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Abstract. The extension of Kynch’s kinematic theory of sedimentation of monodisperse suspensions to poly-
disperse mixtures leads to a nonlinear system of conservation laws for the volume fractions of each species.
In this paper, we show that a second-order central (Riemann-solver-free) scheme for the solution of systems of
conservation laws can be employed as an efficient tool for the simulation of the settling and the separation of
polydisperse suspensions. This is demonstrated by comparison with a published experimental study of the settling
of a bidisperse suspension. In addition, we compare the prediction of the one-dimensional kinematic sedimentation
model with a three-dimensional particle-scale simulation.
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1. Introduction

Mathematical models for the settling of suspensions are of great theoretical and practical
interest in numerous applications such as mineral processing [1], wastewater treatment [2]
and blood centrifugation [3]. A well-known theory of one-dimensional sedimentation of ideal
suspensions [4] is due to Kynch [5]. The essential assumption of this kinematic theory is that
the solid-fluid relative velocity, or slip velocity, is a given function of the local volumetric
solids concentration. The local solids mass balance then turns into a scalar conservation law.
While Kynch’s model and its extension to flocculated monodisperse suspensions are well
understood now and have been validated for numerous real materials (see [1] for details), most
implications of kinematic models for polydisperse suspensions (with particles differing in size
or density) still remain to be explored. Exact entropy weak solutions, even of the apparently
simple problem of settling of a bidisperse, initially homogeneous suspension, have not yet
been determined, due to the nonlinear character of the system of the two first-order partial
differential equations involved. However, as we will show here, modern entropy-satisfying
shock capturing numerical schemes can be successfully employed to solve this problem.

Although there is a large list of authors who have proposed extensions of Kynch’s theory
to the polydisperse case (see [6] for an overview), only a few of them have embedded their
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equations in the appropriate mathematical framework of nonlinear systems of conservation
laws [7, 8]. The essential property of solutions of these systems is the formation of disconti-
nuities, which appear here in the concentrations of the different particle species. The presence
of discontinuities requires the concept of weak solutions, which are not unique. Thus, an
additional selection principle or entropy condition is necessary to determine the physically
relevant weak solution, the entropy weak solution. Discontinuities of entropy weak solutions
are called shocks.

Consequently, it is a desirable property of any numerical scheme suitable for the solution
of the kinematic model of sedimentation of polydisperse suspensions to approximate the en-
tropy weak solution, and to detect shocks automatically. Such schemes, which will produce
accurate approximations of discontinuous solutions without explicitly using jump conditions
and shock tracking techniques, are called shock-capturing. The last three decades have seen
tremendous progress in the development of shock-capturing schemes for nonlinear systems of
conservation laws. We refer, among others, to the books [9, 10, 11] (see also the lecture notes
[12]) for a concise introduction to these schemes.

Unfortunately, shock-capturing schemes have so far seldom been employed to sedimenta-
tion problems. This may in part be due to the fact that mathematical problems related to the
analysis of the systems of equations arising from the kinematic approach are far from being
well understood. On the other hand, we believe that researchers, for example in chemical engi-
neering, assume the difficulties associated with the presence of shocks to be much greater than
they actually are, and instead of solving the conservation equations, they construct solutions
of settling problems, e.g., by assuming that the suspension forms a finite number of zones in
which the settling velocities of each particle species are constant. A typical view seems to be
that expressed by Stamatakis and Tien [13, p. 115]:

The particle concentration profiles, in principle, can be found from the solution of the
conservation equations of particles of the various types, applying appropriate initial and
boundary conditions. The numerical effort involved in solving conservation equations is
often excessive (with the main difficulty being the need of adequately taking care of the
moving-boundary nature of the suspension/sediment interface). Therefore, it is impractical
to examine the dynamics of batch sedimentation using this approach...

In this paper, we show that batch sedimentation can easily and, in our view, efficiently be
examined by a shock-capturing scheme.

Roughly speaking, the shock-capturing schemes may be classified into two categories: cen-
tral schemes and upwind schemes. The main disadvantage of upwind schemes is the difficulty
of solving the Riemann problem exactly or approximately, especially for complex systems
of conservation laws. We point out that the (exact or approximate) solution of the Riemann
problem for the system of conservation laws that we study in this paper is not known at the
moment.

For this reason, we have turned our attention to central schemes. In the 1990s, this class of
schemes has received a considerable amount of (renewed) interest, following Nessyahu and
Tadmor [14] and their introduction of the second-order sequel to the Lax–Friedrichs scheme.
We refer to the lecture notes by Tadmor [12] for a general introduction to central schemes and
list of relevant references.

The second-order central schemes can be viewed as a direct extension of the first-order
Lax–Friedrichs central scheme, which is known to be robust but at the same time suffers from
excessive dissipation. To resolve this latter problem, the second order central schemes are
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based on reconstructing, in each time step, a (MUSCL type) piecewise-linear interpolant from
the cell averages computed in the previous time step. The interpolant is exactly evolved in time
and then projected onto its staggered averages, resulting in the staggered cell averages for the
next time step. To guarantee the non-oscillatory behaviour of the scheme, the reconstruction
uses nonlinear limiters. Unlike upwind schemes, central schemes avoid approximate Riemann
solvers, projections along characteristic directions, and the splitting of the flux vector in up-
wind and downwind directions. This should in principle make this scheme a good candidate
for solving complex systems of conservation laws such as the system that we consider in this
paper.

In this paper, we shall not use the original central scheme [14] but rather a modified
(non-staggered) version introduced recently by Kurganov and Tadmor in [15]. This modified
central scheme has a smaller numerical viscosity and is better suited for nearly steady-state
calculations which are of interest in the simulation of sedimentation processes. We refer to
Section 3 for further details.

The rest of this paper is organized as follows: in Section 2, we recall the kinematic model
of settling of polydisperse ideal suspensions, consider two different constitutive approaches
for the slip velocity of each solid species, and derive the respective governing systems of
equations. In Section 3 the central schemes are described in detail. In Section 4 one of these
schemes is applied to two different test cases: first, we consider the settling of a bidisperse
suspension of large and small spheres where the parameters are chosen in such a way that our
numerical results can be compared with the experimental and theoretical results of Schneider
et al. [16]. Second, we consider a three-dimensional particle-scale simulation of the settling
of a different bidisperse suspension. In the second case, averaging over each horizontal cross-
section of the hypothetical settling columns yields concentration profiles for each species
that depend only on height, which we compare with the numerical solution of the kinematic
model with appropriately chosen parameters. Conclusions that can be drawn from this study
are summarized in Section 5.

2. Kinematic model of sedimentation of polydisperse suspensions

For simplicity, we restrict ourselves to an ideal suspension of a fluid with spherical particles
of N species of different radii r1 > r2 > · · · > rN (see [6] for the general case in which the
particles are also allowed to have different densities). If we denote by vi and φi = φi(x, t) the
phase velocity and the local volumetric concentration of particle species i, respectively, the
mass balances for the solids can be written as

∂φi

∂t
+ ∂fi

∂x
= 0, i = 1, . . . , N, (1)

where fi = φivi . These balances lead to a solvable system of N scalar equations if either the
solid phase velocities vi or the solid-fluid relative velocities ui = vi − vf, where vf denotes
the fluid-phase velocity, are given as functions of φ1 to φN . The former approach is due to
Batchelor and Wen [17, 18], while the latter has been advocated by Masliyah [20]; see also
Bürger et al. [6] and Concha et al. [7].

In both cases, we see that the settling of a polydisperse suspension in a column of height
L can be described by a system of N conservation laws

∂�

∂t
+ ∂f(�)

∂x
= 0, 0 ≤ x ≤ L, t > 0; f(�) = (

f1(�), . . . , fN(�)
)T
, (2)
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where � = (φ1, . . . ,φN)
T denotes the vector of concentration values, together with pre-

scribed initial concentrations

φi(x, 0) = φ0
i (x), 0 ≤ x ≤ L; 0 ≤ φ0

1(x)+ · · · + φ0
N(x) ≤ φmax, (3)

and the zero flux conditions

f|x=0 = 0, f|x=L = 0. (4)

It is well known that solutions of Equation (2) are discontinuous in general. The propaga-
tion speed of a discontinuity in the concentration field φi is given by the Rankine-Hugoniot
condition

σi(�
+,�−) := fi(�

+)− fi(�−)
φ+
i − φ−

i

, i = 1, . . . , N, (5)

where �+, φ+
i , �− and φ−

i denote the limits of � and φ above and below the discontinuity,
respectively. This condition can readily be derived from first principles by considering the
flows to and from the interface.

2.1. BATCHELOR’S EQUATION

Batchelor showed that, in a dilute suspension, the phase velocity of spheres of species i is
given by the expression

vi = vi(�) = u∞i
(

1 +
N∑
j=1

Sijφj

)
, (6)

where u∞i denotes the Stokes settling velocity of a single particle of radius ri in pure fluid of
density �f and dynamic viscosity µf,

u∞i = −2��gr2
i

9µf
, i = 1, . . . , N; �� = �s − �f, (7)

and the coefficients

Sij = −3.52 − 1.04
rj

ri
− 1.03

r2
j

r2
i

, i, j = 1, . . . , N

are given by a fit to data from Batchelor and Wen [18], which in turn represent numerical
evaluations of integrals derived [17], i.e., the coefficients Sij are deduced from first principles.

In order to make vi = 0 when the cumulative solids concentration φ := φ1 + · · · + φN
attains a maximum value φmax, we replace Batchelor’s equation (6) by the expression (see
[19])

vi = u∞i exp

( N∑
j=1

Sijφj + 2
φ

φmax

)(
1 − φ

φmax

)2

, (8)

which vanishes for φ = φmax and has the same partial derivatives for � = 0 as (6). Defining
the parameters

µ = −2��gr2
1

9µf
; δi = r2

i

r2
1

, i = 1, . . . , N, (9)
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we obtain

fi(�) = f B
i (�) = µδiφi exp

( N∑
j=1

Sijφj + 2
φ

φmax

)(
1 − φ

φmax

)2

. (10)

2.2. MASLIYAH’S APPROACH

While formula (6) is based on a postulate for each solid-species phase velocity, the following
approach essentially involves constitutive equations for the solid-fluid relative velocities vi −
vf, where vf denotes the phase velocity of the fluid.

For batch sedimentation in a closed column, the volume-averaged velocity q := (1−φ)vf+
φ1v1 +· · ·+φNvN vanishes, which we can easily see by summing equation Equation (1) over
i = 1, . . . , N and by taking into account the continuity equation of the fluid,

∂φ

∂t
− ∂

∂x

(
(1 − φ)vf

) = 0,

and that q = 0 at x = 0. In terms of the relative velocities ui := vi − vf, i = 1, · · · , N , we
can rewrite q = 0 as vf = −(φ1u1 + · · · + φNuN). Noting that fi = φi(ui + vf), we obtain

fi = fi(�) = φi
(
ui − (φ1u1 + · · · + φNuN)

)
.

Including in his analysis the momentum equations for each particle species and that of the fluid
and using equilibrium considerations, Masliyah [20] derived that the constitutive equation for
the solid-fluid relative velocity ui should be of the type

ui = ũ∞iV (φ), (11)

where ũ∞i denotes the Stokes settling velocity of a single particle of species i with respect to
a fluid of density �(φ) = φ�s + (1 − φ)�f, i.e.,

ũ∞i = −2(�s − �(φ))gr2
i

9µf
= −2(1 − φ)��gr2

i

9µf
, i = 1, . . . , N, (12)

and where V (φ) can be chosen as one of the hindered settling functions known in the monodis-
perse case, for example as the well-known Richardson and Zaki [21] formula

V (φ) = V RZ(φ) = (1 − φ)n, n > 1, 0 ≤ φ ≤ φmax. (13)

With the parameters µ and δi from (9), we finally obtain

fi(�) = fM
i (�) = µ(1 − φ)V (φ)

(
φi

N∑
j=1

δjφj − δiφi

)
. (14)
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2.3. SPECIAL CASE N = 2

In the case of just two particle species, the system of Equations (2) reduces to

∂

∂t

(
φ1

φ2

)
+ µ

∂

∂x

((
1 − φ

φmax

)2

exp

(
2φ

φmax

) (
φ1 exp (S11φ1 + S12φ2)

δ2φ2 exp (S21φ1 + S22φ2)

))
= 0 (15)

in the case of f1 and f2 given by (10) and to

∂

∂t

(
φ1

φ2

)
+ µ

∂

∂x

(
V (φ)(1 − φ)

(
δ2φ1φ2 − φ1(1 − φ1)

φ1φ2 − δ2φ2(1 − φ2)

))
= 0 (16)

for f1 and f2 given by (14).

3. Second-order central schemes

We shall solve the system of conservation laws (2) by a second-order shock-capturing scheme
introduced first by Nessyahu and Tadmor [14] and later modified by Kurganov and Tadmor
[15]. It is the modified version of the scheme that we use here. To make this paper relatively
self-contained, we shall state, as well as briefly derive, this scheme below, starting with the
original scheme [14], and then we proceed by explaining the modifications needed to obtain
the scheme in [15]. The reader may therefore consider this section as a short introduction
(primer) to central schemes. We refer to [14, 15] and the lecture notes by Tadmor [12] for a
more extensive discussion of central schemes.

To approximate the solution � of (2), we introduce a mesh in the (x, t)-plane where the
spatial grid points are denoted by xj and the time levels by tn. We denote the length of the
space and time steps by �x and �t , respectively, i.e., xj = j�x and tn = n�t . We choose
integers J and N such that J�x = L and N�t = T . Moreover, we let λ = �t/�x. We shall
always assume that �x and �t are related through an appropriate CFL condition [14, 15].

In what follows, we derive briefly the central scheme. In doing so, we do not take into
account the boundary conditions in (4), which need special care. The boundary scheme will
be described in detail towards the end of this section.

At time level tn, given the cell averages {�̄nj = (φ̄n1,j , . . . , φ̄
n
N,j )

T}, we introduce a piecewise-
linear reconstruction �(x, tn),

�(x, tn) =
∑
j

(
�̄
n

j + 1

�x
�′
j

(
x − xj

))
χ[xj−1/2, xj+1/2](x), (17)

where �′
j = (φ′

1,j , . . . ,φ
′
N,j )

T is the slope vector defined by

φ′
�,j = MM

(
θ
[
φ̄n�,j − φ̄n�,j−1

]
,

1

2

[
φ̄n�,j+1 − φ̄n�,j−1

]
, θ

[
φ̄n�,j+1 − φ̄n�,j

])
, (18)

for � = 1, . . . , N and θ ∈ [0, 2]. Here, MM(a, b, c) is the minmod function which equals
min(a, b, c) if a, b, c > 0, max(a, b, c) if a, b, c < 0, and zero otherwise. In particular, this
choice of slope vector satisfies (see [14])

1

�x
�′
j = ∂

∂x
�(x = xj , tn)+ O(�x),
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which ensures second-order accuracy wherever the components of � are smooth. In addition,
this choice ensures that the approximation is non-oscillatory.

Now integration of (2) over the space-time volume [xj , xj+1]× [tn, tn+1] yields the follow-

ing exact equation for the cell averages {�̄n+1
j+1/2}:

�̄
n+1
j+1/2 := 1

�x

∫ xj+1

xj

�(x, tn+1) dx (19)

= �̄
n

j+1/2 − 1

�x

[∫ tn+1

tn

f
(
�(xj+1, t)

)
dt −

∫ tn+1

tn

f
(
�(xj , t)

)
dt

]
,

where exact integration of (17) gives

�̄
n

j+1/2 := 1

�x

∫ xj+1

xj

�(x, tn) dx = 1

2

(
�̄
n

j + �̄nj+1

) + 1

8

(
�′
j −�′

j+1

)
.

Although the piecewise-linear interpolant �(·, tn)may be discontinuous at the points {xj+1/2},
the solution�(·, t ≥ tn) remains smooth near each xj for t ≤ tn+1 provided the CFL condition
λSnmax < 1/2 holds, where Snmax denotes the maximum propagation speed throughout the
domain at time tn.

Thus, the time integrals in (19) only involve smooth integrands and they can be computed
within second-order accuracy by the mid-point rule:

1

�x

∫ tn+1

tn

f(�(xj , t)) dt ≈ λf
(
�(xj , tn+1/2)

)
, (20)

where the point-values at the half-time steps are evaluated by Taylor expansion,

�
n+1/2
j := �(xj , tn+1/2) ≈ �(xj , tn)+ �t

2

∂

∂t
�(xj , t = tn) = �̄

n

j − λ

2
f′j . (21)

Here, the slope vector f′j = (f ′
1,j , . . . , f

′
N,j )

T is defined by

f ′
j,� = MM

(
θ
[
f�

(
�̄
n

j

) − f�
(
�̄
n

j−1

)]
, (22)

1

2

[
f�

(
�̄
n

j+1

) − f�
(
�̄
n

j−1

)]
, θ

[
f�

(
�̄
n

j+1

) − f�
(
�̄
n

j

)])
,

for � = 1, . . . , N and θ ∈ [0, 2]. In particular, this choice of slope vector ensures second-order
accuracy in smooth regions, i.e.,

1

�x
f′j = ∂

∂x
f(�(x = xj , tn))+ O(�x),

and that the numerical approximation is non-oscillatory, see [14].
Summing up, we end up with a scheme that consists of a first-order predictor step followed

by a second-order corrector step:
Predictor step:

�
n+1/2
j = �̄

n

j − λ

2
f′j . (23)
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Corrector step:

�̄
n+1
j+1/2 = 1

2

(
�̄
n

j + �̄nj+1

) + 1

8

(
�′
j −�′

j+1

) − λ
[
f
(
�
n+1/2
j+1

) − f
(
�
n+1/2
j

)]
. (24)

We point out that under a suitable CFL condition (see [14]), the central scheme (23)–(24)
is TVD (Total Variation Diminishing) for a scalar equation and thus converges to a weak
solution. Moreover, it satisfies a cell entropy inequality for a scalar equation with strictly
convex flux function and thus converges to the physically correct solution in this case; see
[14] for further details.

We note that although the predictor-corrector scheme (23)–(24) uses staggered grid cells
(i.e., cells that alternate every other time step), the modified version of the scheme (see below)
uses a non-staggered grid.

Note that if we use piecewise-constant instead of piecewise-linear reconstruction in (17),
we recover the staggered version of the Lax–Friedrichs scheme. The good resolution of the
second-order central scheme is because the numerical dissipation is considerably lower than
in the Lax–Friedrichs scheme, which is due to the use of a second-order MUSCL type recon-
struction.

The dissipation in the central scheme (23)–(24) is O((�x)4/�t). Nevertheless, as can be
seen from this expression for the dissipation, the central scheme does not admit a semi-discrete
version, i.e., we cannot send �t to zero for fixed �x. Hence the scheme is not appropriate for
small time-step calculations or steady-state calculations as t → ∞. However, the latter are
important in the context of sedimentation processes. In a previous paper [6], we applied the
central scheme to the kinematic sedimentation model (2), and indeed it turned out that this
scheme yielded diffusive results for the (nearly) steady-state examples (see [6] for further
details).

Next we describe a modification of the central scheme proposed by Kurganov and Tadmor
[15] which reduces the dissipation to O(�x3) and hence makes the scheme better suited for
steady-state calculations. In particular, this scheme remains second-order accurate indepen-
dent of O(1/�t) and, letting �t → 0, one obtains even a semi-discrete central scheme. The
basic idea behind the modified central scheme is to use more accurate information about the
local speed of propagation of the discontinuities.

Assume that we have reconstructed a piecewise-linear interpolant (17) from the cell av-
erages {�̄nj } at time tn. We then estimate the local propagation speeds {anj+1/2} at the cell
boundaries {xj+1/2}. To this end, let

�−
j+1/2 := �(xj+1/2−, tn) = �̄

n

j +�′
j /2,

�+
j+1/2 := �(xj+1/2+, tn) = �̄

n

j+1 −�′
j+1/2

be the left and right intermediate values of the interpolant �(x, tn) at x = xj+1/2. We then
define the local speed of propagation

anj+1/2 = max

{
ρ
( ∂f
∂�

(
�−
j+1/2

))
, ρ

( ∂f
∂�

(
�+
j+1/2

))}
, (25)

where ρ(A) := max |µi(A)| and {µi(A)} are the eigenvalues of A.
Although it is possible (and sometimes necessary) to use “approximate eigenvalues” here,

we have used in this paper the analytical expressions for the eigenvalues to compute the local
speeds {anj+1/2}.
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Given the piecewise-linear interpolant �(·, tn) defined in (17) and the local speeds {anj+1/2},
the construction of the cell averages {�̄n+1

j } at time tn+1 proceeds in two steps:

Step 1. The original central scheme is based on averaging over the (staggered) control vol-
ume [xj , xj+1] of fixed size �x. Instead, let us integrate over the narrower (and non-uniform)
control volume

[
xnj+1/2,l, x

n
j+1/2,r

] ⊂ [xj , xj+1], where

xnj+1/2,l = xj+1/2 − anj+1/2�t, xnj+1/2,r = xj+1/2 + anj+1/2�t.

For t ≤ tn+1, the solution �(·, t ≥ tn) of (2) with piecewise-linear initial data (17) prescribed
at t = tn can be non-smooth only inside the control volume [xnj+1/2,l, x

n
j+1/2,r] of width

�xnj+1/2 := xnj+1/2,r − xnj+1/2,l = 2anj+1/2�t.

As in (19), we proceed with exact evaluation of the new cell averages

{
 ̄
n+1
j+1/2 = (

ψ̄n+1
1,j+1/2, . . . , ψ̄

n+1
N,j+1/2

)T}
at tn+1, which yields

 ̄
n+1
j+1/2 := 1

�xnj+1/2

∫ xnj+1/2,r

xnj+1/2,l

�(x, tn+1) dx = �̄
n

j + �̄nj+1

2
+ 1 − anj+1/2λ

4

(
�′
j −�′

j+1

)

− 1

2anj+1/2�t

[∫ tn+1

tn

f
(
�(xnj+1/2,r, t)

)
dt −

∫ tn+1

tn

f
(
�(xnj+1/2,l, t)

)
dt

]
.

As we did in (20), using the mid-point rule to approximate the time integrals enables us to
write

 ̄
n+1
j+1/2 = �̄

n

j + �̄nj+1

2
+ 1 − anj+1/2λ

4

(
�′
j −�′

j+1

)

− 1

2anj+1/2

[
f
(
�
n+1/2
j+1/2,r

) − f
(
�
n+1/2
j+1/2,l

)]
, (26)

where the mid-point values are obtained by Taylor expansions (similar to what we did in (21)):

�
n+1/2
j+1/2,l = �nj+1/2,l −

λ

2
f
(
�nj+1/2,l

)′
,

�nj+1/2,l = �̄
n

j +�′
j

(
1/2 − λanj+1/2

)
,

�
n+1/2
j+1/2,r = �nj+1/2,r − λ

2
f
(
�nj+1/2,r

)′
,

�nj+1/2,r = �̄
n

j+1 −�′
j+1

(
1/2 − λanj+1/2

)
, (27)

where the slope vectors f
(
�nj+1/2,l

)′
, f

(
�nj+1/2,r

)′
are defined (with obvious changes) as in

(22).
Similarly, let

�xnj = xnj+1/2,l − xnj−1/2,r = �x −�t(anj−1/2 + anj+1/2)
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denote the width of the (narrow) interval [xnj−1/2,r, x
n
j+1/2,l] around xj (which is free of neigh-

bouring Riemann fans). As before, integrating exactly and then approximating the resulting
(two) time integrals by the mid-point rule, we get the following equation for cell averages
{ ̄n+1

j = (ψ̄n+1
1,j , . . . , ψ̄

n+1
N,j )

T} :

 ̄
n+1
j := 1

�xnj

∫ xnj+1/2,l

xnj−1/2,r

�(x, tn+1) dx

= �̄
n

j − λ

2

(
anj+1/2 − anj−1/2

)
�′
j

− λ

1 − λ
(
anj−1/2 + anj+1/2

)[
f
(
�
n+1/2
j+1/2,l

) − f
(
�
n+1/2
j−1/2,r

)]
, (28)

where �n+1/2
j+1/2,l and �n+1/2

j−1/2,r are defined in (27).

Step 2. In the second (and final) step, we convert the non-uniform cell averages { ̄n+1
j },

{ ̄n+1
j+1/2} into cell averages over the non-staggered grid cells

{[xj−1/2, xj+1/2]
}
. To this end,

we consider a piecewise-linear reconstruction over the non-uniform grid cells at time tn+1 and
then we project its averages onto the original grid. The required piecewise-linear reconstruc-
tion takes the form

 (x, tn+1) =
∑
j

(
 ̄
n+1
j+1/2 + ′

j+1/2(x − xj+1/2)
)
χ[xnj+1/2,l, x

n
j+1/2,r](x)

+
∑
j

 ̄
n+1
j χ[xnj−1/2,r, x

n
j+1/2,l](x), (29)

where the discrete derivative  ′
j+1/2 = (ψ′

1,j+1/2, . . . ,ψ
′
N,j+1/2)

T is defined by

ψ′
�,j+1/2 = 2

�x
MM

(
θ

ψ̄n+1
�,j+1/2 − ψ̄n+1

�,j

1 + λ
(
anj+1/2 − anj−1/2

) , (30)

ψ̄n+1
�,j+1 − ψ̄n+1

�,j

2 + λ
(
2anj+1/2 − anj−1/2 − anj+3/2

) ,

θ
ψ̄n+1
�,j+1 − ψ̄n+1

�,j+1/2

1 + λ
(
anj+1/2 − anj+3/2

)
)
, θ ∈ [0, 2],

for � = 1, . . . , N . Here, one should keep in mind that  ̄
n+1
j and  ̄

n+1
j+1/2 are averages over grid

cells centered around

x = 1
2(x

n
j−1/2,r + xnj+1/2,l)= 1

2(xj−1/2 + xj+1/2)+ �t

2

(
anj−1/2 − anj+1/2

)

and x = xj+1/2, respectively.
Note that simple averaging over [xj−1/2, xj+1/2] reduces the accuracy of the (resulting)

scheme to first order. It is therefore necessary to use the piecewise-linear reconstruction (29) in
order to not loose the second-order accuracy in the process of converting the non-uniform cell
averages { ̄n+1

j }, { ̄nj+1/2} into cell averages over the non-staggered cells
{[xj−1/2, xj+1/2]

}
.
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Moreover, note that it is not necessary to reconstruct on the intervals
{[
xnj−1/2,r, x

n
j+1/2,l

]}
since the solution is smooth there.

Finally, the cell averages {�̄n+1
j } are obtained by averaging (29):

�̄
n+1
j := 1

�x

∫ xj+1/2

xj−1/2

 (x, tn+1) dx

= λanj−1/2 ̄
n+1
j−1/2 + λanj+1/2 ̄

n+1
j+1/2 + [

1 − λ
(
anj−1/2 + anj+1/2

)]
 ̄
n+1
j

+ �x

2

[(
λanj−1/2

)2
 ′
j−1/2 − (

λanj+1/2

)2
 ′
j+1/2

]
, (31)

where  ̄
n+1
j−1/2,  ̄

n+1
j ,  ̄

n+1
j+1/2 are defined in (26) and (28).

It is the scheme (31) that is used in the numerical examples presented in this paper, while
the original central scheme (23)–(24) has been applied to (2) in our previous paper [6]. For
a discussion of the mathematical properties of the modified central scheme (31), we refer to
[15] (see also [14]).

Before we can apply (31), it remains to describe the treatment of the boundary conditions
in (4). We apply the interior scheme (31) when the index j runs over 3/2, 5/2, . . . , J − 3/2.
Next we present the boundary scheme, i.e., the updating formulas for j = 1/2,J − 1/2. To
this end, we note that the central scheme (31) can be written in conservative form:

�̄
n+1
j = �̄

n

j − λ
[
F n
j+1/2 − F n

j−1/2

]
, (32)

where the numerical flux F n
j+1/2 is defined as

F n
j+1/2 = 1

2

(
f
(
�
n+1/2
j+1/2,r

) + f
(
�
n+1/2
j+1/2,l

)) − 1

2
anj+1/2

(
�̄
n

j+1 − �̄nj
)

+ 1

4
anj+1/2

(
1 − λanj+1/2

)(
�′
j +�′

j+1

) + �x

2
λ
(
anj+1/2

)2
 ′
j+1/2,

where �n+1/2
j+1/2,l, �

n+1/2
j+1/2,r are defined in (27); anj+1/2 is defined in (25); �′

j , �
′
j+1 are defined in

(18); and  ′
j+1/2 is defined in (30).

Roughly speaking, the boundary treatment consists in setting the numerical fluxes to zero
at the boundaries according to the boundary conditions (4). For j = 1/2 and j = J − 1/2,
(32) then reads

�̄
n+1
1/2 = �̄

n

1/2 − λF n
1 , �̄

n+1
J−1/2 = �̄

n

J−1/2 + λF n
J−1.

To compute F n
1 and F n

J−1, we set respectively �′
1/2 =  ′

1 = 0 and �′
J−1/2 =  ′

J−1 = 0.
In the numerical calculations shown later, we used 0.6 as the CFL number and 400 grid

cells for the spatial discretization. Moreover, in calculating the numerical derivatives we used
θ = 2.

4. Numerical examples

We consider two different cases of settling of a homogeneous suspension with solid particles
of two different sizes. It is customary to use the radius of the smallest particles as a length



178 R. Bürger et al.

Figure 1. Numerical solution of the kinematic model of settling of a bidisperse suspension: iso-concentration lines
of the larger particles, corresponding to concentrations 0.02, 0·04, 0·06, 0·08, 0·1, 0·15, 0·25, 0·3, 0·4, 0·5, 0·6.
The circles and dashed lines correspond to experimental measurements of interfaces and constructed shock lines
due to Schneider et al. [16].

unit, while the time unit is the Stokes time tSt, that is the time a particle of the species having
the smallest (in absolute value) Stokes settling velocity needs to travel its own radius, i.e.,

tSt = rN

u∞N
= 9µf

2��grN
.

A dimensionless constant characterizing the hindrance effect exerted by the viscosity of the
fluid is the sedimentation Reynolds number

Re = u∞NrN
νf

= 2���fgr
3
N

9µ2
f

,

where νf is the kinematic viscosity of the fluid.

4.1. COMPARISON WITH RESULTS BY SCHNEIDER et al. [16]

Schneider et al. [16] report a settling experiment with glass spheres of density �s = 2790 kg/m3

and radii r1 = 0·248 mm, and r2 = 0·0625 mm. The remaining parameters are �f =
1208 kg/m3, µf = 0·02416 Pa s, and L = 0·3 m, i.e., we have tSt = 0·1121 s, µ =
0·0143 m/s, δ2 = 15·745, and Re = 1·74 × 10−3. Following Schneider et al. [16], we
use Masliyah’s approach with the Richardson-Zaki drag law (13) with n = 2.7 and cut this
function at φmax = 0·68 as in [7]. The initial concentrations are φ0

1 = 0·2 and φ0
2 = 0·05. Fig-

ures 1 and 2 show the simulated iso-concentration lines for the larger and the smaller spheres,
respectively, together with the experimental measurements of interface locations and shock
lines (dashed lines) computed by Schneider et al. [16], while Figure 3 displays concentration
profiles of both species at three selected times.
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Figure 2. Numerical solution of the kinematic model of settling of a bidisperse suspension: iso-concentration lines
of the smaller particles, corresponding to concentrations 0·02, 0·04, 0·06, 0·08, 0·1, 0·15, 0·25, 0·3, 0·4, 0·5, 0·6.
The circles and dashed lines correspond to experimental measurements of interfaces and constructed shock lines
due to Schneider et al. [16].

The construction procedure for the shock lines used by Schneider et al. [16] is similar
to that proposed by Greenspan and Ungarish [22] and exploits the Rankine-Hugoniot jump
condition (5): if one assumes that an initially homogeneous N-disperse suspension settles
in such a way that the bulk suspension is separated from the supernatant liquid by (N −
1) zones where the concentration is constant, and that the sediment assumes the maximum
concentration and is separated from the bulk suspension by a single discontinuity, then the
(N − 1)N + (N − 1) = N2 − 1 unknown concentration values and the unknown propagation
speeds of the N + 1 discontinuities (for small t > 0) can be calculated from the available
(N + 1)N scalar Rankine–Hugoniot conditions. This construction procedure is discussed in
detail in [6].

Here, we emphasize that this method does not necessarily produce the physically relevant
solution, i.e., the entropy weak solution of the sedimentation problem, since it does not include
continuous transitions between concentration values by rarefaction waves. In fact, the numer-
ically computed iso-concentration lines shown in Figure 1 clearly show that the sediment
forming on the bottom of the column is not separated by a kinematic shock from the bulk
suspension at initial concentration. Rather, we observe a spreading of the iso-concentration
lines belonging to φ1 = 0·4, 0·5 and 0·6. That this fan is centred indicates a rarefaction wave,
and not an artefact due to numerical diffusion. This behaviour is also visible in Figure 3 in
the profiles of both concentrations near x = 50 mm. Since it is ensured that the numerical
scheme approximates the entropy weak solution, we have reason to believe that the rising
kinematic shock constructed by Schneider et al. cannot be physically correct. This view is
also supported by the fact that one would obtain a rarefaction wave at the same location as
part of the entropy solution of the monodisperse sedimentation model with the flux density
function given here. We are, however, not yet able to construct exact entropy solutions of the
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Figure 3. Numerical solution of the kinematic model of settling of a bidisperse suspension: concentration profiles
of the larger and of the smaller particles taken at t1 = 51·0 s, t2 = 300·2 s, and t3 = 599·2 s.

polydisperse kinematic model. Nevertheless, the final composition of the sediment attained
after about 500 s does coincide with the kinematic shock solution.

The formation of two sets of horizontal iso-concentration lines in Figure 2, labeled by
‘0·02, . . . , 0·6’ and ‘0·04, . . . , 0·6’, respectively, indicates the formation of a thin layer of
small particles at high concentration above the sediment consisting mainly of larger parti-
cles. This thin layer corresponds to the concentration ‘peak’ of the small particles visible in
Figure 3.

We point out that this example has also been considered in our previous paper [6]. However,
since we have employed here an improved numerical scheme, the two discontinuities separat-
ing the two different final sediment layers and the sediment from the clear supernate appear
less diffusive here. As discussed in Section 3, this due to the fact that the modified central
scheme is designed to produce less numerical diffusion for long-time integration (steady-state
calculations) than the original central scheme.

4.2. COMPARISON WITH A PARTICLE-SCALE SIMULATION

We use a recently developed simulation technique for particle suspensions at low Reynolds
numbers [23] to simulate the settling of bidisperse particles in a viscous fluid. This technique
resolves the flow on the scale of the particles and has been applied successfully to studies of
monodisperse suspensions [23, 24]. In contrast to experiments with real materials, simulations
are able to measure not only the total particle concentration but also the local concentrations
of each species separately. We are therefore in a position to directly compare the results of the
particle-scale simulation with the one-dimensional kinematic model.
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4.2.1. Simulation technique
The fluid motion is represented by the incompressible Navier-Stokes equations,

∂vf

∂t
+ (vf · ∇)vf = −∇p + 1

Re
∇2vf + f l , (33)

∇ · vf = 0, (34)

where vf is the fluid velocity measured in units of some typical velocity U , Re = aU/ν is the
particle Reynolds number, a the radius of the spherical particles considered, and ν the dynamic
viscosity of the fluid. The pressure p is measured in units of �fU

2,where �f is the fluid density.
The point force f l usually represents body forces like gravity, but local force distributions may
be used to model boundary conditions as well (see below). It is convenient to eliminate gravity
from the equations since it cancels the induced constant hydrostatic pressure gradient; we then
have to add buoyancy when we consider the forces acting on particles.

In order to solve the fluid equations (33) and (34), we use a fixed, regular grid — a
staggered marker and cell mesh — for a second-order spatial discretization [25]. Moreover,
we employ a simple explicit Euler time-stepping for the discretization of Equation (33) and
an implicit determination of the pressure in an operator-splitting approach to satisfy the in-
compressibility constraint at all times. The resulting pressure Poisson equation is solved by
multigrid techniques. For more details, see [25, 26].

Physically, the suspended particles are moving boundaries in the Navier-Stokes equation
which are not easy to represent. We therefore use the point force term in Equation (33) to
model the interaction between the fluid and the particles. To this end, we imagine that the
physical particles in the fluid are decomposed as follows. We need (i) a rigid particle template
endowed with a certain mass mti and moment of inertia I ti , which complements (ii) mass and
moment of inertia of the volume Vi of liquid covered — but not replaced — by the template.
We must require mti + �fVi = mi and I ti + If = Ii , i.e., that template plus liquid volume
elements together yield the correct mass mi and moment of inertia Ii of the physical particle.

In order to achieve the coupling, we distribute reference points j with coordinates rij over
the particle templates with respect to the center of particle i at xi . These reference points move
due to the translation and rotation of the particle template and follow trajectories xrij (t),

xrij (t) = xi (t)+ Oi(t)rij ,

where Oi(t) is a matrix describing the orientation of the template. Each reference point is
associated with one tracer particle (superscript m) at xmij which is passively advected by the
flow field, ẋmij = vf(xmij ). Whenever the reference point and the tracer are not at the same
position, forces arise (see below) to make the tracer follow the reference point, i.e., the liquid
motion coincides with the particle motion.

Between a tracer and its reference point we introduce a damped spring which gives rise to
a force density in the liquid:

f lij (x
m
ij ) = h−d(−kξij − 2γξ̇ij )δ(x

m
ij ). (35)

In this equation, ξij = xmij − xrij denotes the distance between the tracer and the reference
point, k is the spring constant, γ is the damping constant, δ(x) the Dirac distribution, and hd

the volume of liquid associated with one marker particle. It should be clear that this force law
is largely arbitrary. We have verified that its choice does not significantly influence the motion



182 R. Bürger et al.

of the physical particle as a whole, provided that k is chosen sufficiently large to ensure that
ξij remains always small and the density of markers is about 1/hd [27].

4.2.2. Simulation setup
We consider rigid spheres of radii r1 = 1·41 and r2 = 1·0 in a settling column with cross-
section of size (width × height × depth) = 36 × 576 × 36 with walls at the bottom and top
and periodic boundary conditions in the other directions. The densities are �f = 1 for the fluid
and �s = 2·5 for the particles, and the gravity constant is g = 30. We choose νf = 10 so that
the Stokes velocities are u∞1 = 2 for the larger and u∞2 = 1 for the smaller particles. Due
to the finite size of the container, the single-particle settling velocity is less than the Stokes
velocity [28]. We account for this effect by scaling the parameter µ in Equation (10) with the
appropriate value of 0·85 by substitution of µ with µ′ = 0·85µ.

The Reynolds number is Re = 0·1 and tSt = 1. The initial concentrations are φ0
1 = φ0

2 =
0·05. Figures 3 and 4 show the iso-concentration lines for the larger and smaller particles,
respectively, obtained from the three-dimensional simulation compared to those determined
by numerical solution of the one-dimensional kinematic model. In Figures 5 and 6, the cor-
responding concentration profiles for t = 100tSt, t = 300tSt, t = 500tSt and t = 800tSt are
compared. In the kinematic sedimentation model, we employ the modified Batchelor formula
(8). From the given radii, we obtain the coefficients

S11 = S22 = −5·6, S12 = −7·05, S21 = −4·77·
The remaining parameters are µ′ = 1·7 and δ2 = 1/2.

4.2.3. Discussion of numerical results
In Figures 4 and 5, we compare the iso-concentration lines calculated by numerical solu-
tion of the kinematic one-dimensional model with those obtained from the three-dimensional
particle-scale simulation, while Figures 6 and 7 show the same result as a selection of con-
centration profiles. The agreement between the ‘kinematic’ and the ‘particle-scale’ types of
results visible in these figures indicates that the kinematic model describes fairly well the
global behaviour of the suspension and predicts correctly the location of fronts.

As a first conclusion, this illustrates that the use of periodic lateral boundary conditions in
combination with a global correction of settling velocities in the three-dimensional simulation
is the correct way to represent the ‘bulk’ situation, i.e., sedimentation in which all effects
are not appreciable. The importance of this observation lies, of course, in the fact that three-
dimensional particle-scale simulations can be performed only in a column of relatively small
(compared to the particle size) cross-sectional area.

The numerical iso-concentration lines always represent shock lines, i.e. concentration dis-
continuities in this example. Their location agrees well with those of the particle-scale ap-
proach. This is valid in particular for the interfaces separating the sediment from the super-
natant suspension or clear liquid. Moreover, we observe that the kinematic model predicts very
accurately the thickness and concentration of the thin layer of the smaller particles forming
above the sediment of mixed composition, as visible in Figure 7.

Of course, effects referring to a length scale of particle size such as those described by
hydrodynamic diffusion are neglected in the kinematic approach. This becomes apparent in
the smearing of sharp interfaces visible in all figures, and in part in concentration fluctuations
in zones where the kinematic model predicts constant concentrations. A similar spreading of
discontinuities by hydrodynamic diffusion is shown in Figure 4 (p. 669) of the very recent
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Figure 4. Particle-scale simulation and numerical solution of the kinematic model of the settling of a bidisperse
suspension: iso-concentration lines of the larger spheres. The solid lines correspond to the numerical solution
and to the annotated concentration values. The long-dashed, short-dashed, dotted and dash-dotted lines have been
obtained by particle-scale simulation and correspond to φ1 = 0·1, φ1 = 0·06, φ1 = 0·04, and φ1 = 0·01,
respectively.

paper by Tory and Ford [29]. In any small-scale simulation or experiment, there will be fluc-
tuations in concentration [29]. It is therefore not surprising that these will sometimes obscure
the ‘ideal’ behaviour, as they do particularly in our Figure 6.

It is, however, interesting to note that Figure 7 clearly illustrates that the ‘enrichment’
of the smaller solid particles between the two downwards propagating shocks visible in the
rectangular ‘noses’ of the concentration profiles for t = 100tSt, t = 300tSt and t = 500tSt

(corresponding to the area between the two numerical iso-concentration lines φ2 = 0·06 in
Figure 5) is due to kinematic effects, and not to hydrodynamic diffusion. The contrary seems
to be true e.g. for the strongly scattered ‘particle-scale’ concentration profile for t = 100tSt

in Figure 6. The concentration change referred to here as ‘noses’ of Figure 7 seems to have
been noted first by T.N. Smith [30, p. T154]. Corollary 2 (p. 466) of Theorem 3 of Tory
and Pickard [31] states that “when the fastest-settling species disappears, the concentration
of each of the remaining species increases”. This also applies when there is hydrodynamic
diffusion or, equivalently, when the settling process is represented as a stochastic process with
drift [31].

5. Conclusions

In this paper we have shown that high-resolution shock-capturing schemes of central type
(i.e., Riemann solver free) can be used as an efficient tool for the numerical solution of the
kinematic model of sedimentation of polydisperse suspensions of spheres, although their
development had been oriented toward different applications. Their approximation of the
physically relevant solution, the entropy solution, produces solutions showing more details
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Figure 5. Particle-scale simulation and numerical solution of the kinematic model of the settling of a bidisperse
suspension: iso-concentration lines of the smaller spheres. The solid lines correspond to the numerical solution
and to the annotated concentration values. The long-dashed, short-dashed, dotted and dash-dotted lines have been
obtained by particle-scale simulation and correspond to φ2 = 0·1, φ2 = 0·06, φ2 = 0·04, and φ2 = 0·01,
respectively.

compared to ‘kinematic-shock’ constructions [16, 22]. In addition, they can also be applied to
nonconstant initial concentrations and systems of arbitrary size; in these cases the kinematic-
shock construction method, with its necessity to solve nonlinear systems of equations, would
quickly become very complicated.

Due to their explicit nature, the shock-capturing schemes are fairly easy to implement, and
should be applied to additional theoretical and practical problems arising from the theory of
sedimentation of polydisperse suspensions. Most notably, it can be hoped that reliable nu-
merical solutions will yield additional insights for the analytical determination of the possible
modes of sedimentation of an initially homogeneous polydisperse suspension in a settling
column, which is still an open problem in contrast to the relatively simple monodisperse case
[1].

It has been found that the predictions of the phenomenological theory of sedimentation of
flocculated suspensions, an extension of Kynch’s theory [5] for monodisperse systems which
includes compression effects and leads to a degenerate parabolic PDE for the local solids
concentration, compare quite well with results from settling experiments [32]. However, only
a few experiments have been performed to validate the kinematical model of sedimentation of
polydisperse suspensions, since it is very difficult (if not impossible) even to prepare a ‘real’
initially homogeneous polydisperse suspension. On the other hand, a kinematic model cannot
account for many of the phenomena that occur due to dynamical processes and therefore due
to forces such as virtual mass, lift etc., so its applicability is restricted to configurations where
these effects are negligible.

The quality of agreement between both types of results discussed in Section 4.2.3 demon-
strates that comparison with particle-scale simulation is a serious (and easier) alternative to
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Figure 6. Particle-scale simulation (symbols) and numerical solution of the kinematic model (solid lines) of the
settling of a bidisperse suspension: concentration profiles of the larger spheres.

Figure 7. Particle-scale simulation (symbols) and numerical solution of the kinematic model (solid lines) of the
settling of a bidisperse suspension: concentration profiles of the smaller spheres.

assess the validity of the widely used kinematic models. It is pointed out here that the solution
of the kinematic model can be obtained very quickly, in a couple of minutes, while the particle-
scale simulation takes at least several days. Of course, a particle-scale simulation yields many
more details of a flow than the kinematic approach, and the use of the Navier-Stokes equations
ensures that dynamic effects are appropriately taken into account, which includes the particle
dynamics represented here by a ‘spring-dashpot’ model.
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However, as the preceding brief discussion of ‘enrichment’ of small particles has shown,
the solution of a kinematic model with a reliable, i.e. entropy satisfying shock-capturing
scheme may help to interpret results obtained from three-dimensional simulations and to draw
additional conclusions from a given simulation, for example which phenomena would persist,
even if the ratio of particle size and vessel dimensions tend to zero. Therefore, we believe
that the kinematic approach and its particular numerical discretization outlined here are a
valuable tool even in applications where the fully three-dimensional particle-scale approach
is essential.
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