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Abstract: The conservative Kurganov-Tadmor (KT) scheme was successfully applied to option pric-
ing problems by Ramírez-Espinoza and Ehrhardt [Adv. Appl. Math. Mech. 5 (2013), pp. 759-790].
This included the valuation of European, Asian and non-linear options as Black-Scholes PDEs, writ-
ten in the conservative form, by simply updating fluxes in the “Black-Box” approach. In this paper,
we describe an improvement of this idea through fully vectorised algorithm of non-oscillatory slope
limiters and efficient use of time solvers. Also, we propose the application of second-order exten-
sions of KT to option pricing problems. Our test problems solve one-dimensional benchmark and
convection-dominated European options as well as digital and butterfly options. This demonstrates
the robustness and flexibility of the pricing methods and sets a basis for complex problems. Further,
computation of option Greeks ensures reliability of the methods. Numerical experiments are per-
formed on barrier options, early exercisable American options and two-dimensional fixed and floating
strike Asian options. To the authors’ knowledge, this is the first time American options are priced
by applying the early exercise condition on the semi-discrete formulation of central-upwind schemes.
Results show second-order, non-oscillatory and high-resolution properties of the schemes as well as
computational efficiency.

Keywords: Black-Scholes PDEs; central-upwind schemes; non-oscillatory reconstructions; American
options; Asian options; barrier options

1 Introduction
The famous Black-Scholes model prices different types of options. However, unlike European options, no
analytical solution exists for many options including American, Asian and non-linear problems. Amongst
several proposed numerical approaches, popular ones include Tangman et al. (2008) for American options
and Oosterlee et al. (2004) for Asian options. However, similar to these approaches many others are
customised to price only specific type of options. Over the last decades, numerical methods originally
developed for hyperbolic conservation laws, have been applied to option pricing problems. These includes
Oosterlee et al. (2004), Lötstedt and von Sydow (2015) and Ramírez-Espinoza and Ehrhardt (2013).

Ramírez-Espinoza and Ehrhardt (2013) applied the second-order central-upwind semi-discrete scheme
of Kurganov and Tadmor (2000), denoted as KT, to price European, Asian and non-linear options. This
approach avails of the “Black-Box” property of KT; it requires no Riemann solver and characteristic
decomposition. This allows pricing options under Black-Scholes PDEs in the conservative form by suffi-
ciently changing fluxes, initial and boundary conditions. The central-upwind nature guarantees smaller
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numerical dissipation than fully central schemes through accurate estimates of Riemann fans. Further,
the semi-discrete property offers numerical viscosity independent of O(1/∆t) for time-step ∆t. Based
on these properties and owing to the use of slope limiters, non-oscillatory and high-resolution solutions
are achieved. However, as discussed in Ramírez-Espinoza (2011), the Asian option pricing problems
suffered from intensive computation and heavy time consumption due to execution of heavily nested
loops underlying the selected slope limiter.

In this paper, we first describe the KT algorithm in a fully vectorised setup to ensure computational
efficiency; this bypasses heavily nested loops of slope limiters. Several slope limiters and time solvers
are studied and best suited ones are employed. Our numerical experiments approximate option prices
and Greeks namely delta and gamma. Other than European and Asian options, we extend the “Black-
Box” approach to price digital, butterfly, American and barrier options by updating fluxes, initial and
boundary conditions. We price American and barrier options by effortlessly modifying the algorithm’s
semi-discrete spatial reconstruction, which to the authors’ knowledge, is a first; modifications include
incorporating the early exercising condition for American options and imposing the barrier level for
barrier options. Also, we discuss the second-order extensions of Kurganov and Tadmor (2000) by
Kurganov et al. (2001) and Kurganov and Lin (2007) applied to option pricing.

This paper is organised as follows. In Section 2, we present an overview of option preliminaries and
the backward-in-time Black-Scholes PDEs. Next, Section 3 describes the second-order KT reconstruction
and its extensions as well as the forward-in-time Black-Scholes PDEs written in the conservative form.
Non-oscillatory slope limiters and stable time methods are discussed in Section 4. Based on proposed
improvements and the “Black-Box” framework, Section 5 describes numerical experiments which are
performed on a series of options namely European, American, barrier, butterfly, digital and Asian.

2 Option Preliminaries and Black-Scholes Pricing Model
An option refers to the financial agreement between a writer and a holder. It locks a future possible
transaction of a predetermined underlying asset s, at a predefined strike price K, and maturity date
T , where 0 ≤ t ≤ T . At the inception of an option life, no exchange of financial asset occurs; the
option holder instead earns the right but not the obligation to buy or sell the underlying prior to or
at maturity against the upfront option value paid to the writer. Option valuation is complex and its
difficulties accrue with increasing option styles which depend mostly on exercising techniques, payoff
profiles, path dependency of payoffs and trading strategies/combinations.

Amongst the wide variety of options traded on the market, we consider some commonly discussed
models. Standard European options are exercisable only at maturity. American options are difficult to
price as they can be exercised at any instant prior to or at expiry. Both option styles feature identical
payoff profile illustrating the profit/loss graphically over the option life. As for exotic options, they
have complex structures. The payoff of Asian options depends on the average underlying price over a
predetermined time period and digital options pay a fixed amount or the value of the underlying security
after the underlying stock exceeds the predetermined strike price. Other option pricing challenges arise
from non-smoothness, sharp discontinuities or kinks appearing in payoff and Greek profiles, which are
common to digital options and butterfly spread.

We price options under the Black-Scholes model by Black and Scholes (1973) and Merton (1973),
which boils down to the backward-in-time parabolic PDE,

∂v

∂t
+

1

2
σ2s2

∂2v

∂s2
+ (r − δ)s

∂v

∂s
− rv = 0, (1)

with risk-free interest rate r, constant volatility σ, time t ∈ [0, T ] and option price v := v(s, t). The
price process {s}t≥0 where s := s(t) and s ∈ [smin, smax], follows the stochastic differential equation
ds = (r− δ) dt+ σs dW under the risk neutral measure, with continuous dividend yield, δ and Wiener
process, W . The benchmark model (1) is used to test numerical methods subject to payoff function
v(s, T ) and boundary conditions BC1(t) := v(smin, t) and BC2(t) := v(smax, t), for all t. PDE (1)
principally governs European calls and puts options subject to terminal conditions,

v(s, T ) = max(s−K, 0) for call and v(s, T ) = max(K − s, 0) for put, (2)
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and boundary conditions for

call
{
v(s, t) = 0 as s → 0,

v(s, t) = s exp (−δ(T − t))−K exp (−r(T − t)) as s → ∞,

put
{
v(s, t) = K exp (−r(T − t))− s exp (−δ(T − t)) as s → 0,

v(s, t) = 0 as s → ∞.

(3)

For American options with the early exercise feature, PDE (1) is transformed into the inequality

∂v

∂t
+

1

2
σ2s2

∂2v

∂s2
+ (r − δ)s

∂v

∂s
− rv ≤ 0, (4)

with boundary conditions for

call
{
v(s, t) = 0 as s → 0,

v(s, t) = s−K as s → ∞,
put

{
v(s, t) = K − s as s → 0,

v(s, t) = 0 as s → ∞,
(5)

No efficient analytical solution exists for (4), therefore numerical approaches solve (1) with the appro-
priate early exercise constraint imposed at each time level over the option life 0 ≤ t ≤ T ,

v(s, t) ≥ max(s−K, 0) for call and v(s, t) ≥ max(K − s, 0) for put. (6)

The exotic path-dependent Asian options rely on the continuous arithmetic average a := a(t) of the
asset price s over [0, t], where a := 1

t

∫ t
0 s(τ) dτ . Asian options conform to no closed form solution.

Arithmetic Asian options are of types fixed or floating strike. Fixed Asian options have a specified
strike and floating Asian options have a strike equivalent to the average of the underlying asset over
the option life. For Asian options’ price v := v(s, a, t), Barraquand and Pudet (1996) modified (1) for
non-dividend paying asset price s to formulate a PDE defined in two spatial variables s and a,

∂v

∂t
+

1

2
σ2s2

∂2v

∂s2
+ rs

∂v

∂s
− rv +

1

t
(s− a)

∂v

∂a
= 0, (7)

subject to terminal payoffs v(s, a, T ) for

call
{
max(a−K, 0) fixed strike,
max(s− a, 0) floating strike,

put
{
max(K − a, 0) fixed strike,
max(a− s, 0) floating strike,

(8)

and boundary conditions

∂v

∂t
− a

t

∂v

∂a
− rv = 0, as s → 0,

∂v

∂t
+

1

t
(s− a)

∂v

∂a
= 0, as s → ∞.

(9)

PDE (7) is convectively dominated due to the absence of diffusion term in a-direction (Zvan et al.,
1998).

3 Second-Order Central-Upwind Reconstructions
We consider the second-order cental-upwind semi-discrete KT scheme (Kurganov and Tadmor, 2000).
It originally solves the hyperbolic conservation laws,

∂v

∂t
+

∂

∂s
F (v) = 0, (10)

with spatial variable s, conserved quantity v and convection flux F . We overview the KT scheme with
uniform spatial grid points {sj}Nj=0 for N ∈ N, width ∆s and mid-cells [sj− 1

2
, sj+ 1

2
] where sj± 1

2
:=

3



sj ± ∆s
2 . We let ∆tn := tn+1 − tn and define v(sj , t

n) and vnj respectively as the exact and approximate
solution at point (sj , t

n). It is assumed that previously computed cell-averages {v̄j} at tn are available,

v̄nj ≈ v̄(sj , t
n) :=

1

∆s

∫ s
j+1

2

s
j− 1

2

v(s, tn) ds.

• Reconstruction Step: Next, based on cell-averages {v̄j}, a linear piecewise interpolant is con-
structed,

ṽnj ≈ ṽ(sj , t
n) :=

∑
j

[
v̄nj + (vs)

n
j (s− sj)

]
χ[s

j− 1
2
, s

j+1
2
], (11)

with characteristic function χ and spatial derivatives (vs)
n
j := vs(sj , t

n). Approximation of (vs)
n
j us-

ing the θ-dependent minmod (MM) limiter (Kurganov and Tadmor, 2000) guarantees non-oscillatory
solution,

(vs)j := MM
(
θ
v̄j − v̄j−1

∆s
,
v̄j+1 − v̄j−1

2∆s
, θ

v̄j+1 − v̄j
∆s

)
, (12)

where 1 ≤ θ ≤ 2 and MM(z1, z2, . . .) =


minj(zj), if zj > 0 ∀j,
maxj(zj), if zj < 0 ∀j,
0, otherwise.

• Evolution Step: At the upper cell boundaries sj+ 1
2
, the local speed of wave propagation is given by

cn
j+ 1

2

:= max

(∣∣∣∣∂F∂v
(
v−
j+ 1

2

)∣∣∣∣ , ∣∣∣∣∂F∂v
(
v+
j+ 1

2

)∣∣∣∣) , (13)

where v+
j+ 1

2

:= v̄nj+1 −
∆s

2
(vs)

n
j+1 and v−

j+ 1
2

:= v̄nj +
∆s

2
(vs)

n
j , (14)

denote the respective left and right intermediate values of ṽ(s, tn) at sj+ 1
2
. Use of finite speed of

propagation separates between non-smooth [sn
j+ 1

2
, l
, sn

j+ 1
2
, r
] and smooth [sn

j− 1
2
, r
, sn

j+ 1
2
, l
] regions where

sn
j+ 1

2
, r

:= sj+ 1
2
+ cn

j+ 1
2

∆tn and sn
j+ 1

2
, l
:= sj+ 1

2
− cn

j+ 1
2

∆tn. This apportions a narrower Riemann fan of
spatial width ∆sj+ 1

2
:= sn

j+ 1
2
, r

− sn
j+ 1

2
, l
= 2cn

j+ 1
2

∆tn around sj+ 1
2

and Riemann-free interval of width
∆sj := sn

j+ 1
2
, l
− sn

j− 1
2
, r

= ∆s − ∆tn(cn
j− 1

2

+ cn
j+ 1

2

) around sj . Integration over non-uniform rectangles
[sn

j+ 1
2
, l
, sn

j+ 1
2
, r
]× [tn, tn+1] and [sn

j− 1
2
, r
, sn

j+ 1
2
, l
]× [tn, tn+1] gives intermediate cell-averages at tn+1,

1

∆sj+ 1
2

∫ sn
j+1

2 , r

sn
j+1

2 , l

v(s, tn+1)ds = 1

∆sj+ 1
2

∫ sn
j+1

2 , r

sn
j+1

2 , l

ṽ(s, tn)ds

− 1

∆sj+ 1
2

∫ tn+1

tn
F
(
v(sn

j+ 1
2
, r
, t)
)
− F

(
v(sn

j+ 1
2
, l
, t)
)

dt,

and

1

∆sj

∫ sn
j+1

2 , l

sn
j− 1

2 , r

v(s, tn+1)ds = 1

∆sj

∫ sn
j+1

2 , l

sn
j− 1

2 , r

ṽ(s, tn)ds

− 1

∆sj

∫ tn+1

tn
F
(
v(sn

j+ 1
2
, l
, t)
)
− F

(
v(sn

j− 1
2
, r
, t)
)

dt,

where the flux integrals on the right hand side are approximated using the midpoint rule (Kurganov and
Tadmor, 2000). The above equations are simplified to give respective cell-averages, wn+1

j+ 1
2

and wn+1
j ,

wn+1
j+ 1

2

=
v̄nj + v̄nj+1

2
+

∆s− cn
j+ 1

2

∆tn

4

(
(vs)

n
j − (vs)

n
j+1

)
− 1

2cn
j+ 1

2

[
F

(
v
n+ 1

2

j+ 1
2
, r

)
− F

(
v
n+ 1

2

j+ 1
2
, l

)]
, (15)
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wn+1
j = v̄nj +

∆tn

2

(
cn
j− 1

2

− cn
j+ 1

2

)
(vs)

n
j − λn

1− λn

(
cn
j− 1

2

+ cn
j+ 1

2

) [F (vn+ 1
2

j+ 1
2
, l

)
− F

(
v
n+ 1

2

j− 1
2
, r

)]
, (16)

with mesh ratio λn = ∆tn

∆s and mid-values v
n+ 1

2

j± 1
2
, r

and v
n+ 1

2

j± 1
2
, l

obtained using the Taylor series expansion,

v
n+ 1

2

j+ 1
2
, l
:= vn

j+ 1
2
, l
− ∆tn

2
F
(
vn
j+ 1

2
, l

)
s

and v
n+ 1

2

j+ 1
2
, r

:= vn
j+ 1

2
, r
− ∆tn

2
F
(
vn
j+ 1

2
, r

)
s
, (17)

where

vn
j+ 1

2
, l
:= vnj +∆s(vs)

n
j

(
1

2
− λncn

j+ 1
2

)
and vn

j+ 1
2
, r

:= vnj+1 −∆s(vs)
n
j+1

(
1

2
− λncn

j+ 1
2

)
.

• Projection Step: Based on (15) and (16), a linear piecewise interpolant is reconstructed, which gives

w̃(s, tn+1) :=
∑
j

{[
wn+1
j+ 1

2

+ (vs)
n+1
j+ 1

2

(s− sj+ 1
2
)

]
χ[sn

j+1
2 , l

, sn
j+1

2 , r
] + wn+1

j χ[sn
j− 1

2 , r
, sn

j+1
2 , l

]

}
, (18)

where

(vs)
n+1
j+ 1

2

:=
2

∆s
MM

 wn+1
j+1 − wn+1

j+ 1
2

1 + λn

(
cn
j+ 1

2

− cn
j+ 3

2

) ,
wn+1
j+ 1

2

− wn+1
j

1 + λn

(
cn
j+ 1

2

− cn
j− 1

2

)
 .

Averages of (18) are projected onto the original grid [sj− 1
2
, sj+ 1

2
], giving the fully discrete KT scheme

vn+1
j =

1

∆s

∫ s
j+1

2

s
j− 1

2

w̃(s, tn+1) ds

= λncn
j− 1

2

wn+1
j− 1

2

+
[
1− λn

(
cn
j− 1

2

− cn
j+ 1

2

)]
wn+1
j

+ λncn
j+ 1

2

wn+1
j+ 1

2

+
∆s

2

[(
λncn

j− 1
2

)2
(vs)

n+1
j− 1

2

−
(
λncn

j+ 1
2

)2
(vs)

n+1
j+ 1

2

]
.

(19)

Using (19) with (15)-(16) and letting ∆tn ↓ 0 in vn+1
j −vnj
∆tn gives the semi-discrete KT scheme for PDE

(10),
d
dtvj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆s
, (20)

Hj+ 1
2
:=

1

2

[
F

(
v+
j+ 1

2

)
+ F

(
v−
j+ 1

2

)]
−

cj+ 1
2

2

(
v+
j+ 1

2

− v−
j+ 1

2

)
,

where H represents the numerical flux and midvalues (17) of (19) approach (14) as ∆tn → 0. Kurganov
and Tadmor (2000) extended (20) to the convection-diffusion-reaction PDE in the conservative form,

∂v

∂t
+

∂

∂s
F (v) =

∂

∂s
Q(v, vs) + S(v), (21)

with diffusion flux, Q and possibly existing source term, S. The semi-discrete KT scheme for (21) gives

d
dtvj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆s
+

Pj+ 1
2
(t)− Pj− 1

2
(t)

∆s
+ S (vj(t)) , (22)

where P denotes an approximation of Q and obtained using basic forward and backward differencing,

Pj+ 1
2
:=

1

2

[
Q

(
vj ,

vj+1 − vj
∆s

)
+Q

(
vj+1,

vj+1 − vj
∆s

)]
.
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3.1 Two-Dimensional Extension
Kurganov and Tadmor (2000) extended (22) to the two-dimensional convection-diffusion-reaction PDE,

∂v

∂t
+

∂

∂s
F s(v) +

∂

∂a
F a(v) =

∂

∂s
Qs(v, vs, va) +

∂

∂a
Qa(v, vs, va) + S(v). (23)

in spatial variables s and a. For mesh (sj , ak) = (j∆s, k∆a), the semi-discrete KT for (23) is given by

d
dtvj, k(t) =−

Hs
j+ 1

2
, k
(t)−Hs

j− 1
2
, k
(t)

∆s
−

Ha
j, k+ 1

2

(t)−Ha
j, k− 1

2

(t)

∆a

+
P s
j+ 1

2
, k
(t)− P s

j− 1
2
, k
(t)

∆s
+

P a
j, k+ 1

2

(t)− P a
j, k− 1

2

(t)

∆a
+ S (vj, k(t)) ,

(24)

where the s and a numerical fluxes Hs
j+ 1

2
, k

, Ha
j, k+ 1

2

and diffusive fluxes P s
j+ 1

2
, k

, P a
j, k+ 1

2

are given by

Hs
j+ 1

2
, k

:=
1

2

[
F s

(
v+
j+ 1

2
, k

)
+ F s

(
v−
j+ 1

2
, k

)]
−

cs
j+ 1

2
, k

2

(
v+
j+ 1

2
, k

− v−
j+ 1

2
, k

)
,

Ha
j, k+ 1

2

:=
1

2

[
F a

(
v+
j, k+ 1

2

)
+ F a

(
v−
j, k+ 1

2

)]
−

ca
j, k+ 1

2

2

(
v+
j, k+ 1

2

− v−
j, k+ 1

2

)
,

and

P s
j+ 1

2
, k

:=
1

2

[
Qs

(
vj, k,

vj+1, k − vj, k
∆s

, (va)j, k

)
+Qs

(
vj+1, k,

vj+1, k − vj, k
∆s

, (va)j+1, k

)]
,

P a
j, k+ 1

2

:=
1

2

[
Qa

(
vj, k, (vs)j, k,

vj, k+1 − vj, k
∆a

)
+Qa

(
vj, k+1, (vs)j, k+1,

vj, k+1 − vj, k
∆a

)]
.

In the above equations, intermediate values v±
j+ 1

2
, k

, v±
j, k+ 1

2

and local speeds cs
j+ 1

2
, k

, ca
j, k+ 1

2

are given by

v±
j+ 1

2
, k

:= vj+1, k ∓
∆s

2
(vs)j+ 1

2
± 1

2
, k and v±

j, k+ 1
2

:= vj, k+1 ∓
∆a

2
(va)j, k+ 1

2
± 1

2
,

cs
j+ 1

2
, k

:= max
±

(∣∣∣∣∂F s

∂v

(
v±
j+ 1

2
, k

)∣∣∣∣) and ca
j, k+ 1

2

:= max
±

(∣∣∣∣∂F a

∂v

(
v±
j, k+ 1

2

)∣∣∣∣) .

3.2 Conservative Form of Black-Scholes PDEs
We solve (1) as a forward-in-time PDE with t∗ = T − t and we denote the reversed time t∗ again with
t, giving

∂v

∂t
− 1

2
σ2s2

∂2v

∂s2
− (r − δ)s

∂v

∂s
+ rv = 0, (25)

which transforms terminal payoff v(s, T ) into initial condition v(s, 0). In conformity to (22), using

∂

∂s
(sv) = s

∂v

∂s
+ v and ∂

∂s

(
s2

∂v

∂s

)
= s2

∂2v

∂s2
+ 2s

∂v

∂s
,

Ramírez-Espinoza and Ehrhardt (2013) rewrote (25) in the form (21),

∂v

∂t
+

∂

∂s

(
(σ2 − r + δ)sv

)
=

∂

∂s

(
1

2
σ2s2

∂v

∂s

)
+ (σ2 − 2r + δ)v, (26)

with convection flux F (s, v) := (σ2 − r + δ)sv, diffusion flux Q(s, v) := 1
2σ

2s2 ∂v∂s and source term
S(v) := (σ2 − 2r + δ)v. In particular, PDE (26) prices European options for initial conditions,

v(s, 0) = max(s−K, 0) for call and v(s, 0) = max(K − s, 0) for put, (27)
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obtained from (2) and for corresponding boundary conditions, as described in (3), such that, for

call
{
v(smin, t) = 0,

v(smax, t) = smax exp (−δt)−K exp (−rt),

put
{
v(smin, t) = K exp (−rt)− smin exp (−δt),

v(smax, t) = 0.

(28)

Similarly, Ramírez-Espinoza and Ehrhardt (2013) rewrote (7) as a forward-in-time PDE in the form
(23),

∂v

∂t
+

∂

∂s
(σ2 − r)sv − ∂

∂a

(
1

T − t
(s− a)v

)
=

∂

∂s

(
1

2
σ2s2

∂v

∂s

)
+

(
σ2 − 2r +

1

T − t

)
v, (29)

with convective fluxes F s(s, v) := (σ2 − r)sv and F a(s, a, v) := − 1
T−t(s − a)v respectively in s− and

a−direction, diffusive flux Qs(s, v, vs) := 1
2σ

2s2 ∂v∂s which exists only in s−direction and source term
S(v) :=

(
σ2 − 2r + 1

T−t

)
v. PDE (29) solves Asian options with payoff functions (8) converted into

initial conditions v(s, a, 0), such that, for

call
{
max(a−K, 0) fixed strike ,

max(s− a, 0) floating strike ,
put

{
max(K − a, 0) fixed strike ,

max(a− s, 0) floating strike .
(30)

For Asian put options, Ramírez-Espinoza and Ehrhardt (2013) bypassed the intricate discretisation of
(9), giving for

fixed strike
{
v(smin, a, t) = max

(
0, K − 1

T (T − t)a
)
exp(−rt),

v(smax, a, t) = max
(
0, K − 1

T [smaxt+ a(T − t)]
)
,

(31)

floating strike
{
v(smin, a, t) = max

(
0, −smin +

1
T (T − t)a

)
exp(−rt),

v(smax, a, t) = max
(
0, −smax +

1
T [smaxt+ a(T − t)]

)
.

(32)

4 Effective implementations
We describe some implementations to effectively solve option pricing PDEs using the conservative KT
scheme.

4.1 Time Solvers
The overall high accuracy of spatial reconstruction is retained by using high-order stable time discretisa-
tions (Kurganov and Tadmor, 2000). In line, Ramírez-Espinoza and Ehrhardt (2013) used the MATLAB
in-built ode15s solver (Shampine and Reichelt, 1997), which is based on an implicit multi-step Runge-
Kutta (RK) method. It achieves fast and excellent numerical solutions for one-dimensional problems
but suffers from high computational effort in two-dimensional cases (Ramírez-Espinoza, 2011).

In amendment, we propose efficient use of the MATLAB ODE suite. As indicated in Shampine and
Reichelt (1997), we use the ode45 function, which is based on an one-step explicit RK formula, as the
‘first-try’ time solver. In case ode45 acts inefficient by slowing down computation mostly due to the
presence of stiff systems, we automatically shift to ode15s. For instance, Zhao et al. (2007) used ode15s
for pricing American options in the presence of a stiff ODE due to very small time step requirement.

Also, amongst several time methods discussed in Gottlieb et al. (2001), we propose the second-order
two-steps explicit RK time differencing. Denoting L(vj) :=

d
dtvj(t) as an approximation to ODE (22),

the one-parameter explicit two-stages RK method as described in Gottlieb et al. (2001), gives

v(1) = vn +∆tnL(vn),

vn+1 =
1

2
vn +

1

2

(
v(1) +∆tnL(v(1))

)
.

7



4.2 Slope Limiters
The non-oscillatory behaviour and thus high-resolution property of central schemes rely on the appro-
priate choice of slope limiters. As such, Ramírez-Espinoza and Ehrhardt (2013) obtained non-oscillatory
numerical solutions and Greeks despite non-smooth data by using (12). As compared to the most dissipa-
tive θ = 1 and least dissipative θ = 2, θ = 1.5 is optimal (Kurganov and Tadmor, 2000; Ramírez-Espinoza
and Ehrhardt, 2013). However, in two-dimensional cases, Ramírez-Espinoza (2011) implemented (12)
in C, compiled with the MEX utility of the MATLAB suite to avoid excessive computation time req-
uisite to element-wise operations. As reported in Ramírez-Espinoza (2011), this changed the execution
time from ∼ 10 to ∼ 4 minutes for fixed strike and from ∼ 40 to ∼ 6 – 8 minutes for floating strike;
results were recorded using a CPU with 8 GB of RAM memory. We propose to bypass the heavy time
consuming loops of (12) using the fully vectorised approach (Peer et al., 2008),

MM(z1, z2, z3) =
1

4
[sign(z1) + sign(z2) + sign(z3) + sign(z1 z2 z3)]×min(|z1|, |z2|, |z3|). (33)

Also, we propose the uniform non-oscillatory (UNO) limiter, developed by Harten and Osher (1987)
and adapted by Nessyahu and Tadmor (1990) using the central differencing ∆2vj ≡ vj+1 − 2vj + vj−1,
to give

(vs)j := MM
(
∆vj− 1

2
+

1

2
MM(∆2vj−1, ∆

2vj), ∆vj+ 1
2
− 1

2
MM(∆2vj , ∆

2vj+1)

)
. (34)

It offers higher resolution even at critical grid values as compared to the original θ = 1 limiter of (12).

4.3 Code Structure
Below we summarise the fully vectorised algorithm of the conservative KT scheme (22) applied to (26).

(1) Define parameters σ, r, δ, K, T , smin and smax, flux handles F , Q, S of (26), boundary functions
BC1(t) and BC2(t) for t ∈ [0, T ] and initial condition v(s, 0).

(2) Define uniform spatial discretisation of size N + 1 with ∆s = (smax − smin)/N .

(3) Until tn+1 := tn +∆tn > T , compute

(a) spatial derivatives (vs)j of (11) using the MM (33) or UNO (34) limiter and use extrapolation
technique to compute boundary values (vs)1 and (vs)N+1,

(b) local speeds cn
j± 1

2

of (13) and intermediate values v±
j± 1

2

of (14),

(c) functions H, P , S and d
dtvj(t) of the semi-discrete KT formula (22),

(d) solution vn+1 using appropriate time solver from Section 4.1,
(e) boundary values BC1(t) and BC2(t) at tn+1.

The above algorithm is effortlessly extended to two-dimensions to solve (23) using formula (24). We
maintain the fully vectorised setup with a spatial grid of size (N + 1)× (N + 1).

4.4 American Options
We apply the conservative KT method (22) to price American put options under (26) with or without
dividend, subject to initial condition (27), boundary conditions as described in (5), giving for

call
{
v(smin, t) = 0,

v(smax, t) = smax −K,
put

{
v(smin, t) = K − smin,

v(smax, t) = 0,
(35)

and early constraint (6). To our knowledge, this is the first time that American options are priced by
extending (22) to include (6). For fully discrete schemes, (6) is imposed on intermediate values vj(t)
before each time evolution,

vj(t) = max
(
vj(t), v

0
j

)
. (36)
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The semi-discrete KT method treats spatial reconstruction and time evolution separately with no change
in time within the spatial reconstruction. Therefore, in conformity to KT, we apply (36) to (22), giving

d
dtvj(t) = max

(
d
dtvj(t), 0

)
,

which is easily incorporated in the algorithm described in Section 4.3.

4.5 Barrier Options
Also, we price exotic barrier options. The payoff depends on whether before expiry the underlying
asset’s price reaches the predefined barrier level, set above (up) or below (down) the asset price. Barrier
options come into existence (in) when asset price exceeds an upper barrier (up-and-in) or falls below a
lower barrier (down-and-in). Barrier options which are in existence, are extinguished (out) when asset
price exceeds an upper barrier (up-and-out) or falls below a lower barrier (down-and-out).

We extend the algorithm in Section 4.3 to solve call up-and-out barrier options for initial condition

v(s, 0) =

{
max(s−K, 0), 0 ≤ s < B,

0, s ≥ B,

and boundary conditions v(s, t) = 0 as s → 0 and v(s, t) = 0 as s → ∞, with upper barrier B. To the
author’s knowledge, this is the first time that KT is applied to solve call up-and-out barrier options by
enforcing the barrier level condition to output of (22), at each time step,

d
dtvj(t) = 0, for sj ≥ B.

4.6 Second-Order Extensions
Also, we compare results of KT to its second-order conservative extensions by Kurganov et al. (2001)
and Kurganov and Lin (2007), denoted by KNP and KL respectively.

The main idea of KNP retains the reconstruction and projection of KT with more precise use of
one-sided local speeds. The local speed (13) of KT is replaced by left and right one-sided local speeds,

c+
j+ 1

2

:= max

(
∂F

∂v

(
v−
j+ 1

2

)
,
∂F

∂v

(
v+
j+ 1

2

)
, 0

)
,

c−
j+ 1

2

:= min

(
∂F

∂v

(
v−
j+ 1

2

)
,
∂F

∂v

(
v+
j+ 1

2

)
, 0

)
,

(37)

where v−
j+ 1

2

and v+
j+ 1

2

are given in (14). For evolution step, the new intermediate cell-averages wn+1
j+ 1

2

and
wn+1
j are computed by integrating over the volumes [sn

j+ 1
2
, l
, sn

j+ 1
2
, r
] × [tn, tn+1] and [sn

j− 1
2
, r
, sn

j+ 1
2
, l
] ×

[tn, tn+1] respectively, where sn
j+ 1

2
, r

:= sj+ 1
2
+ c+

j+ 1
2

∆t and sn
j+ 1

2
, l
:= sj+ 1

2
+ c−

j+ 1
2

∆t. At the final step,
the projection technique is similar to KT. The new convection flux of the semi-discrete KNP scheme
reads

Hj+ 1
2
:=

c+
j+ 1

2

F
(
v−
j+ 1

2

)
− c−

j+ 1
2

F
(
v+
j+ 1

2

)
c+
j+ 1

2

− c−
j+ 1

2

+
c+
j+ 1

2

c−
j+ 1

2

c+
j+ 1

2

− c−
j+ 1

2

(
v+
j+ 1

2

− v−
j+ 1

2

)
.

The less dissipative KL scheme retains the reconstruction and evolution steps of KNP and is based
on more accurate projection. Based on new cell-averages w̄n+1

j+ 1
2

and w̄n+1
j , the linear reconstruction

(Kurganov et al., 2001; Kurganov and Lin, 2007) reads

w̃(s, tn+1) :=
∑
j

{[
w̄n+1
j+ 1

2

+ (vs)
n+1
j+ 1

2

(
s−

sn
j+ 1

2
, l
+ sn

j+ 1
2
, r

2

)]
χ[sn

j+1
2 , l

, sn
j+1

2 , r
] + w̄n+1

j χ[sn
j− 1

2 , r
, sn

j+1
2 , l

]

}
,
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where

(vs)
n+1
j+ 1

2

=
2

∆tn
MM

 w̄n+1
j+ 1

2

− vn+1
j+ 1

2
, l

c+
j+ 1

2

− c−
j+ 1

2

,
vn+1
j+ 1

2
, r
− w̄n+1

j+ 1
2

c+
j+ 1

2

− c−
j+ 1

2

 ,

represents a less dissipative slope, with c±
j+ 1

2

of (37) and vn+1
j+ 1

2
, l

, vn+1
j+ 1

2
, r

of (17). Following simplification,
the convection flux of KL is given by

Hj+ 1
2
:=

c+
j+ 1

2

F

(
v−
j+ 1

2

)
− c−

j+ 1
2

F

(
v+
j+ 1

2

)
c+
j+ 1

2

− c−
j+ 1

2

+ c+
j+ 1

2

c−
j+ 1

2

v+
j+ 1

2

− v−
j+ 1

2

c+
j+ 1

2

− c−
j+ 1

2

− qj+ 1
2

 .

In the above, qj+ 1
2

denotes the correction term, which accounts for reduced dissipation and is given by

qj+ 1
2
= MM

v+
j+ 1

2

− wint
j+ 1

2

c+
j+ 1

2

− c−
j+ 1

2

,
wint
j+ 1

2

− v−
j+ 1

2

c+
j+ 1

2

− c−
j+ 1

2

 ,

where

wint
j+ 1

2

=

c+
j+ 1

2

v+
j+ 1

2

− c−
j+ 1

2

v−
j+ 1

2

−
[
F

(
v+
j+ 1

2

)
− F

(
v−
j+ 1

2

)]
c+
j+ 1

2

− c−
j+ 1

2

,

represent the intermediate values.
The conservative KNP and KL “Black-Box” methods are each adapted to option pricing PDEs by
updating the algorithm in Section 4.3 to include any additional term and improved convection flux.

5 Numerical Experiments
In this paper, for all experiments, we have used a computer with 8 GB RAM and a 2.50 GHz Intel(R)
Core(TM) i5-3210M processor. The error norms and root mean square (RMS) error are given by

L1 error = 1

N

∑
j

∣∣v(sj , tn)− vnj
∣∣ ,

L∞ error = max
j

∣∣v(sj , tn)− vnj
∣∣ ,

RMS error =
√

1

N1

∑
j

(
v(sj , tn)− vnj

)2
,

where N1 ≤ N is the number of asset prices s considered.

5.1 European Options
Problem 5.1 We solve the convection-dominated European problem arising from high Péclet ratio.
According to Zvan et al. (1998), high Péclet condition tends to introduce spurious oscillations in numer-
ical solutions. Therefore, though financially unrealistic, this test case is used to assess the behaviour
of KT. For a European call, we extract from Ramírez-Espinoza and Ehrhardt (2013) the parameters
σ = 0.02, r = 0.46, δ = 0.00, T = 1.00, K = 70, s ∈ [0, 100] and Péclet ∝ r

σ2
= 1150. This requires

solving (26) subject to conditions (27) and (28), using the algorithm in Section 4.3.

For Problem 5.1, we use the MM limiter (33) with θ = 1, 1.5 and 2 and ode45. Table 5.1 shows
corresponding L1 and L∞ errors and convergence rates. KT converges to second-order accuracy under
both norms. According to Serna and Marquina (2004), the expected maximum order of accuracy is not
achieved due to the non-linearity of limiters. In line with Kurganov and Tadmor (2000) and Ramírez-
Espinoza and Ehrhardt (2013), we note that θ = 1.5 offers the least L1 and L∞ errors as compared to
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Table 5.1: Accuracy for Problem 5.1.

N L1 Norm L1 Order L∞ Norm L∞ Order
θ = 1.0 100 1.4282e-02 - 2.6475e-01 -

200 4.5606e-03 1.6469 1.2121e-01 1.1271
400 1.2421e-03 1.8765 4.1940e-02 1.5311
800 3.1205e-04 1.9929 1.1015e-02 1.9288
1600 7.8126e-05 1.9979 2.6905e-03 2.0336

θ = 1.5 100 8.8154e-04 - 2.1355e-02 -
200 8.2756e-04 0.0912 4.1158e-02 −0.9466
400 4.9558e-04 0.7397 2.4075e-02 0.7737
800 1.5103e-04 1.7143 5.4452e-03 2.1445
1600 3.8703e-05 1.9643 1.3710e-03 1.9897

θ = 2.0 100 1.0899e-03 - 4.3721e-02 -
200 1.0383e-03 0.0700 5.3321e-02 −0.2864
400 5.1969e-04 0.9985 2.6277e-02 1.0209
800 1.5240e-04 1.7698 5.4868e-03 2.2598
1600 3.8791e-05 1.9741 1.3743e-03 1.9972

(a) Surface for 0 ≤ t ≤ T
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Figure 5.1: Solutions for Problem 5.1.

θ = 1 and 2. Fig 5.1 displays the surface for 0 ≤ t ≤ T , option price and Greeks for Problem 5.1
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Table 5.2: Accuracy for Problems 5.2 and 5.3.
Standard Problem

N L1 Norm L1 Order L∞ Norm L∞ Order
10 1.7615e-01 - 1.5181e-00 -
20 4.4662e-02 1.9797 3.5080e-01 2.1136
40 1.1350e-02 1.9763 7.9784e-02 2.1365
80 2.8270e-03 2.0054 1.9974e-02 1.9980
160 7.0882e-04 1.9958 4.9923e-03 2.0004
320 1.7757e-04 1.9970 1.2498e-03 1.9980
640 4.4486e-05 1.9970 3.1281e-04 1.9984

Challenging Problem
N L1 Norm L1 Order L∞ Norm L∞ Order
10 1.0291e-01 - 9.9149e-01 -
20 5.0449e-02 1.0285 9.3223e-01 0.0889
40 2.2148e-02 1.1876 7.2631e-01 0.3601
80 6.5990e-03 1.7468 3.2583e-01 1.1564
160 1.5945e-03 2.0492 1.3339e-01 1.2885
320 2.8251e-04 2.4967 2.8039e-02 2.2501
640 4.0628e-05 2.7977 1.0827e-02 1.3728

using MM limiter (33) with θ = 1.5 and N = 500. We observe that in line with Ramírez-Espinoza and
Ehrhardt (2013), KT offers excellent, non-oscillatory and high-resolution approximations despite the
convectively dominated setup, non-smoothness in initial condition and discontinuities in Greeks.

We repeat the experiment for Problem 5.1 with RK2 described in Section 4.1. We observe that
ode45 offers smaller error and slightly better convergence than RK2. Also, we solve Problem 5.1 using
UNO limiter (34), which output errors and convergence rates almost similar to MM limiter (33). Next,
we solve Problem 5.1 using KNP and KL. We observe that KNP and KL offer almost identical error
norms and convergence rates as KT with insignificant difference in computation time. Therefore, for
further experiments, we use KT and MM limiter (33) with θ = 1.5.

We confirm the aptitude of KT by solving the standard and challenging European call benchmark
options from von Sydow et al. (2015). The respective sets of parameters are given below:

Problem 5.2 Standard parameters: σ = 0.15, r = 0.03, δ = 0.00, T = 1.00, K = 100, and s ∈ [0, 200].

Problem 5.3 Challenging parameters: σ = 0.01, r = 0.10, δ = 0.00, T = 0.25, K = 100 and s ∈
[0, 200].

Table 5.2 records the L1 and L∞ errors and convergence rates for Problem 5.2 and 5.3 using ode45.
For both problems, KT achieves quadratic convergence under L1 norm. However, under L∞ norm,
second-order accuracy is achieved only for the standard problem and a drop in accuracy occurs for the
challenging case. As observed in Peer et al. (2008), a drop in L∞ convergence may occur in the presence
of discontinuity, which is the case for the challenging problem.

5.2 American Options
Problem 5.4 We price American put options for different sets of parameters from Tangman et al.
(2008), with short maturity T = 0.50, s ∈ [0, 200] and N = 400 using ode45. Numerical solutions for
short maturity options tend to be non-smooth such that error introduced due to kink at strike price is
not easily damped. We extend the KT algorithm in Section 4.3 to incorporate the early constraint as
described in Section 4.4.

For Problem 5.4, we use reference values from Tangman et al. (2008) and Leisen and Reimer (1996).
For different sets of parameters, Table 5.3 compares at different asset prices s = 80, 90, 100, 110, 120,

12



Table 5.3: Option value and Greeks for Problem 5.4.
r = 0.05 r = 0.07 r = 0.10
σ = 0.20 σ = 0.40 σ = 0.30
δ = 0.00 δ = 0.03 δ = 0.05

Option Value
s KT Reference KT Reference KT Reference

80 20.0000 20.0000 21.8706 21.8709 20.2575 20.2578
90 10.6653 10.6661 15.2292 15.2297 12.5974 12.5980

100 4.6547 4.6557 10.2381 10.2387 7.2763 7.2770
110 1.6674 1.6680 6.6774 6.6680 3.9224 3.9230
120 0.4974 0.4976 4.2470 4.2476 1.9903 1.9907

r = 0.07 r = 0.07
σ = 0.40 σ = 0.40
δ = 0.03 δ = 0.03

Delta Value Gamma Value
s KT Reference KT Reference

80 −0.7501 −0.7501 0.0172 0.0172
90 −0.5791 −0.5791 0.0166 0.0166

100 −0.4230 −0.4229 0.0144 0.0144
110 −0.2943 −0.2943 0.0113 0.0113
120 −0.1968 −0.1968 0.0083 0.0083

Table 5.4: RMS errors for Problem 5.4.
Scheme r = 0.05 r = 0.07 r = 0.10

σ = 0.20 σ = 0.40 σ = 0.30
δ = 0.00 δ = 0.03 δ = 0.05

Brennan Schwartz 1 3.5491e-03 8.5740e-03 5.9444e-03
Brennan Schwartz 2 6.9714e-04 5.8822e-04 6.1156e-04
CN PSOR 8.3307e-04 8.8204e-04 7.9750e-04
Borici Luthi 6.0498e-04 4.7749e-04 5.1769e-04
Penalty 1 9.3915e-04 1.1145e-03 9.8489e-04
Penalty 2 7.4993e-03 2.7882e-03 2.7067e-03
Operator Splitting 5.4037e-04 3.3764e-04 3.4641e-04
Front Kwok 8.3661e-03 4.9372e-03 1.1764e-03
Han Wu 6.0498e-04 4.7749e-04 5.1769e-04
OCA 1.1832e-04 1.6125e-04 1.1832e-04
KT 6.3875e-04 5.3292e-04 5.4037e-04

the numerical option values and Greeks of KT to corresponding reference values. KT offers good
approximation of option prices and Greeks. Table 5.4 compares RMS errors of KT, which are based on
values from Table 5.3, to computed reference RMS errors of numerical methods discussed in Tangman
et al. (2008); all values taken correct to four decimal places. KT provides RMS errors in line with
methods that are customised to price American options only, while retaining the simplicity of the
“Black-Box” approach.

5.3 Barrier Option
We solve call up-and-out barrier options using KT based on the implementation described in Section
4.5. We aim to test the behaviour of KT at the sharp discontinuity appearing at the upper barrier level.

Problem 5.5 For a call up-and-out barrier option, we use the set of parameters σ = 0.25, r = 0.10,
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Table 5.5: Accuracy for Problem 5.5.
N L1 Norm L1 Order L∞ Norm L∞ Order
10 1.3322e-01 - 6.5761e-01 -
20 3.3401e-02 1.9958 1.7558e-01 1.9051
40 8.4886e-03 1.9763 4.4154e-02 1.9916
80 2.1318e-03 1.9934 1.1065e-02 1.9965
160 5.3308e-04 1.9997 2.7723e-03 1.9969
320 1.3325e-04 2.0002 6.9138e-04 2.0035
640 3.3346e-05 1.9985 1.7201e-04 2.0070
1280 8.3620e-06 1.9956 4.2626e-05 2.0127
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Figure 5.2: Solutions for Problem 5.5.

δ = 0.05, T = 1.00, K = 100, s ∈ [0, 200] and B = 1.20K, taken from Derman and Kani (1996).

Table 5.5 records the L1 and L∞ errors and convergence rates for Problem 5.5. For this problem,
the ’first-try’ ode45 solver acts inefficient by slowing down computation, therefore we switch to ode15s
(Shampine and Reichelt, 1997). KT outputs very small error magnitudes and second-order convergence
rate. Fig 5.2 shows the numerical solution, Greeks and error plot for Problem 5.5 using N = 80. KT
offers non-oscillatory and high-resolution approximations even at region of discontinuity appearing in
the initial profile and Greeks.
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Figure 5.3: Solutions for Problem 5.6.

5.4 Butterfly Spread
We price a butterfly spread which involves buying two calls at strikes K1 and K3 and selling two calls
at strike K2 =

1
2(K1+K3) where K1 < K2 < K3. It tests the robustness of KT in the presence of sharp

corners at strikes in the initial condition and jumps in Greeks. We apply (22) to (26) for initial function

v(s, 0) = max (s−K1, 0) + max (s−K3, 0)− 2max

(
s− 1

2
(K1 +K3) , 0

)
,

and boundary conditions v(s, t) = 0 as s → 0 and v(s, t) = 0 as s → ∞.

Problem 5.6 For the butterfly spread pricing, the parameters σ = 0.20, r = 0.10, δ = 0.00, T = 0.50,
K1 = 45, K3 = 80 and s ∈ [0, 200] are extracted from Pindza et al. (2013).

Fig 5.3 displays the numerical price, Greeks and error plot for N = 80. We use ode15s as ode45 acts
inefficient. In line with Pindza et al. (2013), KT delivers excellent numerical results for the option price
and derivatives. It guarantees oscillation-free and thus high-resolution approximations even at sharps
kinks in the initial profile and multiple jumps in the derivative profiles. Also, we record the L1 and L∞
errors and convergence rates in Table 5.6. Despite the challenges posed by this pricing problem, KT
achieves second-order convergence.

5.5 Digital Option
A cash-or-nothing digital call option has a payoff which equals either a predefined quantity after strike
price or nothing at all before or at the strike threshold. We test the efficiency of KT at the sharp
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Table 5.6: Accuracy for Problem 5.6.
N L1 Norm L1 Order L∞ Norm L∞ Order
10 2.6942e-01 - 1.4094e-00 -
20 7.3663e-02 1.8708 4.6980e-01 1.5850
40 3.0875e-02 1.2545 2.1442e-01 1.1316
80 8.0044e-03 1.9476 6.1546e-02 1.8007
160 2.1019e-03 1.9291 1.6463e-02 1.9024
320 5.3992e-04 1.9609 4.2301e-03 1.9605
640 1.3679e-04 1.9808 1.0772e-03 1.9734
1280 3.4425e-05 1.9904 2.7086e-04 1.9916

Table 5.7: Accuracy for Problem 5.7.
N L1 Norm L1 Order L∞ Norm L∞ Order
10 2.0101e-02 - 1.5876e-01 -
20 4.2580e-03 2.2390 3.5663e-02 2.1544
40 1.2339e-03 1.7869 1.0991e-02 1.6981
80 2.8435e-04 2.1175 2.3851e-03 2.2042
160 6.6769e-05 2.0904 5.4855e-04 2.1203
320 1.6001e-05 2.0610 1.3393e-04 2.0341
640 3.8951e-06 2.0384 3.2744e-05 2.0322
1280 9.6446e-07 2.0139 8.0337e-06 2.0271

discontinuity appearing in the initial profile. It suffices to effortlessly apply (22) to (26) for initial
condition

v(s, 0) =

{
1 for s ≥ K,

0 for s ≤ K,

and subject to boundary conditions v(s, t) = 0 as s → 0 and v(s, t) = exp(−rt) as s → ∞.

Problem 5.7 We solve the digital call option with parameters taken from Pindza et al. (2013), σ = 0.20,
r = 0.10, δ = 0.00, T = 0.50, K = 45 and s ∈ [0, 200].

Similar to the barrier option and butterfly spread problems, we use ode15s solver instead of ode45s.
For Problem 5.7, Fig 5.4 displays the option price, Greeks and error plot for N = 80. KT delivers very
satisfactory numerical results in line with Pindza et al. (2013). It achieves non-oscillatory and high-
resolution approximations of the sharp discontinuity at the strike and resulting jumps in the Greeks.
Table 5.7 records very small L1 and L∞ errors and second-order convergence rates despite the challenges
posed by digital options.

5.6 Asian Options
We price the fixed and floating strike Asian put options from Ramírez-Espinoza and Ehrhardt (2013)
by solving the two-dimensional PDE (29) using (24). This requires extending the algorithm in Section
4.3 to two spatial variables and involves matrix computations of size (N + 1)× (N + 1).

Problem 5.8 The fixed strike Asian put option is solved for σ = 0.25, r = 0.05, T = 0.20, K = 100,
s ∈ [0, 200], a ∈ [0, 200] and N = 50 subject to conditions (30) and (31).

Problem 5.9 The floating strike Asian put option is solved for parameters σ = 0.30, r = 0.15, T = 1.00,
K = 100, s ∈ [0, 200], a ∈ [0, 200] and N = 50 subject to conditions (30) and (32).
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Figure 5.4: Solutions for Problem 5.7.

Table 5.8: Accuracy for Problems 5.8 and 5.9.
Fixed strike Asian Floating strike Asian

N KT Error Order KT Error Order
10 0.8209 - - 2.8487 - -
20 1.5237 7.0284e-01 - 3.3864 5.3765e-01 -
40 2.1060 5.8231e-01 0.2714 3.5467 1.6032e-01 1.7457
80 2.2740 1.6801e-01 1.7932 3.5867 3.9964e-02 2.0042
160 2.3065 3.2493e-02 2.3704 3.5968 1.0140e-02 1.9787

Figs 5.5 and 5.6 show numerical solutions for Problems 5.8 and 5.9 respectively using ode45 and MM
limiter (33) with θ = 1.5. KT scheme offers non-oscillatory and high-resolution approximations of option
value and Greeks for both fixed and floating strike cases despite the convection-dominated nature. In
particular for the floating strike problem, as compared to Ramírez-Espinoza and Ehrhardt (2013), Fig
5.6 (c) shows oscillation-free approximation of Greek delta, vs even at the smin boundary. Table 5.8
shows second-order convergence rates over refined grids for both the fixed and floating strike problems.
Also, we achieve a remarkable reduction in computation time from ∼ 4 minutes to ∼ 10 seconds for
the fixed strike and from ∼ 6 – 8 minutes to ∼ 18 seconds for the floating strike as compared to results
recorded in Ramírez-Espinoza (2011). This improvement is based on our fully vectorised algorithm and
efficient use of time solvers. The vectorised formula (33) bypasses the loop-based formula (12), which
requires high computational effort in two-dimensions. Further, we make efficient use of ode45 solver in
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Figure 5.5: Solutions for Problem 5.8.

non-stiff environment instead of ode15s, which tends to be time-consuming in two-dimensional setup.

6 Conclusion
In this work, we have proposed an improvement of Ramírez-Espinoza and Ehrhardt (2013) approach
to option pricing PDEs, formulated in the conservative form. This includes the combination of the
“Black-Box” KT reconstructions with vectorised slope limiters and stable time-solvers to ensure non-
oscillatory and high-resolution numerical solutions. Our fully vectorised approach and efficient use of
time-solvers contribute to significant reduction in computation time. Numerical experiments are suc-
cessfully performed on standard, challenging and convectively dominated European options. Also, we
price barrier, butterfly and digital problems with sharp discontinuities in the initial and Greek profiles.
Despite the challenges, KT offers second-order convergence as well as non-oscillatory and high-resolution
numerical solutions and Greeks. Further, to the authors’ knowledge, this is the first time that American
and barrier options are priced by extending KT. For American options, we achieve good approximation
of numerical solutions and Greeks for different sets of parameters with or without dividend. In the
two-dimensional setup, as compared to Ramírez-Espinoza (2011), we obtain considerable reduction in
computation time for both fixed and floating strike Asian options through our effective implementations.
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Figure 5.6: Solutions for Problem 5.9.
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