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The non-oscillatory central difference scheme of Nessyahu and Tadmor, in which the
resolution of Riemann problems at the cell interfaces is by-passed thanks to the use of
the staggered Lax-Friedrichs scheme, is extended here to a two-step, two-dimensional
non-oscillatory centered scheme in finite volume formulation. The construction of the
scheme rests on a finite volume extension of the Lax-Friedrichs scheme, in which the
finite volume cells are the barycentric cells constructed around the nodes of an FEM
triangulation, for odd time steps, and some quadrilateral cells associated with this
triangulation, for even time steps.

Piecewise linear cell interpolants using least-squares gradients combined with a van
Leer-type slope limiting allow for an oscillation-free second-order resolution.

Some preliminary numerical experiments suggest that two-dimensional problems can
be handled very efficiently by the method presented here.

Keywords: Hyperbolic conservation laws, finite volumes, unstructured staggered grids, MUSCL
interpolants, slope limiters, compressible flows

1. INTRODUCTION

In an attempt to construct a simplified version of

high resolution non-oscillatory Godunov-type meth-
ods for the numerical approximation of hyperbolic
conservation laws [17], Nessyahu and Tadmor
[13] recently proposed, for one-dimensional prob-

lems, an elegant difference scheme based on a
combination of the staggered form of the
Lax-Friedrichs scheme [20] and the use of van
Leer’'s MUSCL piecewise linear interpolants [11],
[12] in a Godunov-type approach, decomposed
in two steps for second-order time and space
accuracy.
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The main feature of their scheme lies in the fact
that it does not require the detailed exact or ap-
proximate solution of the local Riemann problems
([10],[14],[15],[16]) generated at the cell interfa-
ces, thanks to the use of the staggered form of the
Lax-Friedrichs scheme. Since the scheme proposed
by Nessyahu and Tadmor was constructed for one
space dimension, we shall present in this paper a
two-dimensional method, based on the principle
of their scheme, in a finite volume formulation,
along the lines of some earlier work ([17,[4],[5]).

In [21], we had described an extension of the
Lax-Friedrichs and Nessyahu-Tadmor schemes to
two-dimensional rectangular grids. In this paper,
we present our two-dimensional extension to un-
structured triangular grids (see also [3] for other
numerical experiments than those presented here).

In other papers, ([6],[18],[19]), we study the
convergence of our method for scalar two-dimen-
sional conservation laws, and prove a maximum
principle and a result on the L*-weak™ convergence
of the numerical solution to a weak solution of the
scalar equation u, + div(ul’) =0 with divl = 0.

In section 2, we give a short description of the
Nessyahu-Tadmor (NT) scheme; section 3 pre-
sents a two-dimensional finite-volume extension of
the Lax-Friedrichs scheme using the barycentric
cells constructed around the nodes of an arbitrary
(unstructured) triangular Finite Element grid and
a dual set of quadrilateral cells; we then present in
section 4 a two-dimensional finite volume scheme
for arbitrary triangular grids which is inspired, in
its construction, by our Finite Volume Lax-Fried-
richs scheme and the Nessyahu-Tadmor difference
scheme. Some early numerical experiments are
then presented in section 5 (Linear advection,
Supersonic Buler flow around a NACA 0012 air-
foil, Supersonic flow around a double ellipse).

2. DESCRIPTION OF THE 1-DIMENSIONAL
NESSYAHU-TADMOR SCHEME

To approximate the solution of the scalar conser-

vation law

u,+ f(u), =0 (2.1)

— o0 <X <O
with initial condition

u(x,0) = uy(x) (2.1

we first consider Godunov’s [10] approximate
solution u(x, t"), which is piecewise constant on the
cells C;=(x Xip1p) for t=t' " (with
°=0):

j=1/2>

u(x, ") =uj (2.2)
(defined below) for x;_,, <x<x;, .

Starting from the piecewise constant initial ap-
proximation

I
1%(x.0) =0 = —
i’ (x,0) u; Axf

Xj-ts2

for x.

12 < X < y\‘j f1)20

Godunov’s method evolves this initial function for
a time At=1"—1(" small enough to prevent the
corresponding Riemann problems generated at the
cell interfaces x;, ,, to interact with each other,
thus defining an approximate solution

with

x <0
“(&())z{“z x < (

u, x>0

The new cell values @i} are then defined by the
J
cell averages of v(x, t'):

v(x, thdx =
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IU“‘J‘ <xAx~ ,

= R| =iz 12.50 59 )dx
- (A A

Ax - At

X+ 12 X —X. ,
+ [ R(———Af—lﬁ; i, j,@“)dx} (2.5)

u;,,u
/

The typical time step t"—t"*! follows the same
pattern, and can be written in conservation form:

g}{z 1 H;I"'/[J((R(()+,(/‘l7, L‘l_;:. 1))

—f(R(o";ufy,al))] </E~AA~:> (2.6)

Since our aim is to solve systems of conservation
laws, (2.6) shows that Godunov’s method requires
the detailed (exact or approximate) solution of the
Riemann problems posed at the cell interfaces, a
time-consuming task which the Nessyahu-Tadmor
schemes by-passes thanks to a judicious use of the
Lax-Friedrichs scheme [20], written in its stag-
gered form as

+ 1 1 n n A 2 o H evLd (
wil = 5(111. Ful, )= ALl ) =] (2.7)

which can also be interpreted as an application of
Godunov’s scheme over the staggered grid corre-
sponding to the cells €y, = (x;, X, )

nt 1
U,‘+ 172
nel = n+d e opel n+l
i-1 - u) - u} Py ﬂ,'n
T
; | /
! [
! [
! !
! [
i |
1 i
i | [
! \ [,’
1 k 1/
\ \
n ! — — -
3= u . Y Ui
-2 XJ mez
FIGURE 1 Non-interacting Riemann problems at the cell end-

points.

starting from cell values {u}} defined on the cells
{(x;_1,2:X;1)5)} of the original grid; the integral
in the R.H.S. is computed by integrating (2.1) on
[x;x;, ] x [¢"¢"" '] with the help of Green’s for-
mula. To complete a computation cycle, and come
back to the original gridpoints {x;}, we must then
perform a second step with the help of the stag-
gered gridpoints:

1

n+2 __ " n+1 n+1
;= (Lljfl,/2+u_j+1/2)

u )

—ALfE ) = fuit )1 27)

To reduce the numerical dissipation of the
scheme and obtain second order accuracy, the
Nessyahu-Tadmor scheme then replaces Godu-
nov’s piecewise constant cell values by piecewise
linear MUSCL-type interpolants: at the beginning
of each time step, we first reconstruct, from the
piecewise constant cell average approximation
(2.2) obtained at the end of the previous time step,
a piecewise linear approximation of the form

o
- R - - J e v
L(x, ") = i+ (x — ,\,j)K; Xjop <X < X0,
(2.9)
In this way, conservation is retained
— L[
myo Y A ] QO
L") = Ax Li(x, 1") = uj (2.9
X2

and it can be shown ([13]) that second order accu-
racy is obtained if the numerical derivative 07/Ax
(to be defined below) satisfies

+ O(Ax). (2.9")

The piecewise hnear interpolants (2.9) are then
advanced in time by considering the (exact) solu-
tion of the non-interacting generalized Riemann
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problems thus defined at the cell interfaces X1

v(x, ") = GR(x, t"" ;L (x, 1),

L (1) x;<x<x;,; (2.10)

from which the new staggered cell average values
@l at time t"*! are now defined as

1 [+
= v(x, (" dx 2.11
e Axﬂ (xe) @11)
representing the Nessyahu-Tadmor numerical

approximation for x; <x<x;, .

This integral can bc computed without actually
solving the generalized Riemann problems by first
integrating the conservation law (2.1) on the rec-
tangle 27, ,, = (x;x;, ) x (t",t""") to obtain, with
Green’s theolcm (Fig. 2):

# (udx — f(u)yde) = 0. (2.12)
r//‘ V2
Applying (2.12) to the function v(x, 1) = GR(x, ;
Li(x,1"), L; . (x, ") then leads to
Ax-ull), = [ o L(x, t")dt
e J\ o IJJ . l(\ ln)
tnJ«l \ .
\ /
\\\ : / /
\\ E // /’{
CGON L wan
“ \ ;/é/ / ! '
: NV
t Xy Xjin Xy

FIGURE 2 s

Line integral on ¢ 4"

“J f(v(xj+ ,1))dt

+ Jt S(x,0))de.

"

(2.13)

In the last two integrals, the integrands are
smooth functions of ¢t under the CFL condition

1
A+ max p(A(v(x, t)))<5 (2.14)
where p(A) is the spectral radius of 4(v)=f"(v) if

(2.1) is a system, and p(A4) =] f'(v)| if (2.1) is a scal-
ar conservation law. Using (2.9) we can compute
the first two integrals exactly, and applying the
midpoint rule (with an O[(Af)*]error) to the flux
integrals, we get the numerical approximation

] N NG
(0701, )

nt1 7,1( n+ on )
u: , U “,u ]

jr12 2
- /[/{17(\, s ")
— flo(x, " 2] (2.15)
where (" "V =" - At/2,
In [13] the values of v(x;, t"* '/?) needed in (2.15)
are approximated as

nt+ 172 n AI n
v, ) = (g, 1) + 5 v, (x;, ")

- At f] )
> M?AI =ul "t (2.16a)
Ax

where (1/Ax) f/" stands for an dpproximale numeri-

cal derivative of the flux f(v(x, 1))
L, a, "
= ) +O(Ax)  (2.17)
Ax™ ox

X=X

for which several possibilities are studied in [13].
Observe that we could also choose to use (2.97)
in f(v), = f"(v)v, and consider instead of (2.16) the

X
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following approximation

My Al — —f (@)L =aytt? (2.16b)

v(x =i ——

J°

Whatever our choice for the intermediate value,
uf "% or @ " 12, the NT scheme can be considered
as a predictor (2.16) followed by a corrector (2.15).

To retrieve the original grid {x;} we then per-

form the alternate time step

1 1
—n+2 _ T/ mnt1 =n+1 sn+1 cn+ 1
u; ~*(“jﬂ/z“JF“]'—1,/2)"‘_(é/‘ﬂ/z_éﬁ-l/z)

! 2 8

—ALSWEE) — f )]

where the definitions of 67/, ul}} are similar

the approximations considered in [13] for o7 (writ-
ten as v; there) is

X _ I _ _
of =MM {oc/\u,;ﬂ L2 3(u;’,,_ U ), oAy 1/3}

n

1
vt . T H g T 7
= min mod {ot(uﬂ_1 — uj),'2~(uj w1 U )

ol — )} (2.18)

where xe[0,4] is a parameter discussed in [13].

Under appropriate conditions, the NT scheme
is then shown to be second-order accurate and
TVD (see [131]).

3. TWO-DIMENSIONAL FINITE YOLUME
EXTENSION OF THE LAX-FRIEDRICHS
SCHEME

We consider the solution u(x, y, ) of the two-di-
mensional scalar conservation equation

u, + fu), +glu),=0 (3.1

in some region Q of the x — y plane. In one space
dimension, we have seen that both the staggered
form of the Lax-Friedrichs scheme and the Nes-
syahu-Tadmor scheme use two alternate grids {x;}
and {x;,,,} at odd and even time steps, respect-
ively. In two dimensions, we proceed in a similar
way, starting from an arbitrary FEM triangular
grid 7, such that

Q= | ) Tand TNT'

TeT,,

¢
zgone vertex for any T,T'€Z, (3.2)
L one side

The nodes of the FEM triangulation are the
vertices a; of the triangles, and the degrees of free-
dom are the values of u at the nodes, which can
also be considered as cell average values for the
cell C, centered at each individual node a; (defined
below).

For the first grid associated with our finite vol-
ume extension of the Lax-Friedrichs scheme, the
nodes are the vertices g; of 7, while the finite vol-
ume cells are the barycentric cells C; associated
with these nodes, obtained by joining the mid-
points M;; of the sides originating in a; to the
centroids G,; of the triangles of .7, which meet at g,
(Fig. 3).

FIGURE 3

Barycentric cells around nodes g, a
eral cell a, G a,G
i g

quadrilat-

i

v
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For the second grid the nodes are the midpoints
M; of the sides of the original triangulation, while
the cells are the quadrilaterals of the form L, =
4;G;;a;G, ;,, having M,; as midpoint of one dia-
gonal, obtained by joining two adjacent nodes a,,
a; to the centroids of the two triangles of 7, of
which g;a; is a side.

Let u! ~u(a, ") and u" ' = u(M,;,t""") denote
the nodal (or cell average) values in the first and
second grid at time ¢ =¢" and t = """, respectively
(n even).

For the barycentric cell C,, let \T}j and ij de-
note the unit outer normal vectors to G;;M;; and
MG, ;. respectively, pointing out of cell C,

(Fig.4), and for the quadrilateral cell L,, let

ij?
=1

o ,,,,ﬁ’;‘j be the normal vectors to the cell edges
a;Gy;, Ga;,a;G, 5, and G, ;. a, respectively,

pointing out of cell L;; (Fig. 5).
We must also define the elementary flux vectors

— e »l
=\ v dﬁzl(;ijMijh: i
IUM'GUMUG‘,U 1

2
Vij
Gi,j+1 aj
Mij
e
> y1
ij
a,
.
Gi:l

FIGURE4 Barycentric cell boundary element Io= G M,
UM G o

iy

FIGURE S Quadrilateral cells L‘_j.

and

s —> — .,
(),.j: |cszij[rl it IaiG,.ij[n hy

. -~ (33b)
0, =1a;Glm7 +a,G oy 1

We write furthermore

vk
vk ~—< ”“> for k=1,2,
J vk
ijy
k
_ neoN .
k=1 "9} for k=1, .4
if k
Mijy

A R 0,

ijy/ ijy

An advantage of using a finite volume formulation
where the degrees of freedom are values of the
unknown function at the triangulation vertices lies
in the possibility to couple (3.1) with an elliptic
equation. This can be very convenient in the case
where

[f(w) = w, hiu)
l?/(u) =w, h(u)
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i.e. when (3.1) can be written as u, +div(W h(u)) =0
with W = (w,,w,)T and W stems from an elliptic
problem. This situation arises in the study of poly-
phase flows in porous media, where fluid mech-
anical and thermodynamical considerations are
combined, leading to coupled hyperbolic and elliptic
equations [&].

The first step of the two-dimensional finite vol-
ume extension of the Lax-Friedrichs scheme is de-
fined by integrating (3.1) on the 3-dimensional cell
Ly [tne"" 17, assuming that the (barycentric) cell
values u? at the vertices a; of the original triangul-
ation are known:

J J (u,+ f(w), +g(u))dxdydt =0. (3.4a)
woJI

Lij

Applying the divergence theorem and observing
that L;; = (L,; N C)U(L;NC)) we get

[ ulx, v, " ydA — J u(x, y, t"ydA
J Ly I yaten
— [ u(x, y, t"yd A
JLynC,

+ I [ (fwn, +gwn)dodt =0. (3.4b)
Yoo Joiy

Since u(x, t) is approximated by uf in Cp,uf} in C,,
we can choose the approximation uj on dL;NC;
and ] on JL;NC;, whence the first step of our
finite volume Lax-Friedrichs scheme:

A(LJul ' — AL, C)-u!

ij g

AL, NC )l

+ AU W) 0+ g ) 0;5,)

AU S W0, + gw)0,,) =0 (3.5)

We note that this approximation corresponds to
choosing the approximate time derivative

w, > | ultt — AL;nC)ul+ A(L;nC)-uf At.
(3.6)

For the second step we proceed similarly with the
help of the barycentric cells C;:

ACHuI > — Y AL N CHult?
J neighbour of i
+ At Z (f(uz'}+ l)mjx + Q(l‘z"}Jr l)nijy) =0

J neighbour of i

(3.7)

where the value of u(x,y,i""!) on the boundary
0C; = U peignbour or i 1 1 15 @approximated locally, on
0C, N L;=T,byu" " (ie. the approximate value
of u* ! on the quadrilateral cell L;;. We thus alter-
nately define an approximate solution u/;* ' which
is piecewise constant on the quadrilateral cells L,
at odd time steps (n=0,2,...), and a solution u! " *
constant on the barycentric cells C,, at even time
steps.

4. A TWO-DIMENSIONAL FINITE
YOLUME EXTENSION OF THE
NESSYAHU-TADMOR SCHEME

At the beginning of the (n -+ 1) time step (n even),
we have obtained approximate barycentric cell
values u(a;:a vertex of 7). We must now, in order
to follow the van Leer MUSCL approach used by
Nessyahu and Tadmor, construct a piecewise li-
near profile on the barycentric cells C; this can be
achieved as follows.

We first construct a piecewise linear approxi-
mant on each triangle 7 of the original triangula-
tion, continuous on the whole computational
domain €,, with the help of the barycentric
cell/nodal values u/: If Te 7, is a triangle with
vertices a; (= 1,2,3), we construct pyeP’ such
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that
pT(aij) = u:(/ =1,2,3)

pr(x,y) is easily obtained from the barycentric coor-
dinates of (x, y) with respect to the vertices of T

where the vertices of T have been relabelled 1,2, 3
Or dy,d,,d4, and X =(x,y)e T.

The gradient of the (barycentric) cellwise piecewise
linear interpolant L(x, y,t") to be defined will now be
chosen (as e.g. in [9] p.28), for cell C,, as the arithme-
tic average of the gradients of the polynomials p;
for all triangles T such that q,eT: on C; we take

L=L,(x,y,t")=u!+(x—x,)P!

+( =)0 (x,yeC; (41a)
where
P!
( "> = Average{grad p,}. (4.1b)
Qi aeT

Contrary to what prevailed in the one-dimen-
sional case, where the average value u} of the
piecewise linear interpolant L(x,t") was also its
value at the node x;, we can no longer identify the
average value of the piecewise linear interpolant
(4.1), on cell C,, with its nodal value u! at the
“center” a; of C,, since a; need not be the centroid
of C;, and (1/4(C)) [ Li(x,y,t")d A +# u! in general.

The new cell values at "' and "2 will never-
theless again be defined by formulas similar to
(2.13) and (3.4b), (3.5) (first step), and (3.7) (second
step), obtained by integrating (3.1) on L, x
(""" 1] for the first step, and on C,x [ "]
for the second step:

A(L;)uli" ' = numerical approximation of

"~

J (o, y " d A (4.2a)
Lij

A(C;)u!** = numerical approximation of

t

4.2
L‘_ u(x, y,t"*2)d A. (4.25)
For the first step of our scheme we write
j J (u,+ f(u), + g(u),)dAdt=0 (4.3a)
t L;;

which leads to

j u(x,y, " Hd A

I

Lij

= J‘ L(x, y,t")d A
LijnC;
+ J L(x, y,t")d A
LinC;

Mf J (fwn, +gn,)dodt. (4.3b)
oLy

"

The numerical approximation of the right-hand
side, and (4.2a), will thus lead to u/}"', which will

be our cell value for the quadrilateral cell L;;.

4.1. Approximation of leij”('i L(x,y,t"ydA

L{x, y, t") 1s the piecewise linear function defined, on
cell €, by (4.1). Let 4,4;,B;; A, ;,, be the points of
the plane defined by the linear function L, on C;
which correspond to the four vertices of L;NC; =
La;G;M;G, ;. ] where [--] denotes the quadri-
lateral generated by the corresponding vertices
(Fig. 6).

The integral of L on L, ;M C; is equal to the total
volume of the two prisms with triangular base
a;G M A AGB and a MG ABGA,L L,
structed on the triangular bases Lj;NC; and
L C; where L], = triangle (a,Ga;) and L}, = tri-
angle (aiaj(},‘j* Jir./ stand for right, left (for an

observer at a,).

con-
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z=L{x,y,t")

i+l

Gy

FIGURE 6 Prismatic
jL'aniL(x, y, t"dA.

regions for the computation of

The volume of the first prism, for instance, is
given by

Vol{a,G,;M,A;A,;B;;}

J

1
:§Area(aiGijMi.‘)

La; A+ G A+ M B 1

ijij

J a " n n n
= gl\rca,(L}jﬂ Colul +uf +(xg,, — x) P

+ Vg, — Y Q +u + (xy, — x) P}

+ W, — 0o

1
= Area(L];M Ci){u," + %(XGU + Xy, 2X) P

I | ,
+ ’3"(}’(},, + 2y)Q} % (4.42)
where
Area(L};N C;) = Area triangle (a,G;;M )
1 / ) v .
=50, = XDy, = ) = Cear,, = XD, = ¥}
(4.4b)

Similarly, the volume of the second prism is

Vol{a;M,,G, ., A,B;,A

ij i,j+1}

=Area(L;;NC)-
n 1 n
u + —3~(le,j + X6, 2x,) P,

1
+ g(yMi, + V6,00 2yi)}

(4.4¢)
Summing (4.4a) and (4.4c), we get

f L(x,y,t")dA = Area(L;;\C))-
LijnC;

1
+3Area(Lj;0 CH{xg, —x) P!

+(ye,,

H

-y)O!'}

1 B 4 ol n
+-§A1cd(Lij NCH{(xg,,,, —x)P;
+ e,

— )0} (4.5a)

(4.4d)

4.2. Approximation of |, . L(xyc)dA

Proceeding in the same way we find

L{x,y,1") dA=Area(L,;NC})-

o Lty
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xX)P;

1
+30, =)@ ,’-’}

1
{u}' + g(xM”. -
1 . n
+§Area(L,»j N Cj){(xa,.,. —X)P;

+ (yGu - yj)Q;"}

1
+ gArea(Lijﬂ Cllxg,,,, —x)P}

+ (g, —¥)0]) (4.5b)
where
r 1 s
Area(L;NC) = EL(X'M‘" —x) (g, — V)

—(xg — xj)(yM,j - .Vj)}~

ij

4.3. Approximation of f::f jz
fyn, + gw)n,dodt

This is achieved with the midpoint rule for inte-
gration with respect to time:

I

nt 1
j j (f(wn, +gwn,)dodt
oL

I /_\(j {/(U(X,}’, I J,/Z))nx
oLy,

+gu(x, y, " *)n, b do (4.5¢)

where a first order Taylor expansion is used for

u(x, y, 1" M3 using (3.1) we write

Ll(/\",y [lM 1/?) ( ’, ")
At
. -——-1]’ (u(x, y, ") Yu (x, p, ")

F g (u(x, y, ") uy(x, p, 1) (4.6)

On L;NC, we have chosen u, =P/ and
u, = @, but we must find an approximate value of
u(x,y,t") on the line segments 4,G; and a,G, ;. ,
(and similarly on a;G;; and a; G, ;. 1) One possible
choice consists in choosmg the value of L(x,y,t",
our linear interpolant, at the midpoints of these
segments, we then take, for any (x, y) on 4,G,;:

1
u{x, y,t") = ul' + E(xGu — X)) P}

1
+ E(yG"’

— Q' =u ., (4.7)
thus defining our value ug ; for the side 4;G;; of
L,
In view of (4.6), we can now define an approxi-
mate average value of u(x, y,t" " '/?) along the side
a;Gy; to be used in (4.5¢):

n+1/2

a;Gj; = U,

Al tr e
a;,G; ,._{/ (“'x:l,-,Gi-)Pin + g (M(Zl,»,Gi~)Q1‘,I}"
i 2 I j

Introducing these values in (4.5¢), we finally get

] Ml
At JI" Jt“l,,»,

]‘(“l"l”)(;fr,’z) ijx 'G ('UE f(l a; (1(1/?1) ijx [(l (]11 + j!

{fwn, +g(wn,}dodt

ik

nt 1/2 3 n
a Nenpe 1 ux

+f ()

a;,Gij t]x [(l (’ul + /

‘(l (]'Hl’

n+ I/~ n-+1/2

+ q(ua, Gy 1;) |Cl G ‘+ g(uui,(},‘,;l) ijy Ill (]tll 11

1/,. 2 n+1/2 y,.3 . v
Faluy 6P nl1a, Gl + gl 62 nd - la; Gl

(1} (;,, ap Gy

(4.5¢)

4.4. First Step of the Finite Volume Extension
of the Nessyahu-Tadmor Scheme

Collecting our approximations (4.5a,b,e) of the
three terms appearing in the R.H.S. of (4.3b) and
taking (4.2a) into account, we obtain the following
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approximation ui"j+1 for the first (odd) time step of
our scheme:

Area(L,)u;"' = R.H.S.(4.5a) + R.H.S.(4.5b)

—At-{R.HS.(4.5¢)} (4.8)
where u}"™' can be considered as a cell value for
cell L; at time ""', or as a nodal value at the
midpoint M, at time (""",

In preparation for the second (even) time step,
we now construct a piecewise linear approxi-
mation of u on the quadrilaterals L,

u(x,y, [n+ 1) ~ L(l))(x’y’ tn+ 1) = u{}“

=Xy JPET (=, )OS (49)

[

where the slopes P/;"', 0/ ' can be computed as
follows.

First we construct a piecewise linear approxi-
mate function defined on the triangles T€ 7, of the
original triangulation. On triangle T= a,a;a,, we
can use for that purpose the newly obtained values
;"' at the midpoints of the sides of 7. We then
compute the average of the slopes of the linear
interpolants in the two triangles T,7'€ 7, sharing
a;a; as a common side (Fig. 5), and use these aver-
ages in (4.9).

4.5. Second Step of the Finite Volume Extension
of the Nessyahu-Tadmor Scheme

The second step is obtained by integrating (3.1) on
the cylindric region C,x [t""'t""?], using the
same finite volume approach as for the first step,
to define a cell average value u'"? on cell C;:

i

Area(Chu"* — J ulx, v, " Ndxdy
L

Jj neighbourof i

=—At )

J neighbouroff

j (e, v, 32w,
ru

+ gl v, " )y do

(4.10)

where u(x,y,"* 1) is approximated, on L;;NC,, by
the piecewise linear interpolant (4.9). Its integral on
L;;NC; is computed as described in section 4.1.

To obtain an approximate value of u(x, y, t"*3/?)
we use a Taylor expansion with respect to time
combined with (3.1), and we subdivide the cell-
boundary element I';; into G;M ;UM ;G, ;, . On
G;M,; (resp. M,;G, ;. ,), u(x,y,t) is then approxi-
mated by its value of the midpoint of the line
segment G;;M,; (resp. MG, ;).

4.6. Approximation of the Slopes

In order to compute the gradient (P}, Q) of the
piecewise linear interpolant L(x,y, ") for the cell
C,, we must first compute the gradient of the first
degree polynomials P, for all triangles Te.7, such
that a;e T. Although we could then in principle
directly take the average of the gradients of the
polynomials P, obtained as described at the be-
ginning of section 4, we shall consider here a least-
squares technique (cf. [7]). For simplicity, we shall
describe it for the case of triangular (finite volume)
cells.

Let T be a triangle with centroid G, and let T,

Jj=1,2,3 be the neighbouring triangles, with cen-

troids G,(j=1,...,3) (Fig. 7); assume the values of
the numerical approximation of the solution u at

FIGURE 7 Computation of the least-squares gradient for a
triangular cell T
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the four points {G,G,};_, are known at time ¢",
equal to u, u;j(j =1,...,3) (these values can be con-
sidered as cell values playing for the triangular cells
T, T; the same role as u}',u]; for the cells C,, L;).
P ——

The least-squares gradlent (grad u)y = (aT, A
for triangle T will then be chosen such as to mini-
mize the functional

= i{uHGE (grad w—up > (4.11)
ji=1
where
(grad w)y = (ay, by)
The minimum is obtained when
oL _ ol =0 (4.12)

n n
day  0b}

and is shown in [7] to lead to the following least-
squares gradient:

. l 3 3
ay =D > (y(,, ve)® Y (ug, — u?)(f\c, Xg)
i=1 j=1
1 2
*EZ (: G, )0 5, V) Z (ug —up)( Vo)
j=1 i=1
(4.13a)
3
Z (l/ 24 (U - ” GJ — _V(,')

13, , ’ ‘ .
R L (xg — x(;)(y(, - V) }_, (”l - "UIIT)(XG, - Xg)
D= i=1
(4.13b)
where the denominator
3 3
D=3 (xg, = xg) )? }_ e, — ve)
i=1

a 2

Z (xg,— xc)yg, — .‘ff;)] (4.13c)

is strictly positive for any non-degenerated tri-
angle.

For the barycentric cells C; or the quadrilateral
cells L;;, the procedure is quite similar to the one
described above for triangular cells. Alternately,
for a barycentric cell C; with center g, we could
first compute the least squares gradient grad ulT
(@r, b;ij) of each neighbouring triangle T; (such
that a;eT), and then take the cell gradient grad
ule, = average {grad ul }, with a similar procedure
for a quadrilateral cell L;;.

Unfortunately, this procedure does not preserve
monotonicity of the data in the usual van Leer
sense described below, and allows the creation of
local extremas between the nodes; this phenom-
enon may lead to (or amplify already existing)
spurious oscillations, with the associated loss of
stability and convergence difficulties in the case of
steady flows. We have therefore introduced some
slope limitation in the computation of the gradi-
ents.

4.6.1. Slope Limitation

To ensure the stability of the scheme and prevent
the generation of oscillations in regions of strong
gradients, we must perform a slope correction.
Following van Leer’s approach ([11],[12]), in
which the value at some interface point x,, ,, (in
the one dimensional case) must fall within the
range of values spanned by the adjacent grid aver-
ages, u;_, and wu,,,, we limit the slopes of the
linear interpolant L defined by (4.1) (resp. L de-
fined by (4.9)) to ensure that its value at the
boundary points G, M, G, ;, | of 0C, (resp. at the

ip M
vertices a, a;, G, (Jlj/ﬂ’of ¢L;;) are bounded by
the values at the cell center u/' (rabp u 1Y and the
value u at the corresponding nu,g,hbouring, node
(zcsp u! [t and w'!) at the adjacent quadrilat-
ua! ell * m]dpomts M,vvj and M)
The limitation procedure is implemented on

each cell as follows. Let

(grad u), = (P, Q)"




FV SCHEMES ON UNSTRUCTURED GRIDS 13

denote the gradient for cell i, where P~ u,,Q;~ u,
at node i. If u satisfies the van Leer requirement
we choose

P{™=mid mod {P,}

Jje (i)

minjw(”|le. (common sign of all values P))
if all the values P,(jeA (i)
have the same sign

0 otherwise

where A7(i) is the set of nodes j adjacent to node i.
If u does not satisfy the van Leer requirement, we
set Pi™ = 0. The computation of Q™ is done in the
same manner. For quadrilateral cells L;; we pro-
ceed in a similar way.

5. NUMERICAL EXPERIMENTS

The extension to two-dimensional systems of con-
servation laws is achieved following the procedure
described in [17,[2],[5]. In [32], the first author
had proposed a finite volume extension of the
Nessyahu-Tadmor central difference scheme to 2-
dimensional rectangular grids. With his student
D. Stanescu, and the second author, he then applied
this finite volume scheme to regular rectangular
grids [21]. Some early numerical experiments
(Linear advection, Burgers’ equation, Diffraction
of a planar shock wave around a 90° corner [22],
Mach 3 wind tunnel with a forward facing step)
confirmed the non-oscillatory character as well as
the 2"-order accuracy of the new scheme [21],
while computing times were significantly shorter
than corresponding times for Godunov’s method.

In this paper, we present sample results from
some further numerical experiments with our ex-
tension of the Nessyahu-Tadmor scheme to un-
structured triangular FEM grids [6].

The aim here was not to obtain an optimal ac-
curacy lo computing time ratio but simply to
show the feasibility of the method. Sharper results,

including comparison of results obtained with dif-
ferent limiters, will be described in future work
[29].

The overall quality of the results and the relative-
ly low level of both the computational complexity
and computing times suggest that two-dimensional
problems can be handled very efficiently with our
method, which should benefit from its multi-di-
mensional character, as may be seen from the
examples presented here.

Example 1 Linear Advection Problem To test
the (predictably) rather unsatisfactory accuracy of
our finite volume extension of the Lax-Friedrichs
scheme (first order accurate), and compare it to
that of our second order accurate finite volume
method inspired by the Nessyahu-Tadmor scheme,
we solved the linear advection problem

U+ u, +u,=0 —1<x, y<1

0.5 if x*+*<0.5;
uy(x, y) = 0

For this first test case, we felt it might be interest-
ing to show the results obtained with our finite
volume extensions of the Lax-Friedrichs and Nes-
syahu-Tadmor schemes for rectangular grids, with
three different choices for the gradients used in the
piecewise linear reconstruction at the beginning of
each time step, for the second order scheme. We
thus tested the following schemes [21].

(5.1)

otherwise.

1) L x F: 2-dimensional staggered finite volume

extension of the Lax-Friedrichs scheme (first-

order accurate),

STG: 2-dimensional Arminjon-Viallon finite

volume extension of the Nessyahu-Tadmor

scheme with Min-Mod limiter [17],

STG-Roe: same as 2, but with Roe’s superbee

limiter [17],

4) STG-UNO: same as 2, but with UNO- com-
puted slopes (see [217],[13]).

18]
—

(]
=

Scheme 1 is first order accurate, while 2,3 and 4
are second order accurate. The solution at time
1=0.1 1s computed using 50 double time steps (50
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integrations on the staggered grid and 50 on the
original grid) on a regular 85 x 85 rectangular
grid, with a CFL-number v, =v, =0.002.

The exact solution is

u(x, y,t) =u,(x —t,y —t)

and is truly two-dimensional since its wave front is
at an angle of 45° with the x and y axes.

Table I shows the L?-norms of the errors, and
thus the increasing accuracy obtained, for this
example, with the four schemes.

Figure 8 a),b),c) shows the initial function and
the results obtained with the schemes STG and
L x F, while Figure 8 d),e) shows the solution
u(x,y=0,t=0.1) as obtained with STG-UNO
and L x F respectively.

Example 2 A Standard Test Case Euler Flow
Around a NACA 0012 Airfoil We present results
for the NACA 0012 airfoil at Mach number
M_ =20 and incidence « =0° The initial mesh

TABLEID L?*-norms of the errors

Scheme lell,

LxF 3.055E772
STG 1313E?
STG-Roe 8O7T1E"?
STG-UNO 6357E?

)

L

)

L

]

e AL L T L TR e e
Lasaad. £

A g

FIGURE 8a  Linear advection problem (a) initial distribution.
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FIGURE 8¢ Convected surface (L x F).
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FIGURE 8d  Vertical cut of the convected surface (STG-
UNO)y =0,t=0.1
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LXF-STG 85x85, y=0, t=0.1

FIGURE 8¢ Vertical cut of the convected surface (L x F)
y=0,1=0.1.

FIGURE9 Euler flow around a NACA 0012 airfoil. Original
grid, barycentric cells C; and quadrilateral cells 1,”.

had 2274 nodes and 4360 elements (Fig. 9 and 10).
We observe a reasonably good capture of the
shock (Fig. 10) as compared e.g. with [25], where

the grid has 4224 nodes. Going to the first
improved grid (3557 vertices, Fig. 12) lets our
scheme produce a substantially better shock reso-
lution than that displayed in [25]. As we go on,
improving the mesh to 4497 vertices (Fig. 13) we
observe an even better resolution. The final grid
(7269 vertices, Fig. 14) leads to an excellent shock
resolution.

The grid adaptation procedure used here has
been developed by M. J. Castro Diaz and F. Hecht
at INRIA ([30], [31]).

Let us mention, though, that Venkatakrishnan’s
results are obtained with an implicit scheme using
3 different kinds of limiter; for the best of these,
convergence is faster than with our scheme with
the basic MinMod limiter; a fact which might be
due to the implicit character of the scheme used
in [25].

Example 3 Supersonic Flow Past a Double-Ellipse
at 207 of Aangle of Attack and M =2 For this
problem inspired by ([26]), but with Mach num-
ber M, =2 instead of the range of hypersonic
Mach numbers considered there, and 20° of angle
of attack, the geometry is a double ellipse; it can
be defined by

-0 j z<0  (x/0.06)? + (2/0.015)*> =1
X X .

220 (x/0.035)% + (2/0.025) = 1
o z20 z=0025
0<x<0016 ,

z<0 z=-0015

FIGURE 10 NACA 0012 airfoil: Pressure contours (left), Mach contours (middle) (Finite Volume, 2274 vertices); Mach contours
with Venkatakrishnan's method (right) (4224 vertices: courtesy of Journal of Computational Physics).
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RESDUAL

log(Residua)

L 1 L .
1000 2000 3000 4000 5000 6000
Rerations

FIGURE 11 Residual for the initial mesh (FV).

tive; we used the same three meshes with both
methods. For the initial mesh (1558 vertices), both
methods give fairly comparable results; notice that
the C, curves can be nearly superposed, which is
an indication that both methods are indeed doing
some reasonable calculation. The same is true for
the pressure and Mach contours of both methods,
with perhaps a very small advantage for our finite
volume method (FV) which gives slightly sharper
shocks.

For the intermediate mesh (2792 vertices), the
advantage offered by the Finite Volume method
becomes a little more obvious on Figures 20 and
21, where the breaches of monotonicity are more

FIGURE 13 NACA0012:2™ adaptation (4497 vertices) and solution {pressure and Mach contours) (FV).

For this steady flow problem we compared our
finite volume method with a discontinuous finite
element method recently proposed by Jaffré et al.
([27],128]) and which seems to be fairly competi-

important with the Discontinuous Finite Element
method (DFE) (lower part of the bow shock).
Moreover the pressure and Mach contours are
more regular with the FV method.
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TABLE I The minimal and maximal values of pressure and Mach number (FV)

1%

Pressure

Mach

Initial mesh

min=0.1163934

max = 0.9815941 min = 4.1695271¢" 2 max = 2.112459

1* mesh min = 0.1156657 max = 0.9834443 min = 1.0001168¢ 2 max = 2.150275
2" mesh min=0.1123134 max = 0.9810082 min = 7.5702323¢ 3 max = 2.179578
Final mesh min = 0.1139615 max = 1.000181 min = 9.072036¢ 3 max = 2.320326

~

<

— S ]

L A NN ‘i\ SN x\\

< TR

— ey

FIGURE 14 NACA0012: Final mesh (7269 vertices) and solution (pressure and Mach contours) (FV).

The final mesh shows a clear advantage for the
FV method, which gives a nearly perfect shock
resolution with very smooth contours, while the
DFE method shows a serious breach of mono-
tonicity in the lower part of the bow shock.

As was the case with the initial mesh, the C,
curves can again be nearly exactly superposed,
while the Mach line of the FV method is slightly
higher, for the left part of the upper curve, than
with the DFE method, a fact which is confirmed
by Tables I1T and 1V.

The major difference between the two methods
appears to lie in the convergence history and com-
puting times. Figures 17,20 and 26 show a clear ad-
vantage for our finite volume method, for the initial
mesh (1558 vertices). Computing times (CPU:3564
for F'V and 48288 for DFE) confirm the advantage
of the proposed Finite Volume Method. Let us fi-
nally mention that all calculations have been per-
formed on a Silicon Graphics Station of the Centre
de Recherches Mathématiques (model Challenge,
100 Mhz, 6 processors).

TABLEIIT  Maximal and Minimal values of Pressure and Mach number (FV)

FV Pressure

Mach

min=6.1671760¢ ?
min = 6.139566%¢ * ma
min = 6.0346086¢ ¢

Initial mesh
2" mesh
Final mesh

max == 1.009705
= 1.006208 min ==
max = 1.009427

max = 2.253697
max = 2.266636
max = 2.270716

min = 1.750865¢ 2
5.3774943¢ *
min = 5209895¢ ¢

TABLE 1V Maximal and Minimal values of Pressure and Mach number (DFE)

DFE Pressure Mach

Initial mesh min = 6.2501445¢ " * max = 1.014265 min = 8.2084965¢  * max = 2.190479
2" mesh min = 6.2390134¢ " ? 007068 min = 2.0193825¢ 3 ¢ = 2,216012
Final mesh min = 6.3052103¢ 7 max = [.007425 min = 1.3435918¢ 2 211899
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FIGURE 16  Double ellipse: Initial mesh (1558 vertices) and solution (pressure and Mach contours) (FV).
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FIGURE 17 Residual and €, and Mach body cuts (initial mesh 1558 vertices ) (FV).

CONCLUDING REMARKS finite volume extension of the Lax-Friedrichs
scheme for scalar hyperbolic conservation laws.
By first considering two coupled sets of finite vol- This scheme has then been used to construct a

ume cells, we have presented a two-dimensional two-dimensional finite volume generalization of
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FIGURE 19 Residual and €, and Mach body cuts (initial mesh 1558 vertices) (DFE).
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FIGURE 20 Double Ellipse: First adaptation (2792 vertices) and solution (pressure and Mach contours) (FV).
leads to second-order accuracy. Oscillations are

the one-dimensional Nessyahu-Tadmor scheme,
suppressed with the help of slope or gradient

thanks to the introduction of van Leer-type two-

dimensional piecewise linear interpolants, which limiters.
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FIGURE 21

Double Ellipse: First adaptation (2792 vertices) and solution (pressure and Mach contours) (DFE).
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FIGURE 22 Double Ellipse: Final mesh (5055 vertices) and solution (pressure and Mach contours) (FV).
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FIGURE 23
vertices) (FV).

€, and Mach body cuts for the final mesh (5055

The examples presented here give a reasonable
evidence that the FV method proposed by the
authors is capable of a very high resolution, with a
clear advantage, as compared with DFE, at least
at the level of the convergence histories, comput-

ing times, smoothness of the pressure and Mach
contours, and monotonicity enforcement.
In another paper we consider the particular case

V= (V,(x,y), V,(x,y)" with divi7=0; we obtain
an L~ bound for the numerical solution, from
which we deduct the existence of a subsequence
{t, »,) Which converges weakly to some function
uin L7(I* x R")-weak. Using another set of in-
equalities, we obtain a total variation-type bound,
slightly weaker than a classical bound on the total
variation of the numerical solution, called ¢ bound
on the “weighted total variation”, from which we
are then able to show that the above weak limit
function u is indeed a weak solution of u, +
div(uV')=0.

This places the 2-dimensional finite volume gen-
eralization of the Nessyahu-Tadmor scheme on a
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FIGURE 24 Double Ellipse: Final mesh (5055 vertices) and solution (pressure and Mach contours) (DFE).
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FIGURE25 C,and Mach body cuts for the final mesh (5055
vertices) (DFE).

RESIDUAL

log(Residual)

o 5000 10000 15000
Horations

FIGURE 26 Residual for initial mesh {1558 vertices) (1) =
FV —(2)= DFE).

firm theoretical basis, and the authors will now
focus their efforts on applications to problems
with the Navier-Stokes equations in conservation

form for compressible flows and three-dimensional
transonic and supersonic flow problems.
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