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Summary. A new modified version of the Nessyahu-Tadmor (NT) 1-dimensional
finite volume central scheme is presented , as well as corresponding new versions
for 2D-structured and 3D-unstructured grids inspired from the NT scheme. The
modification avoids the intermediate predictor time step between t” and t"*'.The
CPU gain is not very important in the 1D case, but becomes significant in the 2
and 3D cases. 3D comparative simulations for the shock tube problem and for a
supersonic inviscid flow through a channel with a 4% circular bump are presented.

1 Introduction

We consider central methods for scalar hyperbolic conservation laws or cor-
responding systems:

u+ f(w)e =0, u(z,t=0)=u(r) (1)

as well as their 2 and 3-dimensional analogue, to be described below. The
non-oscillatory central difference scheme of Nessyahu and Tadmor may be
interpreted as a Godunov-type scheme for one-dimensional hyperbolic con-
servation laws in which the resolution of the Riemann problems at the cell in-
terfaces is by-passed thanks to the use of the staggered Lax-Friedrichs scheme.
Piecewise linear MUSCL-type cell interpolants and slope limiters lead to an
oscillation-free second-order resolution.

In earlier papers [5, 7, 6] a two- dimensional finite volume method was pre-
sented, generalizing the one-dimensional Lax-Friedrichs (LF) and Nessyahu
- Tadmor (NT) [12] difference schemes for hyperbolic conservation laws to
unstructured triangular grids, while in [3, 4] a corresponding extension in
the case of 2-dimensional Cartesian grids was constructed. In [9], Jiang and
Tadmor have presented a slightly different extension for Cartesian grids.

In [2, 4] new extensions of the LxF and NT schemes to central finite volume
methods for 3-dimensional hyperbolic systems on unstructured tetrahe-
dral grids and on Cartesian grids, respectively, were presented.

In this paper, we investigate another way to improve our 2 and 3-dimensional
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central finite volume methods inspired from the LF and NT schemes. These
methods require the implementation of an intermediate half-time predictor
step to compute the fluxes with the midpoint rule. Since the execution of
this predictor step becomes more and more time consuming in 2 and 3D, we
present a variant of our schemes which avoids the predictor step. The new
method is inspired by multistep methods for ODE’s, and computes the fluxes
with the help of the values of the dependent variables at the last two time
steps. Since the NT scheme and our finite volume extensions use two stag-
gered grids at alternate time steps, the solution at time ¢"*' is constructed
using the fluxes at " and t"~2, both obtained from the same grid.
Although the new method does not lead to significant computer time reduc-
tion in the one dimensional case, it really becomes advantageous in two and
even more so in three spatial dimensions, where it can lead to reductions up
to 40% in total computer times.

2 The 1D NT-type scheme without predictor step
2.1 The Lax-Friedrichs and Nessyahu-Tadmor difference schemes

We consider the initial value problem (1) and the staggered LF scheme
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Starting from initial values
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ud = —/ uo(z)dz (3)
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the first (or further odd) time step of (2), withn =0(orn=2n'n' =1,2,...)
leads to staggered values {u], /2} (or {u"*1}) which can be considered as
piecewise constant on the cells C;1 45 of the staggered, dual grid:

Ciy1y2 = {z|zi =ih <z < ziy1} (4)

To obtain second-order accuracy, Nessyahu and Tadmor [12] introduced van
Leer’s MUSCL-type [16] piecewise linear reconstruction of the piecewise con-
stant solution obtained at the previous step:

!

u'
u(x,t") (x,t") =ul + (= x)Ax z€C (5)
where

= () & A, (%) e, +O(2) (6)
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Integrating (1) on [z;,x;,1] x [t"*, "] and using Green’s formula gives

Tig Tit1
/ u(z, 1" dz = / u(z, t™)dz
gt gt
t

(. Swni= [ fua @

n

Applying the midpoint rule to the flux integrals then leads to the NT formula:

n Lo, I I . . .
Wy = 3l )+ (@) — () - AN - Fp )

(8)

n+1/2

where u, is an approximate value defined by a predictor step[12].

2.2 One-dimensional NT-type scheme without predictor step

Instead of using the (NT)-predictor to obtain second order time accuracy,
the flux function will be reconstructed with the help of previous values. We
start from (7) and denote by P(x,t) the first degree Lagrange polynomial
interpolating the function f(u(z,t)) at the nodes t"~2, t* (considering z as
a parameter). Integrating P(x,t) instead of f(u(z,t)) in (7) leads to our
modified form of the NT scheme

1 1
Uil = 5 i +u) + (@) = (i)

At

A ) - ) o)
where
Atn+1
Al—l-f—m, Ay =1—-4; (10)

and At" = t" — 7! and where
Ful,ul™?) = Arf(u]) + Ao f(u]™?) (11)

i

is a modified numerical flux inspired by multistep methods for ODE’s.

3 2D and 3D NT-type FV methods without predictor
Starting from the following model equation (F : R > R(2:3)):

uy + V-Flu) =0, u(x,0) = ug(x) (12)
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In the original finite volume formulation for tetrahedral grids, (12) is
integrated with respect to space on the dual cells L;; and from t" to ¢"*+1
(Fig. 1). Instead of G(u) we integrate its P;-Lagrange polynomial:

(t — " 7*)Gu(x, t")) L £)G(u(x, t"~?))

Pet) = A A" + Afn—1

) (14)

First, integrating by parts with respect to time leads to

)

Proceeding as in section 2 for the cell values uy,, (t") = uy,, then gives

n41

u(:v,t")dV-{—/L‘ /tt P(x,t)dtdV + O(At)?
’ (15)

u(z, t"THdv = /
L

ij ij

wr, (E" ol (Liy) = /

u(x, t™)dV + / u(z, t™)dV
Lij nC;

LijﬁCj

+/ {A1G(u(x,t") + AG(u(x, "))}V (16)
L

ij

with Ay, A2 given by (10). Applying the divergence theorem leads to

s, (" Yool(Ly) = [

LiJﬂOi

u(z, t™)dV + / u(z, t™)dV

L,’jﬂCj

_(/Mma +/8Lijncj){A1F(u(x,t”))+A2F(u(x,t”—2))}.ﬁdA (17)

which represents the NT-type finite volume method without predictor
in its version valid for 3-dimensional unstructured tetrahedral grids.
Fig. 1 shows the part of the cell C; (centered at node ) which is contained
in the tetrahedron ¢jkl, and the dual cell L;; constructed about the edge ij.

4 Stability

The study of stability for our new scheme (9) is more difficult than for the
NT scheme. We have used a heuristic CFL condition obtained by multiplying
by A%(E % in the case of constant At) the maximum CFL number used in
the case of the corresponding schemes without occurrence of the values at

time "2, For instance, since the NT scheme is TVD for
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Fig. 1. Barycentric cell (; and diamond cell Ly

Amax| /()| < 8, with §< ¢, (18)

we have used a CFL number of the order of % . % = % Considering now

the unstructured tetrahedral 3D case, recalling the original scheme presented
in [2], for the Euler equations, and applying the condition for a monotone

scheme g gL > 0, we had been using the following time step for the scheme
7
with predictor
Vol(C,
Aty = VUG
Ao / do
oC;
where ‘
Aoee = max(A;, max A;) and \; = ||V>l|| + ¢
JEN(4)

and ?i, ¢; refer to the values in the cell C; of the velocity vector and sound

speed, respectively. We chose the minimum At; for all cell indices i : (1 <

i <nv) At = . 2”2” {At;}. We then used the multiplier % to obtain our time
i<nv

step for the new scheme.
For a more detailed discussion of stability, consult Shu [13] and a forthcoming
paper.

5 Numerical results

In all structured tests the minmod-2 limiter (consult [12] p. 418) was
used, while on unstructured 3D grids for the shock tube problem the new
Venkatakrishnan limiter was applied. For the bump problem, van Leer’s lim-
iter was used because of its low computational cost. For details on those
limiters, one can consult [16, 17, 4, 9]. Tt is worth mentioning that no artifi-
cial compression was applied on the NT scheme in any dimensions. Doing so
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discontinuities, and could be applied to all of the newly proposed methods.

5.1 Cartesian 2D

Solving again Sod’s shock tube problem [14] extended to 2 spatial dimensions
and taking a transverse cut in the 2D plane gives the densities shown on
figures (2) (to be compared with the results of the 1D scheme). The results
are very similar for both schemes and generally good, except for the contact
discontinuity which is somewhat smeared.
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Fig. 2. Sod’s shock tube 2D N=400 at ¢t = 0.16

5.2 Unstructured 3D

Shock tube For comparison purposes, the shock tube problem is again
solved here by applying the unstructured tetrahedral 3D schemes. Result-
ing densities obtained respectively by the use of the Nessyahu-Tadmor-like
scheme (with predictor) and with the new proposed (faster) scheme (without
predictor) are given in Fig.3. As in the 2-D case, the results for both schemes
are practically indistinguishable. Here in 3D, the cost of performing the half
time step is significant since 3 matrix-vector multiplications are needed at
each node. The order of convergence of the scheme has been observed to be
only 1.22 for nonlinear systems in [2], which has been confirmed by the recent
theoretical results of [11] for a truly nonlinear scalar equation.
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Fig. 3. Sod’s shock tube 3D N=400 at ¢t = 0.16

Channel with a 4% circular arc bump with M., = 1.65 Original
SD-unstructured Scheme

An inviscid supersonic flow is considered over a circular 4% arc bump; this
test case was first proposed as a benchmark problem by Eidelman et al.
[8]. The left boundary of the computational domain is considered as the inlet
of the flow with a prescribed supersonic condition, namely : (p,u,v,w,p) =
(1.4,1.65,0,0,1) and the right boundary is considered as a supersonic outlet.
For the sake of comparison 3 different meshes were used with 18079, 64099
and 138561 tetrahedra, respectively. For simplicity, we only show the results
obtained with the final grid, which has a characteristic length of 1/30, 23279
nodes and 154535 edges (fig. 4). The results are comparable with those of
the structured cases presented in [10] since the numbers of unknowns are
about the same. An interesting property of the new scheme is the convergence
rate to the stationary solution (Fig.6); the single precision machine epsilon
is reached without requiring any special limiter like the one proposed by
Venkatakrishnan, hence preventing any over/undershoot as observed in [1,
10].

3D-unstructured Interleaved Scheme

The new scheme does not need an predictor step as required by the original
unstructured scheme proposed in [2]. Since the scheme is explicit and both
edge based and vertex based data structures are used, the gain is evaluated on
a tetrahedron basis (second/(cell x iteration)). The original scheme requires
2.5 x 1075 second while the interleaved scheme requires only half of that
time i.e. 1.25 x 107° second/(cell x iteration). This acceleration is directly
reflected in the calculations since it is possible to use twice as many cells and
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Fig. 4. Final mesh with characteristic length 1/30 (138561 Tetrahedra)

Fig. 5. Isomach lines (138561 Tetrahedra)

obtain a substantially finer solution in about the same time as that needed
for the first method to solve the problem on a coarser mesh. The results
are practically indistinguishable from those obtained with the scheme with
predictor, so that Fig.5 is valid for both schemes. A plot of the isomach lines
is given in Fig.6. As regards convergence to the steady state, the machine
tolerance is reached in less than 2000 iterations for the original scheme, and
2500 iterations for the new scheme. Despite the fact that the CFL condition
used with the interleaved scheme is more restrictive, thus requiring more
time steps to reach the stationary state, the computing times are reduced by

approximately 37% (Table 1).

[Mesh 3 (138561 Elements)|iterations|time(sec)|Normalized|

Original Scheme 1692 5868 1.00
Interleaved Scheme 2123 3681 0.63

Table 1. Comparison of the two schemes for a fixed residual




New space staggered and time interleaved 2"¢ order F.V. methods 9

0001
G.001 T T

T T
Mesh 1 Original Scheme
Mesh 2 Original Scheme -------
Mesh 3 Original Scheme

0.0001 Mesh 3 Interleaved Scheme i

16-05

1e-06

Residual

1e-07

1e-08

1e-09

1e-10 1 1 1 ] 1
0 500 1000 1500 2000 2500 3000
lteration

Fig. 6. Convergence history (residuals)

6 Conclusion

We have presented a new structured and unstructured Riemann solver-free
centered finite-volume method for solving systems of conservation laws in 1,2
and 3D. The new scheme is significantly faster for 2 and 3D systems. The
resolution is comparable in all dimensions with that of the NT scheme and
its 2 and 3D extensions. This makes the new scheme computationally more
efficient while being comparable, for accuracy, with the NT scheme and its
2 and 3D finite volume extensions for Cartesian or unstructured grids. The
authors would like to thank J. F. Remacle at Rensselaer Polytechnic Institute
for the freely available mesh generator GMSH.
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