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Abstract. We present new third- and fifth-order Godunov-type central schemes for approxi-
mating solutions of the Hamilton–Jacobi (HJ) equation in an arbitrary number of space dimensions.
These are the first central schemes for approximating solutions of the HJ equations with an or-
der of accuracy that is greater than two. In two space dimensions we present two versions for the
third-order scheme: one scheme that is based on a genuinely two-dimensional central weighted ENO
reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruc-
tion. The simpler dimension-by-dimension variant is then extended to a multidimensional fifth-order
scheme. Our numerical examples in one, two, and three space dimensions verify the expected order
of accuracy of the schemes.
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1. Introduction. We are interested in high-order numerical approximations for
the solution of multidimensional Hamilton–Jacobi (HJ) equations of the form

φt + H(∇φ) = 0, �x = (x1, . . . , xd) ∈ R
d,

where H is the Hamiltonian, which we assume depends on ∇φ and possibly on x and
t. In recent years, the HJ equations have attracted a lot of attention from analysts and
numerical analysts due to the important role that they play in applications such as
optimal control theory, image processing, geometric optics, differential games, calculus
of variations, etc. The main difficulty in treating these equations arises from the
discontinuous derivatives that develop in finite time even when the initial data is
smooth. Vanishing viscosity solutions provide a good tool for defining weak solutions
when the Hamiltonian is convex [15]. The celebrated viscosity solution provides a
suitable extension of weak solutions for more general Hamiltonians [3, 7, 8, 9, 10, 28,
29].

Given the importance of the HJ equations, there has been relatively little activity
in developing numerical tools for approximating their solutions. This is surprising,
given that most of the numerical ideas are based on the similarity between hyperbolic
conservation laws and the HJ equations, and that the field of numerical methods for
conservation laws has been flourishing in recent years.

Converging first-order approximations were introduced by Souganidis in [38].
High-order upwind methods were introduced by Osher and Sethian [34] and Osher
and Shu [35]. These methods are based on Harten’s essentially nonoscillatory (ENO)
reconstruction [13, 37], which is evolved in time with a monotone flux. The weighted
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ENO (WENO) interpolant of [18, 32, 36] was used for constructing high-order upwind
methods for the HJ equations in [17], and extensions of these methods for triangular
meshes were introduced in [1, 40]. We note in passing that there are other approaches
for approximating solutions of HJ equations such as discontinuous Galerkin methods
[14, 24] and relaxation schemes [20].

A different class of Godunov-type schemes for hyperbolic conservation laws, the
so-called central schemes, has recently been applied to the HJ equations. The proto-
type for these schemes is the Lax–Friedrichs scheme [11]. A second-order staggered
central scheme was developed for conservation laws by Nessyahu and Tadmor in [33].
The main advantage of central schemes is their simplicity. Since they do not require
any (approximate) Riemann solvers, they are particularly suitable for approximating
multidimensional systems of conservation laws. Lin and Tadmor applied these ideas
to the HJ equations in [31]. There, first- and second-order staggered schemes versions
of [2, 19, 33] were written in one and two space dimensions. An L1 convergence of
order one for this scheme was proved in [30]. After the introduction of a semidiscrete
central scheme for hyperbolic conservation laws in [23], a second-order semidiscrete
scheme for HJ equations was introduced by the same authors in [22]. While less
dissipative, this scheme requires the estimation of the local speed of propagation at
every grid-point, a task that is computationally intensive, particularly with problems
of high dimensionality. By considering more precise information about the local speed
of propagation, an even less dissipative scheme was generated in [21].

Recently we introduced in [5] new and efficient central schemes for multidimen-
sional HJ equations. These nonoscillatory, nonstaggered schemes were first- and
second-order accurate and were designed to scale well with an increasing dimension.
Efficiency was obtained by carefully choosing the location of the evolution points
and by using a one-dimensional projection step. Avoiding staggering by adding an
additional projection step is an idea which we already utilized in the framework of
conservation laws [16].

In this work we introduce third- and fifth-order accurate schemes for approximat-
ing solutions of multidimensional HJ equations. These are the first central schemes
for such equations of order greater than two. This work is the HJ analogue to the
corresponding works in conservation laws: an ENO-based central scheme [4] and the
central WENO (CWENO) central schemes [25, 26, 27]. We announced a preliminary
version of the one-dimensional results in a recent proceedings publication [6].

The structure of this paper is as follows. We start in section 2 with the deriva-
tion of our one-dimensional schemes. A third-order WENO reconstruction scheme
is presented in section 2.2. This scheme requires a fourth-order reconstruction of
the point-values and a third-order reconstruction of the derivatives at the evolution
points. Even though the optimal location of the evolution points in one dimension is
in the center of the interval, in order to prepare the grounds for the multidimensional
schemes we write a reconstruction for an arbitrary location of the evolution points.
A fifth-order method is then presented in section 2.3.

We turn to the multidimensional framework in section 3. Here there is flexibility
in the reconstruction step. For simplicity we carry out most of the discussion in two
space dimensions. Extensions to more than two space dimensions are presented in
section 3.4. First, we provide a brief outline of the general structure of two-dimensional
central schemes in section 3.1. The main remaining ingredient, the reconstruction
step, is then described in the following two sections. For a two-dimensional third-
order scheme we present in section 3.2 two ways to obtain a high-order reconstruction
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of the approximate solution at the evolution points. The first option in section 3.2.1
is based on a genuinely two-dimensional reconstruction. An alternative dimension-
by-dimension approach is based on a sequence of one-dimensional reconstructions
and is presented in section 3.2.2. Our numerical results show that both approaches
are essentially equivalent. Hence, the rest of the paper deals with the dimension-by-
dimension reconstruction. A fifth-order dimension-by-dimension extension of the one-
dimensional scheme in section 2.3 to two dimensions is then presented in section 3.3.
Since the solution at the next time step is computed at grid-points that are different
from those on which the data is given, we reproject the evolved solution back onto the
original grid-points. Different ways to approach this reprojection step are discussed
in section 3.2.3.

We conclude in section 4 with several numerical examples in one, two, and three
space dimensions that confirm the expected order of accuracy and the high-resolution
nature of our scheme. We compare our results with the scheme of Jiang and Peng
[17]. We also study the convergence rate after the emergence of the discontinuities in
the solution.

2. One-dimensional schemes.

2.1. One-dimensional central schemes. Consider the one-dimensional
HJ equation of the form

φt(x, t) + H (φx) = 0, x ∈ R.(2.1)

We are interested in approximating solutions of (2.1) subject to the initial data φ(x, t=
0) = φ0(x). For simplicity we assume a uniform grid in space and time with mesh
spacings ∆x and ∆t, respectively. Denote the grid-points by xi = i∆x, tn = n∆t, and
the fixed mesh ratio by λ = ∆t/∆x. Let ϕn

i denote the approximate value of φ (xi, t
n),

and (ϕx)
n
i denote the approximate value of the derivative φx (xi, t

n). We define the
forward and backward differencing as ∆+ϕn

i := ϕn
i+1 − ϕn

i and ∆−ϕn
i := ϕn

i − ϕn
i−1.

Assume that the approximate solution at time tn, ϕn
i is given. A Godunov-type

scheme for approximating the solution of (2.1) starts with a continuous piecewise-
polynomial ϕ̃(x, tn) that is reconstructed from the data ϕn

i :

ϕ̃(x, tn) =
∑
i

Pi+ 1
2
(x, tn)χi+ 1

2
(x).(2.2)

Here, χi+1/2(x) is the characteristic function of the interval [xi, xi+1], and Pi+1/2(x, tn)
is a polynomial of a suitable degree that satisfies the interpolation requirements

Pi+ 1
2
(xi+β , t

n) = ϕn
i+β , β = 0, 1.

The reconstruction (2.2) is then evolved from time tn to time tn+1 according to (2.1)
and is sampled at the half-integer grid-points {xi+1/2}, where the reconstruction is
smooth (as long as the CFL condition λ |H ′ (ϕx)| ≤ 1/2 is satisfied):

ϕn+1
i+ 1

2

= ϕn
i+ 1

2
−
∫ tn+1

tn
H
(
ϕ̃x

(
xi+ 1

2
, τ
))

dτ.(2.3)

The point-value ϕn
i+1/2 is obtained by sampling (2.2) at xi+1/2; i.e., ϕn

i+1/2 = ϕ̃(xi+1/2, t
n).

Since the evolution step (2.3) is done at points where the solution is smooth, we can
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approximate the time integral on the right-hand side (RHS) of (2.3) using a suffi-
ciently accurate quadrature rule. For example, for a third- and fourth-order method,
this integral can be replaced by a Simpson’s quadrature,

∫ tn+1

tn
H
(
ϕ̃x

(
xi+ 1

2
, τ
))

dτ ≈ ∆t

6

[
H
(
ϕ′ n
i+ 1

2

)
+ 4H

(
ϕ
′ n+ 1

2

i+ 1
2

)
+ H

(
ϕ′ n+1
i+ 1

2

)]
.(2.4)

The derivative at time tn, ϕ′ n
i+1/2, is obtained by sampling the derivative of the recon-

struction (2.2), i.e., ϕ′ n
i+1/2 = ϕ̃′(xi+1/2, t

n). The intermediate values of the derivative

in time, ϕ
′ n+1/2
i+1/2 and ϕ′ n+1

i+1/2, which are required in the quadrature (2.4), can be pre-

dicted using a Taylor expansion or with a Runge–Kutta (RK) method. Alternatively,
(2.1) can be treated as a semidiscrete equation by replacing the spatial derivatives
with their numerical approximations and integrating in time via an RK method.

The only remaining ingredient to specify is the reconstruction (2.2). Below we
present two reconstructions. The first is a fourth-order reconstruction of the point-
values and the derivatives, which leads to a third-order scheme, and the second is a
sixth-order reconstruction that results in a fifth-order scheme.

Remarks.

1. In order to return to the original grid, we project ϕn+1
i+1/2 back onto the integer

grid-points {xi} to end up with ϕn+1
i . This projection is accomplished with the same

reconstruction used to approximate ϕn
i+1/2 from ϕn

i .

2. In order to maximize the size of the time step, the evolution points should
be taken as far as possible from the singularities in the reconstructed piecewise poly-
nomial. In one dimension the appropriate evolution point is located at xi+1/2. In d
dimensions with a uniform grid with spacing ∆x, the optimal evolution points are
located at xi+α = xi + α∆x in each direction, where α = 1/(d +

√
d) (see [5]). One

of the multidimensional schemes we present in section 3 is based on one-dimensional
reconstructions. Hence, in order to prepare the grounds for the multidimensional
setup, we write the one-dimensional reconstruction in this section, assuming that the
evolution points are xi±α. The reader should keep in mind that in one dimension,
α = 1/2.

3. We would like to point out that one does not need to fully reconstruct the
polynomials Pi+1/2(x, tn). The only values that the scheme requires are the ap-
proximated point-values ϕn

i+1/2 = ϕ̃(xi+1/2, t
n) and the approximated derivatives

ϕ′
i+1/2 = ϕ̃′(xi+1/2). Hence, in the rest of the paper whenever we refer to reconstruc-

tion steps we directly treat the recovery of these two quantities.

2.2. A third-order scheme. A third-order scheme is generated by combining
a third-order accurate ODE solver in time, for predicting the intermediate values of
the derivatives in (2.4), with a sufficiently high-order reconstruction in space.

Given ϕn
i , in order to invoke (2.3), we should compute two quantities in every

time step: the point-values at the evolution points, ϕi±α, and the derivatives ϕ′
i±α. In

order to obtain a third-order scheme, the approximations of the point-values should be
fourth-order accurate, and the approximation of the derivatives should be third-order
accurate. In this scheme, the reconstruction of the point-values is done in locations
that are staggered with respect to the location of the data. The reconstruction of the
derivatives, which is required in every step of the ODE solver, is done at the same
points where the data is given. Since we need two types of reconstructions and due to
symmetry considerations, we derive a fourth-order approximation of the derivatives.
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xi xi+α xi+1xi-1 xi+2

+,i+αϕ

-,i+αϕ

Fig. 2.1. The two interpolants used for the third-order reconstruction at the evolution point at
xi+α.

Obviously, this more accurate reconstruction of the derivatives does not increase the
order of accuracy of the scheme, but it does reduce the error.

2.2.1. The reconstruction of ϕi±α from ϕi. A fourth-order reconstruction
of ϕi+α can be obtained by considering a convex combination of two quadratic poly-
nomials, each of which requires the evaluation of ϕ on a three-point stencil. One
quadratic polynomial ϕ−(x) is constructed on a stencil that is left-biased with re-
spect to xi+α, {xi−1, xi, xi+1}, while the other polynomial ϕ+(x) is constructed on a
right-biased stencil, {xi, xi+1, xi+2}; see Figure 2.1. We set

ϕ−,i+α =

(−α + α2

2

)
ϕi−1 +

(
1 − α2

)
ϕi +

(
α + α2

2

)
ϕi+1,(2.5)

ϕ+,i+α =

(
2 − 3α + α2

2

)
ϕi +

(
2α− α2

)
ϕi+1 +

(−α + α2

2

)
ϕi+2.

For smooth ϕ, a straightforward computation shows that ϕ±,i+α = ϕ (xi+α)+O(∆x3)
and

1

3
(2 − α)ϕ−,i+α +

1

3
(1 + α)ϕ+,i+α = ϕ (xi+α) + O

(
∆x4

)
.

Similarly, the reconstruction of ϕi−α is obtained using the quadratic polynomials
ϕ−(x) based on the left-biased stencil enclosing xi−α, {xi−2, xi−1, xi}, and ϕ+(x)
based on the right-biased stencil {xi−1, xi, xi+1}:

ϕ−,i−α =

(−α + α2

2

)
ϕi−2 +

(
2α− α2

)
ϕi−1 +

(
2 − 3α + α2

2

)
ϕi,(2.6)

ϕ+,i−α =

(
α + α2

2

)
ϕi−1 +

(
1 − α2

)
ϕi +

(−α + α2

2

)
ϕi+1.

This time, ϕ±,i−α = ϕ (xi−α) + O(∆x3) and

1

3
(1 + α)ϕ−,i−α +

1

3
(2 − α)ϕ+,i−α = ϕ (xi−α) + O

(
∆x4

)
.

A fourth-order WENO estimate of ϕi±α is therefore given by the convex combination

ϕi±α = w−
i±αϕ−,i±α + w+

i±αϕ+,i±α,(2.7)
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where the weights satisfy w−
i±α + w+

i±α = 1, w±
i±α ≥ 0, ∀i. In smooth regions we

would like to satisfy w−
i+α = w+

i−α ≈ (2 − α) /3 and w+
i+α = w−

i−α ≈ (1 + α) /3 to
attain an O(∆x4) error. When the stencil supporting ϕi±α contains a discontinuity,
the weight of the more oscillatory polynomial should vanish. Following [18, 32], these
requirements are met by setting

wk
i±α =

αk
i±α∑
l α

l
i±α

, αk
i±α =

cki±α(
ε + Sk

i±α

)p ,(2.8)

where k, l ∈ {+,−}. The constants are independent of the grid index i and are
given by c−i+α = c+i−α = (2 − α) /3, c+i+α = c−i−α = (1 + α) /3. We choose ε as 10−6

to prevent the denominator in (2.8) from vanishing, and set p = 2 (see [18]). The
smoothness measures S±

i should be large when ϕ is nearly singular. Following [18],
we take Si±α to be the sum of the squares of the L2-norms of the derivatives on the
stencil supporting ϕ±. If we approximate the first derivative at xi by ∆+ϕi/∆x, the
second derivative by ∆+∆−ϕi/(∆x)2, and define the smoothness measure

Si [r, s] = ∆x

s∑
j=r

(
1

∆x
∆+ϕi+j

)2

+ ∆x

s∑
j=r+1

(
1

∆x2
∆+∆−ϕi+j

)2

,(2.9)

then we have S−
i+α = Si [−1, 0], S+

i+α = Si [0, 1], S−
i−α = Si [−2,−1], and S+

i−α =
Si [−1, 0].

For future reference we label the reconstruction in this section with the procedural
form

ϕi±α = reconstruct ϕ 1D 3 (i,±α,ϕ) ,(2.10)

where ϕ is the one-dimensional array (ϕ1, . . . , ϕN ). This notation will be used in the
dimension-by-dimension reconstructions in section 3.

2.2.2. The reconstruction of ϕ′
i±α from ϕi±α. The values of ϕ that we

recovered in the previous step at the regularly spaced locations {xi±α} can be used
to recover the derivative ϕ′

i±α via a (noncentral) WENO reconstruction. To obtain
a fourth-order WENO approximation of ϕ′

i±α, we write a convex combination of
three quadratic interpolants: ϕ′

−,i±α on the stencil {xi−2±α, xi−1±α, xi±α}, ϕ′
0,i±α on

{xi−1±α, xi±α, xi+1±α}, and ϕ′
+,i±α on {xi±α, xi+1±α, xi+2±α}. For smooth ϕ,

ϕ′
−,i±α =

1

2∆x
(ϕi−2±α − 4ϕi−1±α + 3ϕi±α) = ϕ′ (xi±α) + O

(
∆x2

)
,

ϕ′
0,i±α =

1

2∆x
(ϕi+1±α − ϕi−1±α) = ϕ′ (xi±α) + O

(
∆x2

)
,(2.11)

ϕ′
+,i±α =

1

2∆x
(−3ϕi±α + 4ϕi+1±α − ϕi+2±α) = ϕ′ (xi±α) + O

(
∆x2

)
.

A straightforward computation yields

1

6
ϕ′
−,i±α +

2

3
ϕ′

0,i±α +
1

6
ϕ′

+,i±α = ϕ′ (xi±α) + O
(
∆x4

)
.

The fourth-order WENO estimate of ϕ′
i±α from ϕi±α is therefore

ϕ′
i±α = w−

i±αϕ
′
−,i±α + w0

i±αϕ
′
0,i±α + w+

i±αϕ
′
+,i±α,(2.12)
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where the weights w are of the form (2.8), with k, l ∈ {+, 0,−}, c− = c+ = 1/6, c0 =
2/3, and the oscillatory indicators are S−

i±α = Si±α [−2,−1], S0
i±α = Si±α [−1, 0], and

S+
i±α = Si±α [0, 1].

For future reference we label the above reconstruction of ϕ′
i±α with the procedural

form

ϕ′
i±α = reconstruct ϕ′ 1D 3 (i,±α,ϕ±α) ,(2.13)

where ϕ±α is the one-dimensional array (ϕ1±α, . . . , ϕN±α).
We would like to summarize the one-dimensional third-order algorithm in the

following, where RK(ϕn
i±α, ϕ

′ n
i±α,∆t) is the third-order Runge–Kutta method that

integrates (2.1) and is used to predict the intermediate values of the derivatives. Each
internal step of the RK method will require additional reconstructions of ϕ′

i±α from
that step’s ϕi±α.

Algorithm 2.1. Assume that {ϕn
i } are given.

(a) Reconstruct:

ϕn
i±α = reconstruct ϕ 1D 3 (i,±α,ϕn) ,

ϕ′ n
i±α = reconstruct ϕ′ 1D 3(i,±α,ϕn

i±α).

(b) Integrate:

ϕ
n+ 1

2
i±α = RK

(
ϕn
i±α, ϕ

′ n
i±α,∆t/2

)
,

ϕ
′ n+ 1

2
i±α = reconstruct ϕ′ 1D 3(i,±α,ϕ

n+ 1
2

i±α ),

ϕn+1
i±α = RK

(
ϕn
i±α, ϕ

′ n
i±α,∆t

)
,

ϕ′ n+1
i±α = reconstruct ϕ′ 1D 3

(
i,±α,ϕn+1

i±α

)
,

ϕn+1
i±α = ϕn

i±α +
∆t

6

[
H
(
ϕ′ n
i±α

)
+ 4H(ϕ

′ n+ 1
2

i±α ) + H
(
ϕ′ n+1
i±α

)]
.

(c) Reproject:

ϕn+1
i = reconstruct ϕ 1D 3

(
i,∓α,ϕn+1

i±α

)
.

Remark. It is possible to replace the Simpson’s quadrature in the integration step
with a single RK time step, ϕn+1

i±α = RK(ϕn
i±α, ϕ

′ n
i±α,∆t). Our simulations show that

this choice reduces the complexity of the computation but also reduces its accuracy.

2.3. A fifth-order scheme. In order to obtain a fifth-order scheme, we need
a sixth-order approximation of the point-values of ϕ, a fifth-order approximation
of the derivative ϕ′, and a higher-order prediction of the intermediate derivatives
which appear in the quadrature formula. Due to arguments similar to those given in
section 2.2, we again derive a more accurate reconstruction of the derivatives, which
in this case is sixth-order.

We start with the reconstruction of ϕi+α from ϕi. We write sixth-order inter-
polants as a convex combination of three cubic interpolants, each of which requires
the evaluation of ϕ on a four-point stencil. We use the polynomials ϕ−(x) defined
on the left-biased stencil {xi−2, xi−1, xi, xi+1}, ϕ0(x) defined on the centered stencil
{xi−1, xi, xi+1, xi+2}, and ϕ+(x) defined on the right-biased stencil {xi, xi+1, xi+2, xi+3};
see Figure 2.2. For smooth ϕ,

ϕ−,i+α = a1ϕi−2 + a2ϕi−1 + a3ϕi + a4ϕi+1 = ϕ (xi+α) + O
(
∆x4

)
,(2.14)

ϕ0,i+α = a5ϕi−1 + a6ϕi + a7ϕi+1 + a8ϕi+2 = ϕ (xi+α) + O
(
∆x4

)
,

ϕ+,i+α = a9ϕi + a10ϕi+1 + a11ϕi+2 + a12ϕi+3 = ϕ (xi+α) + O
(
∆x4

)
,
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xi xi+α xi+1xi-1 xi+2

0ϕ

xi+3xi-2

-ϕ

+ϕ

Fig. 2.2. The three interpolants used for the fifth-order reconstruction ϕi+α at the evolution
point at xi+α. In this example, because of the large gradient between xi+1 and xi+2, the interpolant
ϕ− will have the strongest contribution to the CWENO reconstruction at xi+α.

where the constants are given by

a1 =
1

6
α− 1

6
α3, a2 = −α +

1

2
α2 +

1

2
α3,

a3 = 1 +
1

2
α− α2 − 1

2
α3, a4 =

1

3
α +

1

2
α2 +

1

6
α3,

a5 = −1

3
α +

1

2
α2 − 1

6
α3, a6 = 1 − 1

2
α− α2 +

1

2
α3,

a7 = α +
1

2
α2 − 1

2
α3, a8 = −1

6
α +

1

6
α3 = −a1,

a9 = 1 − 11

6
α + α2 − 1

6
α3, a10 = 3α− 5

2
α2 +

1

2
α3,

a11 = −3

2
α + 2α2 − 1

2
α3, a12 =

1

3
α− 1

2
α2 +

1

6
α3.

At xi−α we have

ϕ−,i−α = a12ϕi−3 + a11ϕi−2 + a10ϕi−1 + a9ϕi = ϕ (xi−α) + O
(
∆x4

)
,(2.15)

ϕ0,i−α = a8ϕi−2 + a7ϕi−1 + a6ϕi + a5ϕi+1 = ϕ (xi−α) + O
(
∆x4

)
,

ϕ+,i−α = a4ϕi−1 + a3ϕi + a2ϕi+1 + a1ϕi+2 = ϕ (xi−α) + O
(
∆x4

)
.

A straightforward computation yields

c−i±αϕ−,i±α + c0i±αϕ0,i±α + c+i±αϕ+,i±α = ϕ (xi±α) + O
(
∆x6

)
,

where

c−i+α = c+i−α =
1

20
α2 − 1

4
α +

3

10
,(2.16)

c0i±α = − 1

10
α2 +

1

10
α +

3

5
,

c+i+α = c−i−α =
1

20
α2 +

3

20
α +

1

10
.

A sixth-order reconstruction of ϕi±α is therefore given by

ϕi±α = w−
i±αϕ−,i±α + w0

i±αϕ0,i±α + w+
i±αϕ+,i±α,(2.17)
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where the weights wk are given by (2.8) with k, l ∈ {+, 0,−}, and the constants ck

are given by (2.16). The oscillatory indicators are given via (2.9) by S−
i±α = Si [−2, 0],

S0
i±α = Si [−1, 1], and S+

i±α = Si [0, 2].

A sixth-order approximation of ϕ′
i±α from ϕi±α is written as a convex combination

of four cubic interpolants. This reconstruction is similar to the third-order case and
is based on a noncentral WENO reconstruction. We skip the details and summarize
the result:

ϕ′
i±α = w1

i±αϕ
′
1,i±α + w2

i±αϕ
′
2,i±α + w3

i±αϕ
′
3,i±α + w4

i±αϕ
′
4,i±α,(2.18)

where

ϕ′
1,i±α =

1

6∆x
(−2ϕi−3±α + 9ϕi−2±α − 18ϕi−1±α + 11ϕi±α),

ϕ′
2,i±α =

1

6∆x
(ϕi−2±α − 6ϕi−1±α + 3ϕi±α + 2ϕi+1±α),

ϕ′
3,i±α =

1

6∆x
(−2ϕi−1±α − 3ϕi±α + 6ϕi+1±α − ϕi+2±α),

ϕ′
4,i±α =

1

6∆x
(−11ϕi±α + 18ϕi+1±α − 9ϕi+2±α + 2ϕi+3±α).

Here the weights wk are given by (2.8) with c1 = c4 = 1/20, c2 = c3 = 9/20, S1
i±α =

Si±α [−3,−1], S2
i±α = Si±α [−2, 0], S3

i±α = Si±α [−1, 1], and S4
i±α = Si±α [0, 2].

Notation.

1. We label the reconstruction of the point-values, (2.17), as

ϕi±α = reconstruct ϕ 1D 5 (i,±α,ϕ) ,(2.19)

where ϕ is the one-dimensional array (ϕ1, . . . , ϕN ).

2. We label the reconstruction of ϕ′
i±α, (2.18), as

ϕ′
i±α = reconstruct ϕ′ 1D 5 (i,±α,ϕ±α) ,(2.20)

where ϕ±α is the one-dimensional array (ϕ1±α, . . . , ϕN±α).

Remarks.

1. To conclude, the fifth-order method is given by Algorithm 2.1, where the
fourth-order reconstructions are replaced by the sixth-order reconstructions (2.19)–
(2.20). As is, this scheme is only fourth-order in time. A higher-order method in
time can be easily obtained by replacing Simpson’s quadrature with a more accurate
quadrature and computing the sixth-order approximations for the point-values and
the derivatives at the new quadrature points.

2. We choose to predict the intermediate values of the derivatives in time using
the fourth-order strong stability preserving (SSP) RK scheme of [12]. For s ∈ { 1

2 , 1
}

,
the SSP-RK scheme is given by

ϕ(1) = ϕn − 1

2
s∆tH (ϕn

x) ,

ϕ(2) =
649

1600
ϕn +

10890423

25193600
s∆tH (ϕn

x) +
951

1600
ϕ(1) − 5000

7873
s∆tH(ϕ(1)

x ),
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ϕ(3) =
53989

2500000
ϕn +

102261

5000000
s∆tH (ϕn

x) +
4806213

20000000
ϕ(1)

+
5121

20000
s∆tH(ϕ(1)

x ) +
23619

32000
ϕ(2) +

7873

10000
s∆tH(ϕ(2)

x ),

ϕn+s =
1

5
ϕn − 1

10
s∆tH (ϕn

x) +
6127

30000
ϕ(1) +

1

6
s∆tH(ϕ(1)

x ) +
7873

30000
ϕ(2)

+
1

3
ϕ(3) − 1

6
s∆tH(ϕ(3)

x ).

Alternatively, the natural continuous extension of the RK method [39] can be

used to produce the intermediate values ϕ′ n+ 1
2 and ϕ′ n+1 with a single RK step,

though we observe that errors are somewhat larger in this case.

3. Multidimensional schemes.

3.1. Two-dimensional central schemes. Consider the two-dimensional HJ
equation of the form

φt + H(∇φ) = 0, �x = (x1, x2) ∈ R
2,(3.1)

subject to the initial data φ(�x, t = 0) = φ0(�x). Define xi,j := (x1 + i∆x1, x2 + j∆x2).
Similarly to the one-dimensional setup, ϕi,j will denote the approximation of φ at
xi,j . We define the two sets of grid-points, I+ = {xi,j , xi+1,j , xi,j+1} and I− =
{xi,j , xi−1,j , xi,j−1}, and denote by T+, T− the triangles with vertices I+ and I−,
respectively. For simplicity we assume a uniform grid ∆x1 = ∆x2 = ∆x.

Assume that the approximate solution at time tn, ϕn
i,j , is given. Similarly to

the one-dimensional setup in section 2.1, a Godunov-type scheme for approximating
the solution of (3.1) starts with a continuous piecewise polynomial ϕ̃(�x, tn) that is
reconstructed from the data ϕn

i,j ,

ϕ̃(�x, tn) =
∑
i,j

P
T±
i,j (�x, tn)χT±(�x).(3.2)

As usual, χT±(�x) is the characteristic function of the triangle T±, and P
T±
i,j (�x, tn) is a

polynomial of a suitable degree that satisfies the interpolation requirements

P
T±
i,j (�xl, t

n) = ϕ(�xl, t
n), �xl ∈ I±

(see Figure 3.1). The reconstruction (3.2) is then evolved from time tn to time tn+1 by
(3.1) and sampled at the evolution points {xi±α,j±α}. In two dimensions the choice
α = 1/(2 +

√
2) guarantees that the solution remains smooth at the evolution point

as long as the CFL condition ∆t
∆x |H ′ (∇ϕ)| < α is satisfied. The evolved solution now

reads

ϕn+1
i±α,j±α = ϕn

i±α,j±α −
∫ tn+1

tn
H (∇ϕ̃ (xi±α,j±α, τ)) dτ.(3.3)

The point-values ϕn
i±α,j±α are obtained by sampling (3.2) at xi±α,j±α, i.e., ϕn

i±α,j±α =
ϕ̃(xi±α,j±α, t

n). As in the one-dimensional case, the evolution points are in smooth re-
gions, and therefore the integral on the RHS of (3.3) can be replaced with a sufficiently
accurate quadrature such as the Simpson rule (2.4), which leads to a scheme that is
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xi-α,j-α

xi+α,j+α

+T

xi,j

ii-1 i+1

j+1

j

j-1
-T

Fig. 3.1. The location of the evolution points xi±α,j±α and the domain of definition of the
interpolants ϕi±α,j±α in two dimensions.

fourth-order accurate in time. The derivatives at time tn, ϕ′ n
i±α,j±α, are obtained by

sampling the derivative of the reconstruction (3.2), i.e., ϕ′ n
i±α,j±α = ϕ̃′(xi±α,j±α, t

n).
The other intermediate values of the derivative in time that are required in the quadra-
ture can be predicted using a Taylor expansion or with a RK method in a way anal-
ogous to that for the one-dimensional case.

Remarks.
1. We present two different algorithms for constructing ϕi±α,j±α: two-dimensional

interpolants defined on two-dimensional stencils and a dimension-by-dimension ap-
proach. We present both algorithms for the third-order scheme and extend the sim-
pler dimension-by-dimension approach to fifth-order. Our numerical simulations in
section 4 indicate that both reconstructions of ϕi±α,j±α are of a comparable qual-
ity. In both approaches, the reconstruction of the derivatives ∇ϕi±α,j±α is done
dimension-by-dimension.

2. We reproject ϕn+1
i+α,j+α and ϕn+1

i−α,j−α back onto the integer grid-points, obtain-

ing ϕn+1
i,j . We present several ways to carry out this reprojection: a genuinely two-

dimensional approach, a dimension-by-dimension strategy, and a reprojection along
the diagonal line through xi−α,j−α and xi+α,j+α.

3.2. Two-dimensional third-order schemes. In order to obtain a third-order
scheme, we need a fourth-order reconstruction of the point-values at the evolution
points xi±α,j±α.

3.2.1. A two-dimensional reconstruction of ϕi±α,j±α. In this section we
present a two-dimensional fourth-order reconstruction of the point-values ϕi±α,j±α.
In principle, a two-dimensional cubic interpolant would provide a reconstruction with
the desired accuracy. Such an interpolant is based on a ten-point stencil. As usual,
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j

j+2

j+1

j-1

i-1 i+2i+1i

Fig. 3.2. The ten-point stencil for the two-dimensional reconstruction of ϕi+α,j+α. The open
circle shows the location of the evolution point at xi+α,j+α.

solving such a direct interpolation problem is unsatisfactory because spurious oscilla-
tions might develop as a result of the lack of smoothness in the solution. Instead, we
generate a two-dimensional fourth-order reconstruction as a convex combination of
four quadratic interpolants, each of which is based on a six-point stencil. We choose
compact quadratic interpolants such that the union of all the six-point stencils is a
compact ten-point stencil. Similarly to any WENO-type reconstruction, when singu-
larities are present the six-point stencils containing the singularities are suppressed.
In any case, we implicitly assume that the solution is sufficiently resolved such that
the singularities in the solution are isolated in the sense that they do not occur along
neighboring parallel cell edges. Singularities will in general occur along adjacent cell
edges. There is a lot of flexibility in choosing the ten-point stencil as well as the differ-
ent six-point stencils. Here, for the evolution point xi+α,j+α we choose the ten-point
stencil shown in Figure 3.2. We also choose to use the four six-point stencils that are
shown in Figure 3.3; obviously, the union of these stencils is the ten-point stencil in
Figure 3.2. Furthermore, they all enclose the cell containing the evolution point, and
they all cross different edges of the enclosing cell. A singularity along an edge will
suppress two of these stencils, while a singularity in a corner will suppress three of
these stencils.

Remarks.
1. The stencils for the evolution point at xi−α,j−α are obtained by a rotation of

180 degrees of the stencils in Figures 3.2–3.3.
2. We could use fewer than four stencils and still generate a scheme that will have

the desired order of accuracy.
Given the four six-point stencils in Figure 3.3, a straightforward computation

shows that third-order approximations for smooth ϕ at the evolution points xi±α,j±α,
ϕk
i±α,j±α = ϕ (xi±α, yj±α) + O(∆x3,∆y3) ∀k ∈ {1, 2, 3, 4} are obtained with

ϕ1
i±α,j±α = a1ϕi,j + a2ϕi±1,j + a2ϕi,j±1 + a3ϕi±1,j±1 + a4ϕi±2,j + a4ϕi,j±2,(3.4)
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1 2

3 4

j

j+2

j+1

j-1

i-1 i+2i+1i

j

j+2

j+1

j-1

i-1 i+2i+1i

j

j+2

j+1

j-1

i-1 i+2i+1i

j

j+2

j+1

j-1

i-1 i+2i+1i

Fig. 3.3. The four six-point stencils that cover the ten-point stencil for the two-dimensional
reconstruction.

ϕ2
i±α,j±α = a5ϕi,j + a6ϕi±1,j + a2ϕi,j±1 + a3ϕi±1,j±1 + a4ϕi,j±2 + a4ϕi∓1,j ,

ϕ3
i±α,j±α = a7ϕi,j + a2ϕi±1,j + a2ϕi,j±1 + a8ϕi±1,j±1 + a4ϕi±1,j∓1 + a4ϕi∓1,j±1,

ϕ4
i±α,j±α = a5ϕi,j + a2ϕi±1,j + a6ϕi,j±1 + a3ϕi±1,j±1 + a4ϕi±2,j + a4ϕi,j∓1,

where

a1 = 1 − 3α + 2α2, a2 = 2α− 2α2, a3 = α2,(3.5)

a4 = −1

2
α +

1

2
α2, a5 = 1 − 3

2
α +

1

2
α2, a6 =

1

2
α− 1

2
α2,

a7 = 1 − 2α + α2, a8 = −α + 2α2.

The linear combination

4∑
k=1

ckϕ
k
i±α,j±α = ϕ (xi±α, yj±α) + O

(
∆x4,∆y4

)

is fourth-order accurate, provided that the constants ci are taken as

c1 =
1

3
(5α− 1) , c2 = c4 =

2

3
(−2α + 1) , c3 = α.(3.6)

A two-dimensional CWENO reconstruction is a straightforward generalization of
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the one-dimensional case (compare with (2.7), (2.8)):

ϕi±α,j±α =

4∑
k=1

wk
i±α,j±αϕ

k
i±α,j±α.

Here

wk
i±α,j±α =

αk
i±α,j±α∑4

l=1 α
l
i±α,j±α

, αk
i±α,j±α =

ck(
ε + Sk

i±α,j±α

)p ,
with the constants ck given by (3.6). As usual, the smoothness measure for every
stencil is taken as a normalized sum of the discrete L2-norms of the derivatives. If
we define the forward and backward differences ∆+

x ϕi,j = ϕi+1,j − ϕi,j , ∆−
x ϕi,j =

ϕi,j − ϕi−1,j , ∆+
y ϕi,j = ϕi,j+1 − ϕi,j , ∆−

y ϕi,j = ϕi,j − ϕi,j−1, then the smoothness
measures for the evolution point xi+α,j+α are given by

S1
i+α,j+α =

(
∆+

x ϕi,j

)2
+
(
∆+

x ϕi+1,j

)2
+
(
∆+

x ϕi,j+1

)2
+
(
∆+

y ϕi,j

)2
+
(
∆+

y ϕi,j+1

)2
+
(
∆+

y ϕi+1,j

)2
+

1

∆x2

[(
∆+

x ∆−
x ϕi+1,j

)2
+
(
∆+

y ∆−
y ϕi,j+1

)2]
,

S2
i+α,j+α =

(
∆+

x ϕi,j

)2
+
(
∆+

x ϕi−1,j

)2
+
(
∆+

x ϕi,j+1

)2
+
(
∆+

y ϕi,j

)2
+
(
∆+

y ϕi,j+1

)2
+
(
∆+

y ϕi+1,j

)2
+

1

∆x2

[(
∆+

x ∆−
x ϕi,j

)2
+
(
∆+

y ∆−
y ϕi,j+1

)2]
,

S3
i+α,j+α =

(
∆+

x ϕi,j

)2
+
(
∆+

x ϕi,j+1

)2
+
(
∆+

x ϕi−1,j+1

)2
+
(
∆+

y ϕi,j

)2
+
(
∆+

y ϕi+1,j

)2
+
(
∆+

y ϕi+1,j−1

)2
+

1

∆x2

[(
∆+

x ∆−
x ϕi,j+1

)2
+
(
∆+

y ∆−
y ϕi+1,j

)2]
,

S4
i+α,j+α =

(
∆+

x ϕi,j

)2
+
(
∆+

x ϕi+1,j

)2
+
(
∆+

x ϕi,j+1

)2
+
(
∆+

y ϕi,j

)2
+
(
∆+

y ϕi,j−1

)2
+
(
∆+

y ϕi+1,j

)2
+

1

∆x2

[(
∆+

x ∆−
x ϕi+1,j

)2
+
(
∆+

y ∆−
y ϕi,j

)2]
.

The smoothness measures for the evolution point xi−α,j−α are

S1
i−α,j−α =

(
∆+

x ϕi−2,j

)2
+
(
∆+

x ϕi−1,j

)2
+
(
∆+

x ϕi−1,j−1

)2
+
(
∆+

y ϕi,j−2

)2
+
(
∆+

y ϕi,j−1

)2
+
(
∆+

y ϕi−1,j−1

)2
+

1

∆x2

[(
∆+

x ∆−
x ϕi−1,j

)2
+
(
∆+

y ∆−
y ϕi,j−1

)2]
,

S2
i−α,j−α =

(
∆+

x ϕi,j

)2
+
(
∆+

x ϕi−1,j

)2
+
(
∆+

x ϕi−1,j−1

)2
+
(
∆+

y ϕi−1,j

)2
+
(
∆+

y ϕi−1,j−1

)2
+
(
∆+

y ϕi,j−2

)2
+

1

∆x2

[(
∆+

x ∆−
x ϕi,j

)2
+
(
∆+

y ∆−
y ϕi,j−1

)2]
,

S3
i−α,j−α =

(
∆+

x ϕi−1,j

)2
+
(
∆+

x ϕi,j−1

)2
+
(
∆+

x ϕi−1,j−1

)2
+
(
∆+

y ϕi,j−1

)2
+
(
∆+

y ϕi−1,j

)2
+
(
∆+

y ϕi−1,j−1

)2
+

1

∆x2

[(
∆+

x ∆−
x ϕi,j−1

)2
+
(
∆+

y ∆−
y ϕi−1,j

)2]
,

S4
i−α,j−α =

(
∆+

x ϕi−2,j

)2
+
(
∆+

x ϕi−1,j

)2
+
(
∆+

x ϕi−1,j−1

)2
+
(
∆+

y ϕi,j

)2
+
(
∆+

y ϕi,j−1

)2
+
(
∆+

y ϕi−1,j−1

)2
+

1

∆x2

[(
∆+

x ∆−
x ϕi−1,j

)2
+
(
∆+

y ∆−
y ϕi,j

)2]
.
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Fig. 3.4. The dimension-by-dimension reconstruction process in two dimensions. Left: the first
step, where the intermediate interpolants ϕi+α,j at xi+α,j (open squares) are computed using the
data ϕi,j (black dots). Right: the second step, where ϕi+α,j is interpolated in the j direction, giving
ϕi+α,j+α at xi+α,j+α (open circle).

3.2.2. A dimension-by-dimension reconstruction of ϕi±α,j±α. A differ-
ent way to obtain high-order approximations for the values of ϕi±α,j±α is by carrying
out a sequence of one-dimensional reconstructions from section 2.2. This dimension-
by-dimension approach for the reconstruction step is similar in spirit to that of [17],
but here, in order to generate a Godunov-type scheme (unlike [17]), we are forced to
use evolution points that are not positioned in the same locations as the data xi,j .
An appropriately chosen sequence of one-dimensional reconstructions addresses this
problem.

We use the subscript “∗” to denote the full range of an array, such that ϕ∗,j and
ϕi,∗ denote the one-dimensional arrays ϕ∗,j = (ϕ1,j , . . . , ϕN,j) and ϕi,∗ = (ϕi,1, . . . ,
ϕi,N ). With the notation for the one-dimensional third-order reconstruction, (2.10),
we can express the dimension-by-dimension reconstruction at xi+α,j+α as

1. for each i, j: ϕi+α,j = reconstruct ϕ 1D 3 (i, α, ϕ∗,j) ;
2. for each i, j: ϕi+α,j+α = reconstruct ϕ 1D 3 (j, α, ϕi+α,∗).

Here, we first interpolate along the first coordinate axis and reconstruct ϕ at xi+α,j .
The data at xi+α,j is then interpolated along the second coordinate axis to the lo-
cation xi+α,j+α to give ϕi+α,j+α (see Figure 3.4). Obviously, the order in which the
steps are performed is not important. In a similar way, a dimension-by-dimension
reconstruction at xi−α,j−α is given by

1. for each i, j: ϕi−α,j = reconstruct ϕ 1D 3 (i,−α,ϕ∗,j) ;
2. for each i, j: ϕi−α,j−α = reconstruct ϕ 1D 3 (j,−α,ϕi−α,∗).

3.2.3. The reprojection step. After evolving the solution to the next time step
at the evolution points xi±α,j±α, we would like to reproject ϕn+1

i+α,j+α back onto the in-

teger grid-points xi,j to end up with ϕn+1
i,j . There are several different ways to perform

this task, out of which we choose to present the following: a two-dimensional repro-
jection using the two-dimensional reconstruction of section 3.2.1 or the dimension-by-
dimension reconstruction of section 3.2.2, and a one-dimensional projection along the
diagonal.

I. A 2D reprojection. The evolution points at xi±α,j±α have the same geometrical
relationship to xi,j as xi,j has to xi−α,j−α. Hence, in order to reconstruct ϕn+1

i,j from
ϕi±α,j±α, we can directly utilize the projections from section 3.2.1 or section 3.2.2,
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i-1 i+1i

j
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Fig. 3.5. The evolution points used for the diagonal reconstruction of ϕi,j .

taking ϕi±α,j±α as the input data and reversing the sign of the parameter from ±α to
∓α. The final value ϕn+1

i,j is then taken as the average of the projections of ϕi+α,j+α

and ϕi−α,j−α. Hence, if we denote either the two-dimensional or the dimension-by-
dimension reconstruction described in section 3.2.1 or section 3.2.2 as

ϕi±α,j±α = reconstruct ϕ 2D 3 (i, j,±α,ϕ) ,(3.7)

where ϕ is now the two-dimensional array {ϕi,j}, then the reprojection step is
(i) for each i, j: ϕ+

i,j = reconstruct ϕ 2D 3 (i,−α,ϕi+α,j+α) ;

(ii) for each i, j: ϕ−
i,j = reconstruct ϕ 2D 3 (i, α, ϕi−α,j−α) ;

(iii) for each i, j: ϕn+1
i,j = 1

2 (ϕ+
i,j + ϕ−

i,j).

II. A diagonal reprojection. In this case we use one-dimensional data along the di-
agonal, {ϕi−1+α,j−1+α, ϕi−α,j−α, ϕi+α,j+α, ϕi+1−α,j+1−α}, to construct a third-order
WENO approximation of ϕn+1

i,j (see Figure 3.5).
Define

ϕ−
i,j :=

α2

2α− 1
ϕi−1+α,j−1+α +

α− 1

2(2α− 1)
ϕi−α,j−α(3.8)

+
1 − α

2
ϕi+α,j+α = ϕ (xi,j) + O

(
∆x3,∆y3

)
,

ϕ+
i,j :=

1 − α

2
ϕi−α,j−α +

α− 1

2(2α− 1)
ϕi+α,j+α

+
α2

2α− 1
ϕi+1−α,j+1−α = ϕ (xi,j) + O

(
∆x3,∆y3

)
.
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Since (ϕ−
i,j + ϕ+

i,j)/2 = ϕ (xi,j) + O(∆x4,∆y4), we can obtain ϕn+1
i,j as

ϕn+1
i,j = w−

i,jϕ
−
i,j + w+

i,jϕ
+
i,j ,(3.9)

where as usual w±
i,j = α±

i,j/(α+
i,j + α−

i,j) and α±
i,j = (2(ε + S±

i,j)
p)−1. The smoothness

measures are again taken as the sum of the discrete L2-norm of the derivatives, which
in this case is more complicated due to the uneven spacing of the data:

S−
i,j =

1

∆x

[(
ϕi−α,j−α − ϕi−1+α,j−1+α

1 − 2α

)2

+

(
ϕi+α,j+α − ϕi−α,j−α

2α

)2
]

+
4

∆x3

(
ϕi−α,j−α − ϕi−1+α,j−1+α

1 − 2α
− ϕi+α,j+α − ϕi−α,j−α

2α

)2

,

S+
i,j =

1

∆x

[(
ϕi+α,j+α − ϕi−α,j−α

2α

)2

+

(
ϕi+1−α,j+1−α − ϕi+α,j+α

1 − 2α

)2
]

+
4

∆x3

(
ϕi+α,j+α − ϕi−α,j−α

2α
− ϕi+1−α,j+1−α − ϕi+α,j+α

1 − 2α

)2

.

Remark. Our numerical simulations in section 4.3 indicate that there is little dif-
ference between the quality of the two-dimensional reconstruction and the dimension-
by-dimension reconstruction of sections 3.2.1 and 3.2.2. We will use this fact when
extending our methods to fifth order and higher dimensions. We note that the diag-
onal reprojection significantly reduces the CFL number (see section 4.4).

3.3. A two-dimensional fifth-order scheme. Using the dimension-by-dimension
approach, it is easy to extend the above scheme to fifth order: simply replace the one-
dimensional third-order interpolations by the fifth-order interpolation in section 3.2.2.
Using the one-dimensional notation, (2.19), we obtain a fifth-order reconstruction at
xi+α,j+α as

1. for each i, j: ϕi+α,j = reconstruct ϕ 1D 5 (i, α, ϕ∗,j) ;
2. for each i, j: ϕi+α,j+α = reconstruct ϕ 1D 5 (j, α, ϕi+α,∗).

Similarly, at xi−α,j−α we have
1. for each i, j: ϕi−α,j = reconstruct ϕ 1D 5 (i,−α,ϕ∗,j) ;
2. for each i, j: ϕi−α,j−α = reconstruct ϕ 1D 5 (j,−α,ϕi−α,∗).

We denote this reconstruction as

ϕi±α,j±α = reconstruct ϕ 2D 5 (i, j,±α,ϕ) .(3.10)

For the derivatives we have
1. for each i, j: ϕ′

i±α,j = reconstruct ϕ′ 1D 5 (i,±α,ϕ∗,j),
2. for each i, j: ϕ′

i±α,j±α = reconstruct ϕ′ 1D 5 (j,±α,ϕi±α,∗),
which we denote as

ϕ′
i±α,j±α = reconstruct ϕ′ 2D 5 (i, j,±α,ϕ) .(3.11)

Reprojection onto the original grid-points xi,j is performed using the two-dimen-
sional dimension-by-dimension reprojection option described in section 3.2.3.
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Remarks.
1. Due to the reduced stability resulting from the use of diagonal reprojection,

which is demonstrated in section 4.4, we do not develop a fifth-order analogue to the
third-order diagonal reprojection.

2. It is straightforward to develop a fifth-order two-dimensional method involving
two-dimensional stencils, extending section 3.2.1. Such a method would involve four
interpolants defined on ten-point stencils that cover a 21-point stencil.

We summarize the two-dimensional fifth-order algorithm in the following, where
RK(ϕn

i±α, ϕ
′ n
i±α,∆t) is now the fourth-order RK method which integrates (2.1). As

in Algorithm 2.1, each internal step of the RK method will require additional recon-
structions of ϕ′

i±α from that step’s ϕi±α.

Algorithm 3.1. Let α = 1/(2 +
√

2). Assume that {ϕn
i,j} are given.

(a) Reconstruct:

ϕi±α,j±α = reconstruct ϕ 2D 5 (i, j,±α,ϕ) ,

ϕ′ n
i±α,j±α = reconstruct ϕ′ 2D 5 (i, j,±α,ϕ) .

(b) Integrate:

ϕ
n+ 1

2
i±α,j±α = RK

(
ϕn
i±α,j±α, ϕ

′ n
i±α,j±α,∆t/2

)
,

ϕ
′ n+ 1

2
i±α,j±α = reconstruct ϕ′ 2D 5(i,±α,ϕ

n+ 1
2±α,±α),

ϕn+1
i±α,j±α = RK

(
ϕn
i±α,j±α, ϕ

′ n
i±α,j±α,∆t

)
,

ϕ′ n+1
i±α,j±α = reconstruct ϕ′ 2D 5

(
i,±α,ϕn+1

±α,±α

)
,

ϕn+1
i±α,j±α = ϕn

i±α,j±α +
∆t

6

[
H
(
ϕ′ n
i±α,j±α

)
+ 4H(ϕ

′ n+ 1
2

i±α,j±α) + H
(
ϕ′ n+1
i±α,j±α

)]
.

(c) Reproject:

ϕn+1
i,j = reconstruct ϕ 2D 5

(
i, j,∓α,ϕn+1

±α,±α

)
.

3.4. Multidimensional extensions. The extension of the dimension-by-dimension
approach to more than two space dimensions is straightforward. For example, using
the notation of section 3.3, a three-dimensional fifth-order reconstruction is

1. for each i, j, k: ϕi+α,j,k = reconstruct ϕ 1D 5 (i, α, ϕ∗,j,k) ;
2. for each i, j, k: ϕi+α,j+α,k = reconstruct ϕ 1D 5 (j, α, ϕi+α,∗,k);
3. for each i, j, k: ϕi+α,j+α,k+α = reconstruct ϕ 1D 5 (k, α, ϕi+α,j+α,∗).

The reconstruction at xi−α,j−α,k−α is handled similarly, and the same for the recon-
struction of ϕ′

i+α,j+α,k+α. In three dimensions, α = 1/(3 +
√

3).
A d-dimensional reconstruction based on d-dimensional stencils quickly becomes

very large. It is readily apparent that the dimension-by-dimension approach will scale
to high dimensions better than d-dimensional interpolants.

4. Numerical simulations. In this section we present simulations that test the
schemes we developed in this paper. In section 4.1 we demonstrate the third- and fifth-
order methods in one dimension. Section 4.2 focuses on the fifth-order method in two
and three space dimensions. In section 4.3 we compare the two-dimensional third-
order method based on two-dimensional stencils with the dimension-by-dimension
approach. In section 4.4 we examine, in detail, stability issues in two dimensions,
including comparisons with [17]. Some of these examples are standard test cases that
can be found, e.g., in [22, 31, 35].

We do not follow the practice in [17] of masking singular regions from our error
measurements.
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Fig. 4.1. One-dimensional convex Hamiltonian (4.1). Left: the solution before the singularity
formation, T = 0.8/π2. Right: the solution after the singularity formation, T = 1.5/π2. In both
panels N = 40. Shown are the third- and fifth-order approximations and the exact solution.

4.1. One-dimensional examples.

A convex Hamiltonian. We start by testing the performance of our schemes
on a convex Hamiltonian. We approximate solutions of the one-dimensional equation

φt +
1

2
(φx + 1)

2
= 0,(4.1)

subject to the initial data φ(x, 0) = − cos(πx) with periodic boundary conditions on
[0, 2]. The change of variables u (x, t) = φx (x, t) + 1 transforms the equation into
the Burgers equation ut + 1

2

(
u2
)
x

= 0, which can be easily solved via the method of
characteristics [35]. As is well known, the Burgers equation generally develops discon-
tinuous solutions even with smooth initial data, and hence we expect the solutions of
(4.1) to have discontinuous derivatives. In our case, the solution develops a singularity
at time t = π−2.

The results of our simulations are shown in Figure 4.1. The order of accuracy
of these methods is determined from the relative L1 error (see [30]), defined as the
L1-norm of the error divided by the L1-norm of the exact solution. These results
along with the relative L∞-norm before the singularity, at T = 0.8/π2, are given in
Table 4.1, and after the singularity, at T = 1.5/π2, in Table 4.2.

A nonconvex Hamiltonian. In this example we deal with nonconvex HJ equa-
tions. In one dimension we solve

φt − cos (φx + 1) = 0,(4.2)

subject to the initial data φ (x, 0) = − cos (πx) with periodic boundary conditions
on [0, 2]. In this case (4.2) has a smooth solution for t � 1.049/π2, after which a
singularity forms. A second singularity forms at t ≈ 1.29/π2. The results are shown
in Figure 4.2. The convergence results before and after the singularity formation are
given in Tables 4.3–4.4.

A linear advection equation. In this example (from [17], with a misprint cor-
rected in [40]) we solve the one-dimensional linear advection equation, i.e., H (φx) =
φx. We assume periodic boundary conditions on [−1, 1] and take the initial data as
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Table 4.1
Relative L1 errors for the one-dimensional convex HJ problem (4.1) before the singularity for-

mation. T = 0.8/π2.

Third-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 9.41×10−5 – 1.77×10−5 –

200 1.13×10−5 3.06 1.33×10−6 3.73

400 1.39×10−6 3.02 9.35×10−8 3.83

800 1.74×10−7 3.00 5.94×10−9 3.00

Fifth-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 1.41×10−5 – 2.61×10−6 –

200 4.21×10−7 5.07 4.03×10−8 6.02

400 3.31×10−8 5.00 6.53×10−10 5.95

800 4.03×10−10 5.03 1.00×10−11 6.03

Table 4.2
Relative L1 errors for the one-dimensional convex HJ problem (4.1) after the singularity for-

mation. T = 1.5/π2.

Third-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 9.10×10−4 – 2.77×10−4 –

200 2.16×10−4 2.07 7.63×10−5 1.86

400 6.84×10−5 1.66 2.68×10−5 1.51

800 2.75×10−5 1.31 2.08×10−5 0.37

Fifth-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 7.85×10−4 – 5.78×10−4 –

200 1.61×10−4 2.29 8.29×10−5 2.29

400 6.71×10−5 1.26 5.09×10−5 1.26

800 3.44×10−5 0.96 3.44×10−5 0.96

φ (x, 0) = g (x− 0.5) on [−1, 1], where

g (x) = −
(√

3

2
+

9

2
+

2π

3

)
(x + 1) + h(x),

h(x) =




2 cos
(

3π
2 x2

)−√
3, −1 < x < − 1

3 ,

3/2 + 3 cos (2πx) , − 1
3 < x < 0,

15/2 − 3 cos (2πx) , 0 < x < 1
3 ,

(28 + 4π + cos (3πx)) /3 + 6πx (x− 1) , 1
3 < x < 1.

(4.3)

The results of the fifth-order method are shown in Figure 4.3, where it is compared
with the fifth-order method of [17]. The reduced dissipation effects of our method are
visible in the reduced round-off of the corners.
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Fig. 4.2. One-dimensional nonconvex Hamiltonian (4.2). Left: The solution before the singu-
larity formation, T = 0.8/π2. Right: The solution after the singularity formation, T = 1.5/π2. In
both panels N = 40. Shown are the third- and fifth-order approximations and the exact solution.

Table 4.3
Relative L1 errors for the one-dimensional nonconvex HJ problem (4.2) before the singularity

formation. T = 0.8/π2.

Third-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 6.47×10−5 – 9.05×10−6 –

200 7.78×10−6 3.06 1.11×10−6 3.03

400 8.77×10−7 3.15 9.27×10−8 3.58

800 9.87×10−8 3.15 6.12×10−9 3.92

Fifth-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 1.29×10−5 – 4.97×10−6 –

200 6.52×10−7 4.31 2.38×10−7 4.38

400 2.10×10−8 4.95 6.13×10−9 5.28

800 5.96×10−10 5.14 1.03×10−10 5.90

Table 4.4
Relative L1 errors for the one-dimensional nonconvex HJ problem (4.2) after the singularity

formation. T = 1.5/π2.

Third-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 2.81×10−4 – 9.64×10−5 –

200 1.32×10−4 1.08 5.05×10−5 0.93

400 2.31×10−5 2.52 6.00×10−6 3.07

800 8.43×10−6 1.46 3.30×10−6 0.86

Fifth-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 1.57×10−4 – 1.12×10−4 –

200 8.34×10−5 0.91 6.60×10−5 0.77

400 1.22×10−5 2.78 8.64×10−6 2.93

800 6.67×10−5 0.87 5.23×10−6 .072
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Fig. 4.3. One-dimensional linear advection, (4.3). T = 2, 8, 16, 32; N = 100. Crosses: our
fifth-order method. Circles: the fifth-order method of [17] with a local Lax–Friedrichs flux. Solid
line: the exact solution.

4.2. Two-dimensional examples.

A convex Hamiltonian. In two dimensions we solve a problem similar to (4.1),

φt +
1

2
(φx + φy + 1)

2
= 0,(4.4)

which can be reduced to a one-dimensional problem via the coordinate transformation
( ξ
η ) = 1

2 ( 1
1

1
−1 )(x

y ). The results of the fifth-order calculations for the initial data

φ (x, y, 0) = − cos (π(x + y)/2) = − cos (πξ) are shown in Figure 4.4. The convergence
rates for the two-dimensional fifth-order scheme before and after the singularity are
shown in Table 4.5.

A nonconvex Hamiltonian. The two-dimensional nonconvex problem, which
is analogous to the one-dimensional problem (4.2), is

φt − cos (φx + φy + 1) = 0.(4.5)

Here we assume initial data, given by φ (x, y, 0) = − cos (π(x + y)/2), and periodic
boundary conditions. The results are shown in Figure 4.5. The convergence results
for the two-dimensional fifth-order scheme before and after the singularity formation
are given in Table 4.6.
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Fig. 4.4. Two-dimensional convex Hamiltonian, (4.4). Left: the solution before the singularity
formation, T = 0.8/π2. Right: the solution after the singularity formation, T = 1.5/π2. In both
panels N = 40× 40. The solution is computed with the fifth-order method.

Table 4.5
Relative L1 and L∞ errors for the two-dimensional convex HJ problem (4.4) before and after

singularity formation, computed via the fifth-order method.

Before singularity T = 0.8/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

50 1.19×10−4 – 7.78×10−7 –

100 6.80×10−6 4.13 1.64×10−8 5.56

200 1.73×10−7 5.30 1.12×10−10 7.20

After singularity T = 1.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

50 1.32×10−3 – 2.07×10−5 –

100 3.89×10−4 1.76 3.60×10−6 2.52

200 4.86×10−5 3.00 1.69×10−7 4.41

A fully two-dimensional example. The above two-dimensional examples are
actually one-dimensional along the diagonal. To check the performance of our methods
on fully two-dimensional problems, we solve

φt + φxφy = 0(4.6)

on [−π, π] × [−π, π], subject to the initial data φ (x, y, 0) = sin (x) + cos (y) with
periodic boundary conditions. The exact solution for this problem is given implicitly
by φ (x, y, t) = − cos (q) sin (r) + sin (q) + cos (r), where x = q − t sin (r) and y =
r + t cos (q). This solution is smooth for t < 1, continuous ∀t, and has discontinuous
derivatives for t ≥ 1. The results of our simulations at times T = 0.8, 1.5 are shown
in Figure 4.6. The convergence results for the fifth-order two-dimensional schemes
before the singularity formation are given in Table 4.7 and confirm the expected
order of accuracy of our methods.
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Fig. 4.5. Two-dimensional nonconvex Hamiltonian, (4.5). Left: the solution before the sin-
gularity formation, T = 0.8/π2. Right: the solution after the singularity formation, T = 1.5/π2.
N = 40× 40. The solution is computed with the fifth-order method.

Table 4.6
Relative L1 and L∞ errors for the two-dimensional nonconvex HJ problem (4.5) before and

after the singularity formation, computed with the fifth-order method.

Before singularity T = 0.8/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

50 1.11×10−4 – 1.26×10−6 –

100 6.91×10−6 4.00 2.42×10−8 5.70

200 3.85×10−7 4.17 6.27×10−10 5.27

After singularity T = 1.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

50 1.47×10−3 – 8.58×10−6 –

100 1.93×10−4 2.93 9.27×10−7 3.21

200 8.87×10−5 1.12 3.09×10−7 1.58

An eikonal equation in geometric optics. We consider a two-dimensional
nonconvex problem that arises in geometric optics [20]:{

φt +
√

φ2
x + φ2

y + 1 = 0,

φ (x, y, 0) = 1
4 (cos (2πx) − 1) (cos (2πy) − 1) − 1.

(4.7)

The results of our fifth-order method at time T = 0.6 are shown in Figure 4.7, where
we see the sharp corners that develop in this problem.

An optimal control problem. We solve an optimal control problem related to
cost determination [35]. Here the Hamiltonian is of the form H(x, y,∇φ):{

φt − sin (y)φx + sin (x)φy + |φy| − 1
2 sin2 (y) − 1 + cos (x) = 0,

φ (x, y, 0) = 0.
(4.8)
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Fig. 4.6. Fully two-dimensional Hamiltonian, (4.6). Left: the solution before the singularity
formation, T = 0.8. Right: the solution after the singularity formation, T = 1.5. In both panels
N = 50× 50. The solution is computed with the fifth-order method.

Table 4.7
Relative L1 errors for the two-dimensional HJ problem (4.6) before singularity formation. T =

0.8. The solution is computed with the fifth-order method.

Before singularity T = 0.8

N Relative L1 error L1-order Relative L∞ error L∞-order

50 6.10×10−6 – 8.15×10−8 –

100 2.10×10−7 4.86 7.35×10−10 6.79

200 7.53×10−9 4.80 5.59×10−12 7.04

The result of our fifth-order scheme is presented in Figure 4.8 and is in qualitative
agreement with [31].

4.3. A comparison of two-dimensional third-order interpolants. In this
section we use the examples (4.4), (4.5), and (4.6) to compare the third-order method
of section 3.2.1, based on interpolation via two-dimensional stencils, with that of
section 3.2.2, where we used a dimension-by-dimension approach. The results are
shown in Table 4.8. The dimension-by-dimension method produces errors that are
approximately twice as large as those for the genuinely two-dimensional reconstruc-
tion. However, the convergence rate is qualitatively the same in both methods. These
results motivated us to base our fifth-order scheme on the much simpler dimension-
by-dimension reconstruction.

4.4. A stability study. In this section we present a couple of stability studies
that we obtained in our simulations. We start by checking the stability properties
of the third-order scheme with different reprojection steps. The reconstruction step
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Fig. 4.8. Two-dimensional optimal control problem, (4.8). An approximation with the fifth-
order method is shown at T = 1 and N = 40× 40.
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Table 4.8
Comparison of the third-order method of section 3.2.1, using an interpolation via two-

dimensional stencils, and that of section 3.2.2, using the dimension-by-dimension approach.

2D stencils Dimension-by-dimension

N Relative L1 error L1-order Relative L1 error L1-order

Convex Hamiltonian at T = 0.8/π2

50 4.70×10−4 – 6.13×10−4 –

100 7.54×10−5 2.64 9.43×10−5 2.70

200 8.07×10−6 3.23 1.02×10−5 3.21

Convex Hamiltonian at T = 1.5/π2

50 1.23×10−3 – 2.61×10−3 –

100 4.56×10−4 1.44 8.19×10−4 1.67

200 3.70×10−5 3.62 1.22×10−4 2.74

Nonconvex Hamiltonian at T = 0.8/π2

50 2.27×10−4 – 3.92×10−4 –

100 3.75×10−5 2.60 6.97×10−5 2.49

200 3.99×10−6 3.23 7.22×10−6 3.27

Nonconvex Hamiltonian at T = 1.5/π2

50 1.23×10−3 – 1.94×10−3 –

100 2.50×10−4 2.30 4.16×10−4 2.22

200 7.63×10−5 1.71 1.20×10−4 1.79

Fully 2D example at T = 0.8

50 2.01×10−4 – 1.48×10−4 –

100 2.42×10−5 3.05 1.65×10−5 3.16

200 2.95×10−6 3.04 1.95×10−6 3.08

is done in all cases using the dimension-by-dimension interpolant. We compare the
dimension-by-dimension reprojection and the diagonal reprojection (of section 3.2.3).
In Figure 4.9 we plot the L1 error as a function of the CFL number. The test problem
is (4.6) with the fully two-dimensional Hamiltonian. The solution is computed at
T = 0.8. We see that the use of a diagonal reprojection significantly reduces the
maximum allowed CFL number.

We now turn to checking the stability properties of the two-dimensional fifth-order
method of section 3.3 by computing the L1 errors for various examples while varying
the CFL number. In Figure 4.10 we compare the results obtained with our fifth-order
scheme with the fifth-order method of [17], for which we used a local Lax–Friedrichs
flux. The numerical tests indicate that larger CFL numbers can be used with our
method.

4.5. Three-dimensional examples. We proceed with a three-dimensional gen-
eralization of the convex Hamiltonian (4.4),

φt +
1

2
(φx + φy + φz + 1)

2
= 0,(4.9)

subject to the initial data φ (x, y, z, 0) = − cos (π(x + y + z)/3). The convergence
results for the three-dimensional fifth-order scheme before and after the singularity
formation are given in Table 4.9. We also approximate the solution of the nonconvex



1366 STEVE BRYSON AND DORON LEVY

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-4 Third order fully 2D H, T=0.8

CFL

re
la

tiv
e 

L1 -e
rr

or

Fig. 4.9. Stability of the two-dimensional third-order method with a dimension-by-dimension
reprojection (crosses) vs. a diagonal reprojection (diamonds). Fully two-dimensional Hamiltonian
(4.6). T = 0.8 (before singularity), N = 100× 100.

Table 4.9
Relative L1 and L∞ errors for the three-dimensional convex HJ problem (4.9) before and after

the singularity formation, computed with the fifth-order method.

Before singularity T = 0.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

25 2.61×10−4 – 1.07×10−7 –

50 6.40×10−6 5.35 3.16×10−10 8.41

100 1.50×10−7 5.42 9.18×10−13 8.43

After singularity T = 1.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

25 6.95×10−3 – 1.80×10−5 –

50 1.40×10−3 2.31 4.15×10−6 2.12

100 5.33×10−4 1.39 6.94×10−7 2.58

problem

φt − cos (φx + φy + φz + 1) = 0,(4.10)

with the same initial data. The convergence rates for the three-dimensional fifth-order
schemes are given in Table 4.10.
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Fig. 4.10. Stability of the two-dimensional fifth-order method. N = 100 × 100. Crosses: our
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after the singularity (right). Bottom row: nonconvex Hamiltonian (4.5), before the singularity (left)
and after the singularity (right).
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Table 4.10
Relative L1 and L∞ errors for the three-dimensional nonconvex HJ problem (4.10) before and

after the singularity formation, computed with the fifth-order method.

Before singularity T = 0.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

25 7.28×10−4 – 3.70×10−7 –

50 3.71×10−5 4.29 4.06×10−9 6.51

100 1.05×10−6 5.14 2.18×10−11 7.54

After singularity T = 1.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

25 6.74×10−3 – 3.27×10−6 –

50 1.26×10−3 2.42 6.90×10−7 2.25

100 4.21×10−4 1.59 6.84×10−8 3.33
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