)

Fi =

∫
dkfMEki
(m∗)

,(22)

1

2
Fii =

1

2

∫
dkfMEk

2

(m∗)2
,(23)

F〈ij〉 =
∫

dkfMEkikj
(m∗)2

,(24)

1

2
Fill =

1

2

∫
dkfkik

2

(m∗)3
.(25)
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We assume that the multipliers are analytic functions of δ and therefore

λ = λ(0) + δ2λ(2) + o(δ2),(26)

λi = δλ
(1)
i + δ2λ

(2)
i + o(δ2)(27)

λrr = λ(0)
rr + δ2λ(2)

rr + o(δ2),(28)

λ〈ij〉 = δλ
(2)
〈ij〉 + δ2λ

(2)
〈ij〉 + o(δ2),(29)

λirr = δλ
(1)
irr + δ2λ

(2)
irr + o(δ2).(30)

If the previous expression of the multipliers is inserted into the relations (21)–(25), by
taking into account the following formula valid for l belonging to S2, the unit sphere
of R3, ∫

S2

li1 · · · likdΩ =
{
0 if k is odd,
4π
k+1δ

(i1i2δi3i4 · · · δik−1ik) if k is even,

where δij denotes the Kronecker delta, and the formula (for a, ν > 0)∫ ∞

0

xν−1 exp(−ax)dx = 1

aν
Γ(ν)

with Γ(ν) the special Gamma function, and the property valid for positive integers p

Γ

(
p+

1

2

)
=

√
π

2p
(2p− 1)!!,

after tedious but simple calculations one finds the Lagrangian multipliers as functions
of the moments FA up to the second order in δ.

If for the FA we use the decomposition (11)–(15), the following explicit expressions
are obtained:

λ = − log n(m∗)2

(2πm∗kBT )
3/2

+
m∗v · v
2kBT

− m∗

n(kBT )2
v · q− 2

5

m∗

n2(kBT )3
q · q

−1
4

σkrσkr
n2(kBT )2

,

λrr =
1

kBT
+
2

3

m∗v · q
n(kBT )3

+
2

5

m∗q · q
n2(kBT )4

+
1

3

σkrσkr
n2(kBT )3

,

λi = − m∗

kBT
vi +

m∗

n(kBT )2
qi +

m∗σijvj

n(kBT )2
− 7

5

m∗σijqj

n2(kBT )3
,

λ〈ij〉 = −1
2

σij
n(kBT )2

+
2

5

m∗

n(kBT )3
v〈iqj〉 +

9

25

m∗

n2(kBT )4
q〈iqj〉 +

1

2

σ〈irσrj〉
n2(kBT )3

,

λirr = −2
5

m∗

n(kBT )3
qi +

18

25

m∗

n2(kBT )4
σijq

j .

They are the same as those obtained in [29] for monoatomic gas, although the velocity
here plays a different role.

Similar results were found in [30] in the case of a Fermi electron gas by introducing
the decomposition of the Lagrangian multipliers into convective and nonconvective
parts, by imposing the condition that the nonconvective parts are independent of the
velocity, and by performing an expansion around a state of partial thermodynamic



EXTENDED HYDRODYNAMICAL MODEL IN SEMICONDUCTORS 83

equilibrium (whose meaning is not totally clear at the kinetic level and which we do
not introduce here).

The procedure followed in [30] was justified on the basis of the properties proved
in [31] according to which the entropy production is an objective quantity if and only
if the nonconvective part is independent of the velocity. Such a result was obtained
by using the method of Liu [32], while our derivation has been performed coherently
in the framework of extended thermodynamics by imposing conditions only on the
form of the distribution function and without resorting to the (nonrigorously defined)
concept of partial thermodynamical equilibrium.

For θ̂ijr and θ̂ijll we get the following expressions:

θ̂ijr =
12

5pm∗ q〈iσjr〉 +
6

5m∗ q(iδjr),(31)

θ̂ijll =
5p2

n(m∗)2
δij +

7p

n(m∗)2
σij +

2

n(m∗)2
σikσkj

+
112

25p(m∗)2
qiqj +

36

25

q2

p(m∗)2
δij .(32)

These imply

Fijk = nvivjvk +
1

m∗

[
3v(iσjk) + 3pv(iδjk) +

6

5
q(iδjk) +

12

5p
q〈iσjk〉

]
,(33)

Fijll = nvivjv
2 +

1

m∗

[
5
p2

nm∗ δij + 3pvivj + v2σij + pv2δij

+
7p

nm∗σij+4v
kv(j(σki)+pδki))+4v(iqj)+

12

5
q(iδjk)v

k

+
2

nm∗σikσkj+
112

25pm∗ qiqj +
24

5pm∗ q〈iσjk〉v
k+

36

25

q2

pm∗ δij

]
.(34)

We remark that in our model the velocity is a first order quantity in the anisotropic
parameter. Consistent with the quadratic expansion, in the expressions for Fjk and
Fijll higher order terms in the velocity are neglected. This expansion is therefore
more consistent than the one presented in [16, 11, 30, 33].

Moreover, Monte Carlo data indicate that viscous terms σij are always negligible
compared to the effects of the heat flux [23, 2]. Indeed, it is quite standard in the
existing literature on hydrodynamical models for semiconductors to consider the elec-
tron gas as inviscid. We shall keep only linear terms in σij and neglect contributions
of the form σikσ

kj , σijq
j , and σijvj.

Therefore the final form of the closure relations for fluxes is

Fijk =
1

m∗

[
3pv(iδjk) +

6

5
q(iδjk)

]
,(35)

Fijll =
1

m∗

[
5
p2

nm∗ δij + 3pvivj + pv2δij +
7p

nm∗σij + 4v
kv(jpδki)

+4v(iqj) +
12

5
q(iδjk)v

k +
112

25pm∗ qiqj +
36

25

q2

pm∗ δij

]
.(36)

4. Closure relations for the production terms. Now in order to close the
system, it is necessary to find constitutive relations for the production terms. One
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could proceed by using again the distribution function obtained with the maximum
entropy principle [33]. However, as was observed in [19] in the case of rarefied gases,
because of the truncation of the moment expansion of the density function f to finite
order, this procedure applied to the collision operator might lead, for the transport
parameter, to rather large errors (e.g., wrong value of the Prandtl number). In the case
of rarefied gas dynamics this difficulty is remedied by a suitable modification of the
collision operator [19]. In the semiconductor case it is not easy to device an analogous
procedure. We therefore follow another approach in modeling the production terms.

In the framework of a hydrodynamical model we assume that the productions
are functions of the fields FA. In gas dynamics the requirement of Galilean invari-
ance determines the general expression for QA. In the case of carrier transport in
semiconductors such expressions cannot be used.

The representation theorems show that the productions Qi and Q̃i have the gen-
eral form

Qi = d1Fi + d2Si + d3FijF
i + d4FijS

j + · · ·(37)

and similarly for Q̃i with Si =
1
2Fill. The coefficients di are functions of the indepen-

dent scalar quantities that can be obtained with the FA’s, e.g., F iFi, F
i
kF

i
k, and so

on.

However if we restrict our attention to the case of silicon semiconductors, the
scatterings are isotropic [24] and we can retain only the first two terms in the expansion
(37). This is also consistent with a quadratic modeling of the closure relations.

The same considerations lead to the following expression for Q〈ij〉:

Q〈ij〉 = −dF〈ij〉
m∗ .(38)

The coefficient d is the inverse of the viscosity relaxation time,

d =
1

τσ
.

Now let us consider the production of the energy balance equation. Since Q is
a scalar quantity, expansion (37), together with the isotropy assumption, leads to a
term of the form

Q = −2W −W0

m∗τW
,(39)

with W = 1
2Fll and W0 =

3
2nkBT0, T0 being the lattice temperature, and τW denotes

the energy relaxation time.

The relaxation times τW , τσ are, like the coefficients di, functions of the scalar
quantities that can be constructed with the FA. Moreover, all the transport co-
efficients may depend on the doping concentration (if scattering with impurities is
considered).

The above constitutive laws for the productions are local. Therefore they must
have the same expression in both homogeneous and nonhomogeneous cases. This
enables us to determine the transport coefficients from the Monte Carlo data obtained
for homogeneous doped silicon [11].
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The energy relaxation time is obtained by fitting the Monte Carlo data with the
functional form

τW = a1 + a2r + a3 exp(−a4r),

where r =W/W0−1,W0 =
3
2kBT0. We obtain the following values for the coefficients:

a = [0.4012, 0.0126, 1.0387, 1.8734]

with the ai expressed in picoseconds. However, for the application τW can be con-
sidered constant (relevant deviations exist only for energy lower than 0.05 eV). The
more appropriate value is τW = 0.47 ps.

For the analysis of Qi and Q̃i, in the one-dimensional case it is more useful to
introduce the relaxation times of momentum τp and energy flux τq defined according
to

Q1 = − J

τp
,(40)

Q̃1 = −2S
τq
,(41)

where J and S are the components of Fi and 1/2Fill along the direction of motion.
As previously observed in [15], τ−1

p and τ−1
q are single-valued functions of the

ratio S/J . But at variance with [15] we use a quadratic function to fit the Monte
Carlo results

τ−1
p = c1 + c2

S

J
+ c3

S2

J2
,(42)

τ−1
q = c̃1 + c̃2

S

J
+ c̃3

S2

J2
.(43)

The values of ci and c̃i are the following:

c1 = 0.32 ps−1,

c2 = 77.586 ps−1eV−1,

c3 =−80.092 ps−1eV−2,

c̃1 = 0.458 ps−1,

c̃2 = 91.138 ps−1eV−1,

c̃3 =−87.866 ps−1eV−2.

The relaxation time of the viscosity tensor can be taken as constant. The more
appropriate value is τσ = 0.02 ps.

We remark that the above data refer to homogeneous Si material modeled with
parabolic bands and with only the electron-phonon scattering (both acoustic and opti-
cal) taken into account. In particular, scattering with impurities has been completely
neglected.

The generalization of the previous results to the three-dimensional situation is
straightforward for the production terms of energy and stress, but it presents some
difficulties for the momentum and energy-flux productions because the generalization
of (42), (43) in a tensorial form is not unique.
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Two possible generalizations of (42), (43) to the three-dimensional case are the
following:

Qi = −
(
c1 + c3

S · S
J · S

)
Fi +

1

2
c2Fill(44)

or

Qi = −c1Fi +
1

2

(
c2 + c3

S · J
J · J

)
Fill.(45)

The same expressions can be introduced for Q̃i.
In order to choose between (44) and (45), one needs an accurate analysis of two-

and three-dimensional Monte Carlo simulations in nonhomogeneous situations. We
will not tackle this question here. It will be considered in a future paper. However,
we observe that the only component of Fill which is not collinear with Fi is qi. In
turn, qi can be decomposed into a convective and a diffusive term. If we perform a
Maxwellian iteration as in [16], we explicitly get

qi = −5
2
τq
nkBT

2

m∗
∂T

∂xi
+
5

2
kBT

(
τq
τp

− 1
)
Fi,

whence

Fill = v2Fi + 5
τq
τp
kBTFi − 5τq nkBT

m∗
∂T

∂xi
.

In practical situations the diffusion term represented by qi is negligible compared to
the convective one and the first term of Fill is small compared to the second one.
Therefore, the two representations should give the same results within a reasonable
degree of approximation.

5. Formal properties. Once the Lagrangian multipliers are known and the
expression of the distribution function is set out, in principle it is possible to write
explicitly the additional balance law for the entropy of the system [17, 18, 19, 27,
28]. The existence of an additional balance law has important consequences on the
mathematical structure of the field equations.

In fact, if s is a convex function of the field variables, i.e., if the Hessian matrix(
∂2s

∂FA∂FB

)

is positive definite, then the transformation ΛB = ΛB(FA) is globally invertible.
The system, rewritten in terms of the Lagrange multipliers, is symmetric hyperbolic
according to Friedrichs and Lax [34]. As a consequence, the initial value problem for
this system is well posed [35].

In our case the multipliers have been obtained in an approximate way and the
question of the hyperbolicity requires more care. We shall check directly the hyper-
bolicity of the system in the one-dimensional case.

In the one-dimensional case the evolution equations read

∂n

∂t
+

∂

∂x
(nv) = 0,(46)
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∂

∂t
(nv) +

∂

∂x

(
nv2 +

p

m∗ +
σ

m∗
)
= −nv

τp
− neE

m∗ ,(47)

∂

∂t

(
nv2 +

3p

m∗

)
+

∂

∂x

(
5vp

m∗ +
2q

m∗

)
= −2W −W0

m∗τW
− 2nevE

m∗ ,(48)

∂

∂t

(
2

3
nv2 +

σ

m∗

)
+

∂

∂x

(
4

3

vp

m∗ +
8

15

q

m∗

)

= − 1

τσ

(
2

3
nv2 +

σ

m∗

)
− 4nevE

3m∗ ,(49)

∂

∂t

(
5vp

m∗ +
2q

m∗

)
+

∂

∂x

[
5

p2

n(m∗)2
+ 7

σp

n(m∗)2
+
32

5

qv

m∗ + 8
pv2

m∗ +
148

25

q2

m∗p

]

= − 1

τq

(
5vp

m∗ +
2q

m∗

)
− eE

m∗

(
3nv2 +

5p

m∗ +
2σ

m∗

)
.(50)

If we introduce the Jacobian matrix A(0) of the density vector FA, and the Jacobian
matrix A(1) of the flux vector FA1 with respect to the field variablesU = (n, v, T, σ, q),
the system is written as

A(0) ∂U

∂t
+A(1) ∂U

∂x
= f(U).(51)

We recall that system (51) is hyperbolic if detA(0) �= 0 and the eigenvalue equation
(A(1) − λA(0))r = 0

has real eigenvalues and the eigenvectors span R5. If the eigenvalues are distinct, the
system is strictly hyperbolic.

Because of the nonlinearity of the system, this condition may depend on the values
of the field U and can be analyzed in the regions where the solution is regular (where
the system can be written in the form (51)).

The first condition on the hyperbolicity is satisfied because for physical values of
the solutions det A(0) = 6kBn

2/(m∗)3 > 0, while the characteristic equation reads

λ

[
λ4 −

(
8v

3
+

148q

25nkBT

)
λ3

+

(
16

15
v2 − 26

5

kBT

m∗ − 17

15

σ

nm∗ +
148

75

q2

(nkBT )2
+
148

15

vq

nkBT

)
λ2

+

(
348

25

q

nm∗ +
8

5

σv

nm∗ − 296

125

vq2

(nkBT )2
− 12

5
v3 − 296

25

qv2

nkBT
+
48

5

vkBT

m∗

)
λ

−7
5

σv2

nm∗ +
8

5
v4 +

148

25

qv3

nkBT
− 24

5

v2kBT

m∗ + 3
(kBT )

2

(m∗)2
+
21

5

kBTσ

n(m∗)2

+
148

25

q2v2

(nkBT )2
− 348

25

vq

nm∗

]
= 0.(52)

By setting

λ =

√
kBT

m∗ λ̃, v =

√
kBT

m∗ ṽ, q = nm∗
(
kBT

m∗

)3/2

q̃, σ = nkBT σ̃
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the characteristic polynomial becomes

λ̃
[
λ̃4 + α1λ̃

3 + α2λ̃
2 + α3λ̃+ α4

]
with obvious values of the coefficients αi.

If we introduce the affine transformation

λ̂ = λ̃− α1/4,

the characteristic equation rewrites

λ̂
[
λ̂4 + β2λ̂

2 + β3λ̂+ β4

]
= 0(53)

with

β2 = −26
5

− 7

3
σ̃ − 88

75
ṽ2 − 1628

375
ṽq̃ − 20942

1875
q̃2,

β3 =
32

25
ṽ − 184

125
q̃ − 14

15
σ̃ṽ − 518

75
σ̃q̃ − 1136

375
ṽ3 − 6808

625
ṽ2q̃ − 113072

9375
ṽq̃2 − 941872

46875
q̃3,

β4 = 3 +
21

5
σ̃ − 56

125
ṽ2 − 556

625
ṽq̃ +

28786

3125
q̃2 − 49

75
ṽ2σ̃ − 518

375
σ̃ṽq̃ − 9573

1875
σ̃q̃2

−11802149
1171875

q̃4 − 651644

78125
q̃3ṽ − 609316

46875
q̃2ṽ2 − 44548

9375
q̃ṽ3 − 304

1875
ṽ4.

Therefore, the hyperbolicity condition depends on the variables ṽ, σ̃, and q̃ (of course,
the affine transformation λ̃ �→ λ̃ − α1/4 does not change the hyperbolicity region in
the (ṽ, q̃, σ̃)-space).

First, we show that the hyperbolicity region is not empty. For ṽ = q̃ = σ̃ = 0 it
is clear that the system is strictly hyperbolic and the eigenvalues are given by

λ̂ = 0,

λ̂ = ±
√
1

5

(
13±

√
94
)
.

We expect the system to be hyperbolic in a neighborhood of the origin in the (ṽ, σ̃, q̃)-
space.

On the boundary of the hyperbolicity region, at least two of the real roots are
coincident; i.e., the characteristic equation is of the form

λ̂(λ̂− λ̂1)
2(λ̂− λ̂2)(λ̂− λ̂3) = 0.(54)

By comparing (53) with (54), one has

λ̂1 +
1

2
(λ̂2 + λ̂3) = 0,(55)

λ̂2
1 + 2λ̂1(λ̂2 + λ̂3) + λ̂2λ̂3 = β2,(56)

λ̂2
1(λ̂2 + λ̂3) + 2λ̂1λ̂2λ̂3 = β3,(57)

λ̂2
1λ̂2λ̂3 = β4.(58)

By solving the previous system, one obtains that the hyperbolicity region is the con-
nected component, containing the origin, of the set whose boundary is given by the
curves of equations

β3 = ±η
(
η2

2
+ β2

)
,(59)
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where

η =

√
2

3

(
−β2 ±

√
β2

2 + 14β4

)
.

Figure 1 shows the hyperbolicity region in the ( σ̃ - q̃ ) plane for several values of
ṽ. When ṽ ≈ 0 there are practically no limits on σ̃ and q̃. If the value of ṽ is increased,
bounds on the normalized heat flux appear. These limitations are relevant only for
|ṽ| greater than 0.7. However, in the simulation of real electron devices such values of
ṽ are not usually met and therefore we expect our model to satisfy the hyperbolicity
condition in the cases of practical applications.

6. Numerical method. Numerical integration of quasi-linear hyperbolic sys-
tems represents by itself an active research area (see [36]). It is well known that
the solutions of quasi-linear systems suffer loss of regularity and formation of shocks.
In the past decade accurate shock-capturing schemes have been developed, such as
essentially nonoscillatory schemes (ENO) schemes [37]. However, high order upwind-
based shock-capturing schemes require the explicit knowledge of the characteristic
speeds of the hyperbolic system. In the case of the model presented in the previ-
ous section, it is not possible to obtain analytical expressions for the eigenvalues and
eigenvectors of the system, and it is therefore not practical to use upwind-based ENO
schemes in order to integrate (46)–(50). The scheme proposed by Nessyahu and Tad-
mor (NT scheme) [20] uses the Lax–Friedrichs scheme as a building block, corrected
by MUSCL-type interpolation so that it becomes second order accurate in smooth
regions. It does not require the knowledge of the characteristic structure and it is
therefore particularly suited for the system (46)–(50). The NT scheme has been de-
veloped for homogeneous systems. Here we use a suitable extension of the method to
systems that contain production terms.

The complete method is based on a splitting technique. The NT scheme is used
for the convection step, while the relaxation step is solved by some unconditionally
stable scheme [38]. Here we shall briefly recall the method.

Let us consider a system of the form

∂v

∂t
+
∂F (v)

∂x
= G(v)(60)

with v ∈ Rm and F : Rm → Rm.
The basic idea is to integrate first the relaxation system (relaxation step)

dv

dt
= G(v)(61)

and then the homogeneous system (convection step) using the output of the previous
step as an initial condition

∂v

∂t
+
∂F (v)

∂x
= 0.(62)

We use the NT scheme with a staggered grid for the convection step.
Each step has the form of the predictor-corrector scheme

v
n+1/2
j+1/2 =

1

2
(vn+1

j + vnj+1) +
1

8
(v′j − v′j+1)− λ

[
F (v

n+1/2
j+1 )− F (v

n+1/2
j )

]
,(63)

v
n+1/2
j = vnj − λ

2
F ′
j ,(64)
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Fig. 1. Hyperbolicity region for several values of ṽ. For low values of ṽ the range of variability
of q̃ and σ̃ is pracically unlimited. By increasing the absolute value of ṽ some bounds arise for q̃
and σ̃, but they allow us to satisfy the hyperbolicity condition in the concrete cases arising in the
applications.
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where λ = ∆t/∆x. The time step ∆t must satisfy a stability condition

λ ·max ρ(A(v(x, t))) < 1

2
,(65)

where ρ(A(v(x, t))) is the spectral radius of the Jacobian matrix

A =
∂F

∂v
.

This condition will ensure that the generalized Riemann problems with piecewise
smooth data at time tn will not interfere during the time step ∆t.

In order to couple the convection step with the relaxation step, it is convenient
to make two convection steps of step size ∆t/2 so that the solution is computed on
the same grid. A complete convection step of step size ∆t is obtained as a sequence
of two intermediate steps of step size ∆t/2.

The values of v′j/∆x and F ′
j/∆x are a first order approximation of the space

derivatives of the field and of the flux, computed from cell averages by using uniform
nonoscillatory reconstruction (UNO; see [37])

v′j = minmod
(
dj− 1

2
v +

1

2
minmod(Dj−1, Dj), dj+ 1

2
v − 1

2
minmod(Dj , Dj+1)

)
,

where

Dj = vj+1 − 2vj + vj−1,

dj+1/2 = vj+1 − vj ,

and

minmod(x, y) =

{
sign(x) ·min(|x|, |y|) if sign(x) = sign(y),
0 otherwise.

A similar procedure is used for computing F ′
j .

For the relaxation step an unconditionally stable second order scheme can be
obtained by analytical integration of the linearized relaxation equation, where lin-
earization is obtained by freezing the coefficients at time tn. The electric potential is
computed by solving, with a standard procedure, the tridiagonal system

ε(φj+1 − 2φj + φj−1) = −e(∆x)2 (ND −NA − nn
i ) ,

and the electric field has been obtained by the electric potential using finite differences.
Equation (61) can be written explicitly as

dn

dt
= 0,

dJ

dt
= − J

τp
− neE

m∗ ,

dW

dt
= −W − 3nkBT0/2

τW
− JeE,

dV

dt
= − V

τσ
− 4JeE

3m∗ ,

dS

dt
= − S

τq
− eE

2m∗

(
3nv2 +

5p

m∗ +
2σ

m∗

)
,
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with V = F〈11〉.
The previous system can be numerically integrated by an implicit scheme such

as the trapezoidal rule or implicit Euler scheme. However, because of their particular
structure, the equations can be integrated semianalytically by evaluating the relax-
ation times and the electric field at t = tn. The resulting scheme guarantees the
correct relaxation limit. One gets

nn+1
j = nn

j ,

Jn+1
j = Jn

j exp

(
−∆t
τnpj

)
− d1

(
1− exp

(
−∆t
τnpj

))
,

Wn+1
j =

3nn
j kBT0

2
+

(
Wn

j − 3nn
j kBT0

2

)
exp

(
− ∆t

τnWj

)
− d2

(
1− exp

(
− ∆t

τnWj

))
,

V n+1
j = V n

j exp

(
−∆t
τnσj

)
− d3

(
1− exp

(
−∆t
τnσj

))
,

Sn+1
j = Sn

j exp

(
−∆t
τnqj

)
− d4

(
1− exp

(
−∆t
τnqj

))
.

The coefficients di are given by

d1 =
nn
j eE

n
j

m∗ ,

d2 = Jn
j eE

n
j τW ,

d3 =
4Jn

j eE
n
j τ

n
σj

3m∗ ,

d4 =
eEn

j

2m∗

(
3Jn

j v
n
j +

5pnj
m∗ +

2σn
j

m∗

)
.

The time step is chosen in order to satisfy condition (65) on the eigenvalues of
the matrix A.

The splitting technique that we just presented is first order in time. It is possible
to obtain second order accuracy in time by combining the two steps according to the
following scheme [38, 39]. Given the field at time tn, (U

n, En), the field at time tn+1/2

is obtained by

U1 = Un −R(U1, E
n,∆t),

U2 =
3

2
Un − 1

2
U1,

U3 = U2 −R(U3, E
n,∆t),

U4 = C∆tU3,

En+1 = P(U4),

Un+1 = U4 −R(Un+1, En+1,∆t/2),
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Table 1
Parameters used in the numerical tests.

Channel length N+
D ND

Test # Lc (µm) (×1017 cm−3) (×1017 cm−3)
1 0.4 5 0.02
2 0.3 10 0.1
3 0.2 10 0.1

where R represents the discrete operator corresponding to the relaxation step, C∆t is
the discrete operator corresponding to the NT scheme, and P(U) gives the solution
to Poisson’s equation.

7. Numerical results. As a test problem we consider a ballistic diode n+−n−
n+, which models a MOSFET channel. The diode is made of silicon, and the bulk
temperature is assumed to be 300◦K. The n+ regions are 0.1µm long.

Three test cases have been considered, which differ in channel length and in doping
profile. The parameters are shown in Table 1.

For the electron effective mass in the approximation of parabolic band we use
m∗ = 0.32 me when me is the electron mass [40]. Silicon dielectric constant is given
by ε = εrε0, where εr =11.7 is the relative dielectric constant and ε0 = 8.85 ×
10−18C/V µm is the dielectric constant of vacuum.

The initial electron temperature is the lattice temperature T0 = 300◦K and the
charges are at rest. A bias voltage of 1 volt is applied, and this determines a charge
flux in the semiconductor.

The initial conditions for the system are

n(x, 0) = n0(x), T (x, 0) = 300
◦K, v(x, 0) = 0, q(x, 0) = 0, σ(x, 0) = 0.(66)

The doping profile is regularized according to the function

n0(x) = n0 − d0

(
tanh

x− x1

s
− tanh x− x2

s

)
,

where s = 0.01µm, n0 = n0(0), d0 = n0(1−ND/N
+
D )/2, x1 = 0.1µm, and x2 = x1+Lc

with Lc channel length. The total length of the device is L = Lc + 0.2µm.

Regarding the boundary conditions, in principle the number of independent con-
ditions on each boundary should be equal to the number of characteristics entering
the domain. However, in the highly doped regions, one is close to thermodynamic
equilibrium; therefore in that part of the device the nonlinear effects are negligible
and the results should be very close to those of the model obtained by Maxwellian
iteration [41]. Numerical results show that in the latter the solution is flat near the
boundary. This justifies the use of the following boundary conditions:

n(0, t) = n(L, t) = N+
D ,(67)

∂

∂x
v(0, t) =

∂

∂x
v(L, t) = 0,(68)

∂

∂x
T (0, t) =

∂

∂x
T (L, t) = 0,(69)

eφ(0) = T0 ln

(
n(0)

ni

)
, eφ(L) = T0 ln

(
n(L)

ni

)
+ eVb,(70)
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Fig. 2. Comparison between the stationary solution obtained for the case of channel of length
0.3 µm with 120 (dashed line) and 240 grid points (continuous line) for the following fields: velocity
(a), energy (b), energy flux (c), adimensional momentum nv/N+

Dcs (d).
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where ni =1.4×1010 cm−3 is electron intrinsic concentration, and Vb is the applied
bias voltage.

From the continuity equation, and from conditions (67), (68), (69) it follows that

∂J

∂x
(0, t) =

∂J

∂x
(L, t) = 0,

∂W

∂x
(0, t) =

∂W

∂x
(L, t) = 0,

∂S

∂x
(0, t) =

∂S

∂x
(L, t) = 0.

There is no sign of spurious oscillations near the boundary, indicating that the
boundary conditions are in fact compatible with the solution of the problem.

We observed that during the period of evolution of the system before it reaches
the staionary regime, the solutions may leave the hyperbolicity region due to oscilla-
tions near the junctions. To overcome this problem we have adopted initially a very
restrictive CFL condition. Then, once a solution close to the stationary one has been
obtained, we continued the computation by using ∆t = ∆x/2cs for the test problem
1, ∆t = ∆x/2.5cs for the test problem 2, ∆t = ∆x/3cs for the test problem 3, with
cs being

√
kBT0/m∗.

The stationary solution is reached within approximately five picoseconds. For
the test case 2 we have performed the simulations with 120 and 240 grid points. As
shown in Figure 2 there are noticeable differences only near the junctions, where the
electric field has the greatest intensity. Therefore, for the applications it is sufficient
to consider only 120 grid points.

In all cases we notice the presence of an irregular behavior located almost at
the end of the second junction. This anomalous effect is more pronounced for the
momentum (see Figure 2(d)); indeed the latter is not conserved in the stationary
regime but presents a deviation from constancy near the first junction and a sharp
spike near the second junction. A refinement of the spatial mesh shows that the first
irregularity is of numerical type and it is negligible with 240 grid points. Concerning
the second effect, the spike is enhanced by a smaller mesh size, which is an indication
of the occurrence of some sort of “singularity” in the stationary solution.

We remark that such phenomena is not a numerical artifact. Indeed, a similar
behavior has been observed with different discretization based on kinetic schemes [42]
or SLIC (slope limiter centered) schemes [43] as well.

By computing the Jacobian throughout the stationary solution one finds that the
location of the singularity corresponds to a point where the Jacobian vanishes but
where the compatibility with the RHS is not satisfied. The irregularity seems to be
more singular than a shock and suggests the presence of a delta-shock (see [45] and
references therein). An assessment of the various possibilities requires a more detailed
analysis. A possible approach could be the extension of viscosity solution methods to
the system under consideration. Such techniques have been used in [46] in the case
of a simpler problem consisting of two balance equations.

It is remarkable that our numerical scheme is capable of providing a sensible
solution which is regular everywhere except at some singular point and which agrees
reasonably well with the Monte Carlo simulations. This perhaps could be ascribed
to the fact that our scheme solves the nonstationary equations and the stationary
solution is approached with a limiting process.
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Fig. 3. Numerical results for the test case 1 (continuous line) obtained with 120 grid points
compared with the Monte Carlo results (circles).

Attempts to improve the model are currently under investigation. For example,
in [44] a two fluid model has been proposed, but its mathematical properties have not
yet been analyzed.

The numerical results found for the stationary case with 120 grid points have
been compared with the Monte Carlo results obtained by the DAMOCLES code [2].

Numerical solutions show for test cases 1 and 2 a good agreement with a dis-
crepancy of approximately 10% (see Figures 3 and 4) for all the fields except the
energy flux (see Figures 3(c) and 4(c)) near the second junction. We observe that the
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relaxation times given in [11] are obtained without considering the scattering with
crystal impurities. Therefore the effective relaxation times could be shorter due to
the additional scattering mechanism. This could be a partial explanation of the dis-
crepancy. A meaningful comparison with Monte Carlo simulations would require that
the relaxation times be fitted to the results of homogeneous Monte Carlo simulations
but at various levels of impurities concentrations and taking into account scattering
with impurities.

Test case 3 (see Figure 5) shows a good agreement for the energy and the heat
flux is described better than in the previous case, but the results of the velocity
are not satisfactory. In such a limiting case (which presents a situation very far from
thermodynamical equilibrium and a regime where the fluid approach is suspicious and
a full kinetic description could be mandatory), most likely a more accurate description
must be followed by increasing the number of the moments and improving the accuracy
of the closure relations.

8. Conclusions. A new hydrodynamical model has been presented for charge
transport in semiconductors. The model is based on extended thermodynamics and
constitutes an improvement of a previous model presented in [11, 16]. A robust and
accurate numerical method has been developed, which is suitable for the mathematical
structure of the model, and a comparison has been performed with detailed Monte
Carlo simulations.

The results of the comparison are quite satisfactory, since the agreement with
Monte Carlo is observed in all the field variables with a discrepancy of about 10%, at
least for the cases considered here.

One of the main open problems is the determination of the coefficients of the
production terms. The entropy principle does not allow us to determine them. They
have been considered as phenomenological functions, expressed by fitting Monte Carlo
data in the homogeneous case. We want to stress that the expression given for the
relaxation times do not depend on the particular simulated device, but only on the
homogeneous material, because of the local dependence on the macroscopic variables.

We want to remark that our hydrodynamical model can also be successfully used
for perturbation analysis of a given device under given operating conditions. In a
perturbation approach the basic transport parameters appearing in the closure and
production terms will be those of the unperturbed state. By linearizing the equations
around the unperturbed state one obtains an analytical linear boundary value problem
which leads itself to analytical linear analysis.

At this point the same numerical technique used to solve the unperturbed problem
can be used to solve the perturbed problem in order to obtain important physical
quantities, e.g., the impedance matrix in the small signal analysis (see [47] for the
n+ − n− n+ InP diode).

We used a versatile numerical technique, easily implementable in computer codes.
It is easy to change closures and models for the production terms. It automatically
also solves the nonstationary problem. The authors are presently working on a two-
dimensional extension of the numerical scheme to treat devices with more complex
geometry.

The universality of our models remains to be checked by considering different
channel lengths, applied voltages, and doping profiles. This requires an extensive
database of Monte Carlo simulations which is currently under construction.

Acknowledgment. The authors would like to thank Dr. O. Muscato for provid-
ing the data of Monte Carlo simulations obtained by the DAMOCLES code.
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Fig. 4. Numerical results for the test case 2 (continuous line) obtained with 120 grid points
compared with the Monte Carlo results (circles).
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Fig. 5. Numerical results for the test case 3 (continuous line) obtained with 120 grid points
compared with the Monte Carlo results (circles).
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