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Abstract

Two-layer shallow water equations describe flows that consist of two layers of inviscid fluid
of different, constant densities flowing over bottom topography. Unlike the singe-layer shallow
water system, the two-layer one is only conditionally hyperbolic: It loses its hyperbolicity
because of the momentum exchange terms between the layers and as the results its solutions
may develop instabilities. We study a three-layer approximation of the two-layer shallow
water equations by introducing an intermediate layer of a small depth. We examine the
hyperbolicity range of the three-layer model and demonstrate that while it still may lose
hyperbolicity, in some cases, the three-layer approximation may improve stability properties
of the two-layer shallow water system.

1 Introduction

Shallow water models are widely used as a mathematical framework to study water flows in
rivers and coastal areas as well as to investigate a variety of phenomena in atmospheric sciences
and oceanography. The basic feature of shallow water flows is that the vertical effect can be
neglected compared with the horizontal one with a good approximation. This allows a considerable
simplification in the mathematical formulation by replacing the vertical momentum equation by
the hydrostatic pressure distribution. As a result, such flows are usually described by the shallow
water equations. The simplest, yet commonly used, shallow water model is the Saint-Venant
system [11].

Layered shallow water equations describe the behaviour of several superposed layers of inviscid
fluid of different, constant densities flowing over bottom topography, as illustrated in Figure 1.1,
and are derived by depth averaging the incompressible Navier-Stokes equations with the hydro-
static assumption within each layer. For instance, the following one-dimensional (1-D) two-layer
shallow water model describes a flow that consists of layers of heights h1 (upper layer) and h2

(lower layer) at position x at time t with the corresponding constant densities ρ1 < ρ2, velocities
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u1 and u2, and discharges q1 := h1u1 and q2 := h2u2:

(h1)t + (q1)x = 0,

(q1)t +
(
h1u

2
1 +

g

2
h2

1

)
x

= −gh1Bx − gh1(h2)x,

(h2)t + (q2)x = 0,

(q2)t +
(
h2u

2
2 +

g

2
h2

2

)
x

= −gh2Bx − grh2(h1)x.

(1.1)

Here, B(x) is a function describing the bottom topography, r = ρ1
ρ2

is the ratio of the densities,
which is typically r ∼ 1, and g is the gravitational constant.
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Figure 1.1: Two-layer (left) and three-layer (right) shallow water setup.

The system (1.1) consists of four equations: The first and third of which indicate the conser-
vation of mass, and the second and fourth equations state the momentum balance for each layer.
One of the key challenges in solving the system (1.1) numerically is that it is only conditionally
hyperbolic which may lead to significant instabilities. Specifically speaking, the hyperbolic region
of the system (1.1) mainly depends on the difference between the velocities of the two layers: When
|u1−u2| is large, the system is not hyperbolic and one may expect appearance of Kelvin-Helmholtz
instabilities. Another numerical challenge is related to the presence of nonconservative momentum
exchange terms on the right-hand side (RHS) of (1.1). Even though the analytic theory of non-
conservative hyperbolic system has been developed (see, e.g., [10]), designing a numerical scheme
whose solution is guaranteed to converge to the unique physically relevant solution is still an
open problem. A theoretical framework for designing converging numerical method was presented
in [24], and a class of path-conservative schemes was developed afterwards in [7, 9, 22]. However,
as it has been recently demonstrated in [2], convergence of path-conservative schemes has still not
been rigorously established. In [17], an alternative approach was proposed. The system (1.1) was
rewritten in a different form, which is equivalent to (1.1) for smooth solutions:

(h1)t + (q1)x = 0,

(q1)t +

(
q2
1

h1

+ gεh1

)
x

= gε(h1)x,

wt + (q2)x = 0,

(q2)t +

(
q2
2

w −B
+
g

2
w2 − g

2
rh2

1 − gB(rh1 + w)

)
x

= −g(rh1 + w)Bx − grε(h1)x,

(1.2)
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where w := h2 + B and ε := h1 + h2 + B. The main advantage of the rewritten system (1.2)
over the original one (1.1) is that the coefficients of the nonconservative product terms on the
RHS of (1.2) are now proportional to the water surface variable ε, which is typically small in
all realistic settings provided that the reference level in the vertical direction z is selected to be
0 (see Figure 1.1). This is obviously true in all of the oceanographic applications, in which the
magnitude of surface waves is much smaller than the depth of the ocean. In [17], the system
(1.2) was numerically solved using a well-balanced, positivity-preserving central-upwind scheme,
which was originally developed for hyperbolic systems of conservation laws [14,15,18,19] and then
extended and applied to hyperbolic systems of balance laws arising in modeling shallow water
flows, see [13,16,17]. For several other numerical methods for multilayer shallow water equations
we refer the reader, e.g., to [1, 3–5].

One of the reasons the system (1.1) (and also its rewritten version (1.2)) is only conditionally
hyperbolic is that it is derived using a non-mixing assumption. In this paper, we study a three-
layer approximation of the two-layer system (1.1), which is obtained by introducing an intermediate
layer of a (small) depth hm. Our main goal is to study whether having an additional, “buffer”
layer would help to regain hyperbolicity in cases it is lost since the new layer is expected to contain
all possible turbulence and mixing without substantially affecting the horizontal velocities of the
other layers. We test a simple strategy of adding a “buffer” layer at the initial time moment and
see how it develops in time. A more sophisticated adaptive procedure was proposed in [6], where
the width of the intermediate layer was modified dynamically to make sure that a meaningful
“buffer” zone is always present between the upper and lower layers. Although the three-layer
system may still lose hyperbolicity as it demonstrated in §5 below, we show that the proposed
three-layer approximation may improve stability properties of the shallow water system in some
cases. At the same time, the loss of hyperbolicity seems to be a generic feature of the studied
three-layer system even though its hyperbolicity range may be much larger than the one of the
corresponding two-layer system, especially when the width of the “buffer” layer is large. As we
demonstrate in one of our numerical experiments, it may happen that the solution of the three-
layer system develops more severe oscillations than the original two-layer system. This suggests
that a further study is required to better understand the extent of applicability of the studied
three-layer system.

The paper is organized as follows. In §2, we present the three-layer approximation of the two-
layer shallow water system and discuss the strategy for choosing the intermediate layer. In §3, we
derive the central-upwind scheme for the three-layer system. Finally, §4 and §5 contain numerical
examples and analysis of the hyperbolicity properties of the three-layer shallow water equations.

2 The Three-Layer Shallow Water System

In this section, we introduce a three-layer shallow water system by adding an intermediate layer
with the depth hm, velocity um and discharge qm to system (1.1). The new system reads, (for the
form of a general multilayer system we refer the reader to [3])
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

(h1)t + (q1)x = 0,

(q1)t +
(
h1u

2
1 +

g

2
h2

1

)
x

= −gh1Bx − gh1(hm + h2)x,

(hm)t + (qm)x = 0,

(qm)t +
(
hmu

2
m +

g

2
h2
m

)
x

= −ghmBx − g
2r

1 + r
hm(h1)x − ghm(h2)x,

(h2)t + (q2)x = 0,

(q2)t +
(
h2u

2
2 +

g

2
h2

2

)
x

= −gh2Bx − g
1 + r

2
h2(hm)x − grh2(h1)x.

(2.1)

To apply the central-upwind scheme to this system, we follow the approach in [17] and rewrite it
as follows:

(h1)t + (q1)x = 0,

(q1)t +

(
q2
1

h1

+ gεh1

)
x

= gε(h1)x,

(hm)t + (qm)x = 0,

(qm)t +

(
q2
m

hm
+ gεhm

)
x

= gε(hm)x + g
1− r
1 + r

hm(h1)x,

wt + (q2)x = 0,

(q2)t +

(
q2
2

w −B
+
g

2
w2 − g

2
rh2

1 − gB(rh1 + w)− g1 + r

2
hm(h1 +B)− g1 + r

4
h2
m

)
x

= −g
(
rh1 + w +

1 + r

2
hm

)
Bx − gε

(
r(h1)x +

1 + r

2
(hm)x

)
− g1− r

2
hm(h1)x.

(2.2)

As in the two-layer system (1.2), we have introduced the new equilibrium variables w := h2 + B
and the water surface ε := h1 + hm + h2 +B. Notice that the formula for ε is now different from
the one used in (1.2) since we have one extra layer to be added. At the same time, we set up the
scales at the vertical z-axis so that the reference surface level is 0 (see Figure 1.1, right) as it was
done in the two-layer case schematically presented in Figure 1.1, left.

The new system is preferable for numerical computation thanks for the following two reasons:
(i) Since the system (2.2) is written in terms of equilibrium variables, the “lake at rest” steady-

state solution takes a particularly nice form:

h1 ≡ const, hm ≡ const, w ≡ const, u1 ≡ u2 ≡ um ≡ 0. (2.3)

Thus, the reformulated system makes it simpler to derive a well-balanced scheme for the three-layer
shallow water equations;

(ii) The coefficients in the nonconservative terms on the RHS of (2.2) are proportional to either
ε or (1 − r)hm. Note that ε vanishes at the “lake at rest” steady states, and, what is even more
important, in most oceanographic application remains very small. We also do not expect the depth
of the intermediate layer to become large in any realistic scenario, which means that (1− r)hm is
also expected to remain small. Smallness of ε and (1 − r)hm is expected to make the computed
results to be practically independent of the way the nonconservative terms are discretized as it
was the case in [17].
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Remark 2.1 Notice that if one sets hm = qm ≡ 0, the three-layer system (2.2) reduces to the
two-layer system (1.2).

3 Central-Upwind Scheme for the Three-Layer System

In this section, we describe a second-order well-balanced, positivity preserving central-upwind
scheme for the three-layer shallow water system (2.2), which we rewrite in the vector form as

Ut + F(U, B)x = S(U, B) + N(U, B), (3.1)

where the unknown function U, flux F, geometric source term S and nonconservative product
term N are given by the following formulae:

U := (h1, q1, hm, qm, w, q2)
T ,

F(U, B) :=

(
q1,

q2
1

h1

+ gεh1, qm,
q2
m

hm
+ gεhm, q2,

q2
2

w −B
+
g

2
w2 − g

2
rh2

1 − gB(rh1 + w)− g1 + r

2
hm(h1 +B)− g1 + r

4
h2
m

)T
,

S(U, B) :=

(
0, 0, 0, 0, 0,−g

(
rh1 + w +

1 + r

2
hm

)
Bx

)T
,

N(U, B) :=

(
0, gε(h1)x, 0, gε(hm)x + g

1− r
1 + r

hm(h1)x,

0,−grε(h1)x − g
1 + r

2

(
ε(hm)x +

1− r
1 + r

hm(h1)x

))T
.

(3.2)

We divide the computational domain into the cells Cj = [xj− 1
2
, xj+ 1

2
], which for simplicity are

assumed to be uniform so that xj+ 1
2
− xj− 1

2
= ∆x and xj = j∆x for all j. We denote by

Uj(t) =
1

∆x

∫
Cj

U(x, t) dx

the computed cell averages of U, which we assume to be available at time t. Using the notations
introduced in (3.2), a semi-discretization of (3.1) can be written as the following system of ODEs:

d

dt
Uj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
+ Sj(t) + Nj(t), (3.3)

where Hj+ 1
2

are numerical fluxes, and Sj and Nj are discretizations of the geometric source and
nonconservative product terms, respectively:

Sj(t) ≈
1

∆x

∫
Cj

S(U(x, t), B(x)) dx, Nj(t) ≈
1

∆x

∫
Cj

N(U(x, t), B(x)) dx. (3.4)

We use the central-upwind numerical fluxes derived in [15] (see also [13,16,17,19]):

Hj+ 1
2

=
a+
j+ 1

2

F(U−
j+ 1

2

, Bj+ 1
2
)− a−

j+ 1
2

F(U+
j+ 1

2

, Bj+ 1
2
)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

−U−
j+ 1

2

]
. (3.5)
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Here, Bj+ 1
2

:= B(xj+ 1
2
) (or Bj+ 1

2
:= 1

2

(
B(xj+ 1

2
+ 0) + B(xj+ 1

2
− 0)

)
in the case the bottom

topography function B is discontinuous at x = xj+ 1
2
), U±

j+ 1
2

are the right/left point values at

x = xj+ 1
2

of the conservative piecewise linear reconstruction

Ũ(x) := Uj + (Ux)j (x− xj) , x ∈ Cj, (3.6)

so that

U−
j+ 1

2

:= Ũ
(
xj+ 1

2
− 0
)

= Uj +
∆x

2
(Ux)j , U+

j+ 1
2

:= Ũ
(
xj+ 1

2
+ 0
)

= Uj+1 −
∆x

2
(Ux)j . (3.7)

The numerical derivatives (Ux)j are at least first-order accurate approximations of Ux(xj, t),
computed using a nonlinear limiter needed to ensure a non-oscillatory nature of the reconstruction
(3.6). In our numerical computations, we have used the generalized minmod limiter:

(Ux)j = minmod

(
θ
Uj −Uj−1

∆x
,
Uj+1 −Uj−1

2∆x
, θ

Uj+1 −Uj

∆x

)
, θ ∈ [1, 2], (3.8)

where the minmod function, defined as

minmod(z1, z2, . . .) :=


min
j
{zj}, if zj > 0 ∀j,

max
j
{zj}, if zj < 0 ∀j,

0, otherwise,

is applied in a componentwise manner. The parameter θ can be used the control the amount of
numerical viscosity present in the resulting scheme (see, e.g., [20, 23] for more details). In our
numerical experiments, we use θ = 1, which corresponds to the most diffusive minmod reconstruc-
tion.

The right- and left-sided local speeds a±
j+ 1

2

in (3.5) should be obtained as in [13, 15–17] using

the smallest and largest eigenvalues of the Jacobian ∂F
∂U

. However, the Jacobian of the three-layer
shallow water system is a 6×6 matrix with no analytical expressions for the eigenvalues available.
Moreover, even though the upper/lower bounds on the largest/smallest eigenvalues of this matrix
can be obtained using the Lagrange theorem (see, e.g., [21]), as it was done in [17] for the two-layer
shallow water system, the resulting bounds are quite cumbersome and computationally expensive.
We therefore use the bounds established in [17] for the two-layer system (1.2) (in the calculation
of these bounds, we redistribute the intermediate “buffer” layer and replace h1 and h2 in formulae
(2.22) and (2.23) from [17] with h1 +hm/2 and h2 +hm/2, respectively). This approach is accurate
as long as the velocity of “buffer” layer is in the range of the velocities of the upper and lower
layers.

Remark 3.1 Note that the quantities Uj, U±
j+ 1

2

, (Ux)j and a±
j+ 1

2

in (3.5)–(3.8) depend on t, but

we simplify the notation by suppressing this dependence.

To ensure nonnegativity of h1, hm and h2, we follow [16,17] and correct the reconstructed point
values of w in each cell Cj according to the following algorithm:

If w−
j+ 1

2

< Bj+ 1
2
, then set w−

j+ 1
2

:= Bj+ 1
2
, w+

j− 1
2

:= 2wj −Bj+ 1
2
;

If w+
j− 1

2

< Bj− 1
2
, then set w+

j− 1
2

:= Bj− 1
2
, w−

j+ 1
2

:= 2wj −Bj− 1
2
.
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To guarantee that the resulting scheme is well-balanced in the sense that the “lake at rest”
steady states (2.3) are preserved, we employ a well-balanced quadrature (developed in [13], see
also [16, 17]) and approximate the cell averages of the geometric source term as:

Sj(t) =

(
0, 0, 0, 0, 0,−g

(
r(h1)j + wj +

1 + r

2
(hm)j

)
·
Bj+ 1

2
−Bj− 1

2

∆x

)T

.

Finally, we follow [17] and discretize the nonconservative product terms using the same quadrature,
which results in

N
(2)

j (t) = gεj
(h1)

−
j+ 1

2

− (h1)
+
j− 1

2

∆x
,

N
(4)

j (t) = gεj
(hm)−

j+ 1
2

− (hm)+
j− 1

2

∆x
+ g

1− r
1 + r

(hm)j
(h1)

−
j+ 1

2

− (h1)
+
j− 1

2

∆x
,

N
(6)

j (t) = −rN (2)

j (t)− 1 + r

2
N

(4)

j (t),

where N
(2)

j , N
(4)

j and N
(6)

j are (nonzero) components of the vector Nj(t) in (3.4), that is,

Nj =
(
0, N

(2)

j , 0, N
(4)

j , 0, N
(6)

j

)T
.

Remark 3.2 A fully discrete central-upwind scheme is obtained by applying an appropriate ODE
solver to (3.3). In our numerical experiments, we have used the third-order strong stability pre-
serving Runge-Kutta (SSP-RK) method from [12].

Remark 3.3 As in [16, 17], one can prove that provided the ODE system (3.3) is discretized
using an SSP ODE solver and the CFL condition is satisfied with the CFL number equal to 1/2,
the presented central-upwind scheme will be positivity preserving in the following sense: If at a
certain time level, (h1)j(t) ≥ 0, (hm)j(t) ≥ 0 and (h2)j(t) ≥ 0 for all j, then at the next time level
(h1)j(t+ ∆t) ≥ 0, (hm)j(t+ ∆t) ≥ 0 and (h2)j(t+ ∆t) ≥ 0 as well. It should be observed that as

in [16,17] we set (h2)j := wj − B̃(xj) (rather than wj −B(xj)), where B̃ is a continuous piecewise
linear approximant of the bottom topography B, namely,

B̃(x) = Bj− 1
2

+
(
Bj+ 1

2
−Bj− 1

2

)
·
x− xj− 1

2

∆x
, x ∈ Cj.

Remark 3.4 Notice that if one sets (hm)j(0) = (qm)j(0) ≡ 0, the presented central-upwind
scheme reduces to the central-upwind scheme from [17] for the two-layer system (1.2).

4 Numerical Examples

In this section, we apply the central-upwind scheme developed in §3 to the three-layer shallow
water system (2.2). The purpose of the presented numerical experiments is to check whether (and
to what extent) the three-layer approximation (2.2) is capable of curing the instabilities that are
typically developed in solutions of the two-layer system (1.2) in the nonhyperbolic regime.

In both examples below, we take the gravitational constant g = 10 and the density ratio
r = 0.98.
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Example 1. We consider the three-layer shallow water system (2.2) subject to the initial data:

h1(x, 0) =


1− 1

2
ĥm, |x| ≥ 1,

1− 1

4
sin(2πx)− 1

2
ĥm, |x| < 1,

h2(x, 0) =


1− 1

2
ĥm, |x| ≥ 1,

1 +
1

4
sin(2πx)− 1

2
ĥm, |x| < 1,

hm(x, 0) ≡ ĥm, u1(x, 0) ≡ û1, u2(x, 0) ≡ û2, um(x, 0) ≡ rû1 + û2

r + 1
,

with û1 = 0.4 and û1 = −0.4. We take B(x) ≡ −2 and implement free boundary conditions on
the computational domain [−2, 2]. The initial setting for hm = 0.2 is shown in Figure 4.1. The
simulations are run on the uniform grid with ∆x = 1/200 until time t = 0.5.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0 ε

w+h
m

w

B

Figure 4.1: Example 1: The initial setting for the three-layer system with ĥm = 0.2.

We first compute the numerical solution of the two-layer system (ĥm = 0). The obtained
results are presented in Figure 4.2. It is easy to check that in this case a large difference in initial
velocities corresponds to the nonhyperbolic regime, which explains an oscillatory behavior of the
computed solution. We then introduce a thin intermediate layer by taking ĥm = 0.05 and compute
the corresponding numerical solution of the three-layer system. As one can see in Figure 4.3, the
computed solution is still oscillatory, but the magnitude of oscillations is smaller than in the two-
layer solution. When the initial thickness of the intermediate layer is increased to ĥm = 0.1, the
oscillations are further reduced (see Figure 4.4). Finally, when we take ĥm = 0.2, the solution
is practically non-oscillatory (see Figure 4.5). We therefore conclude that in this example, the
studied three-layer approximation of the two-layer shallow water system leads to stabilization of
the computed solution. However, one may argue that in the latter case of ĥm = 0.2 the “buffer”
layer is not too thin and thus the three-layer model may not be considered as a minor modification
of the original two-layer one.
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−2 −1 0 1 2
−2

−1.5

−1

−0.5

0 ε

w

B

−2 −1 0 1 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
u

1

u
2

Figure 4.2: Example 1: Solution of the two-layer system (ĥm = 0).

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0 ε

w+h
m

w

B

−2 −1 0 1 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
u

1

u
m

u
2

Figure 4.3: Example 1: Solution of the three-layer system with ĥm = 0.05.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0 ε

w+h
m

w

B

−2 −1 0 1 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
u

1

u
m

u
2

Figure 4.4: Example 1: Solution of the three-layer system with ĥm = 0.1.
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−2 −1 0 1 2
−2

−1.5

−1

−0.5

0 ε

w+h
m

w

B

−2 −1 0 1 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
u

1

u
m

u
2

Figure 4.5: Example 1: Solution of the three-layer system with ĥm = 0.2.

Example 2. We now consider the three-layer shallow water system (2.2) subject to the following
initial data:

h1(x, 0) = 1.2 + 0.15 (tanh(5x)− tanh(5x+ 10))− 0.5ĥm, h2(x, 0) = −h1(x, 0)−B(x)− ĥm,

hm(x, 0) ≡ ĥm, u1(x, 0) ≡ û1, u2(x, 0) ≡ û2, um(x, 0) ≡ rû1 + û2

r + 1
,

with û1 = 2.9 and û1 = 2.1. We take

B(x) =

{
−2, |x| ≥ 0.5,

−1.9 + 0.1 cos(2πx), |x| < 0.5,

and implement free boundary conditions on the computational domain [−3, 3]. The initial setting
for hm = 0.2 is shown in Figure 4.6. Once again, we compute the numerical solution on the
uniform grid with ∆x = 1/200 and run the simulations until time t = 0.5.

As in Example 1, we first compute the numerical solution of the two-layer system (ĥm = 0).
The obtained results contain some oscillations in the internal wave as it can be seen in Figure 4.7.
We then compute the numerical solutions of the corresponding three-layer systems with ĥm = 0.05,
0.1 and 0.2. The situation is now completely opposite to the one observed in Example 1. When
ĥm = 0.05 the three-layer solution is clearly more oscillatory than the two-layer one (see Figures
4.8). Both w and the velocities u1, um and u2 develop oscillations. It is noticeable that the
intermediate layer velocity um does not stay in the range of the upper (u1) and lower (u2) layer

velocities. When ĥm is further increased (see Figures 4.9 and 4.10), the solution becomes even
more oscillatory. We thus conclude that in this example (unlike the previous one), the introduction
of the “buffer” layer yield more severe instabilities and thus the three-layer approximation fails to
achieve its goal of stabilizing the two-layer solution.

5 Discussion on the Hyperbolicity

As it has been mentioned above, the two-layer shallow water system (1.1) is only conditionally
hyperbolic and in the nonhyperbolic regime, its solution typically develops instabilities. While in
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Figure 4.6: Example 2: The initial setting for the three-layer system with ĥm = 0.2.
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Figure 4.7: Example 2: Solution of the two-layer system (ĥm = 0).
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Figure 4.8: Example 2: Solution of the three-layer system with ĥm = 0.05.
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Figure 4.9: Example 2: Solution of the three-layer system with ĥm = 0.1,
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Figure 4.10: Example 2: Solution of the three-layer system with ĥm = 0.2.

§4 we have demonstrated that in some situations the use of the three-layer approximation may
improve stability properties of the system, in this section, we discuss and compare the hyperbolicity
range of the three-layer system (2.1) and the original two-layer system (1.1).

We begin with examining the first-order approximation of the eigenvalues of the two-layer
system (1.1) (see, e.g., [8, 25]), which is given by

λ1,2(h1, u1, h2, u2) ≈ Um ±
√
g(h1 + h2),

λ3,4(h1, u1, h2, u2) ≈ Uc ±

√
(1− r)g h1h2

h1 + h2

(
1− (u2 − u1)2

(1− r)g(h1 + h2)

)
, (5.1)

where

Um =
h1u1 + h2u2

h1 + h2

, Uc =
h1u2 + h2u1

h1 + h2

.
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From (5.1), one expects that the two-layer shallow water system (1.1) is hyperbolic as long as

(u2 − u1)
2 < (1− r)g(h1 + h2), (5.2)

and thus the hyperbolicity condition for the two-layer shallow water system (1.1) depends on the
relationship between (u2 − u1)

2 and (1 − r)g(h1 + h2). To illustrate this relation we follow [6]
and randomly choose the values of h1, h2, u1 and u2 and numerically check the hyperbolicity of
each data set. The results are shown in Figure 5.1, where the values of (1 − r)g(h1 + h2) are
plotted against (u2 − u1)

2. In this figure, the hyperbolic region is marked using the blue points,
while the nonhyperbolic one is specified using the red points. As one can see, the hyperbolic and
nonhyperbolic regions are approximately separated by the straight line with the slope 1. This
confirms the accuracy of the eigenvalue approximation used to obtain (5.2).
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Figure 5.1: Hyperbolicity check for the two-layer system (1.1): The blue points represent the range of
hyperbolicity.

We now perform a similar hyperbolicity study of the three-layer system (2.1), which for this
purpose can be written in a the following quasi-linear form:

h1

q1

hm

qm

h2

q2


t

=



0 1 0 0 0 0

gh1 − u2
1 2u1 gh1 0 gh1 0

0 0 0 1 0 0
2r

1+r
ghm 0 ghm − u2

m 2um ghm 0

0 0 0 0 0 1

grh2 0 1+r
2
gh2 0 gh2 − u2

2 2u2





h1

q1

hm

qm

h2

q2


x

= −gBx



0

h1

0

hm

0

h2


,

(5.3)
and numerically check whether all of the eigenvalues of the matrix on the left-hand side of (5.3) are
real for the given set of data. Similarly to the two-layer case, we study the relationship between
(u2 − u1)

2 and (1− r)gH, where H := h1 + hm + h2.
To this end, we first randomly select the total depth H ∈ [0, 2], parameter α ∈ [0.3, 0.7], the

velocities u1 and u2 such that (0 ≤ |u1−u2| ≤ 1) and set h2 := αH−hm/2, h1 = (1−α)H−hm/2.
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We then let hm to vary from a very small value (0.01) to the larger values (0.05, 0.1 and 0.2) and
to 1.9 min ((1− α)H,αH), which is only 5% smaller than the largest theoretically possible value
value of hm. The obtained results are shown in Figures 5.2–5.4, where as before the hyperbolic
regions are marked using the blue points and the nonhyperbolic ones are specified using the red
points. Notice that since H cannot be less than hm, there is a (small) horizontal white strip at
the bottom of each graph in Figures 5.2 and 5.3 (larger the hm larger the width of the white strip
is).
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Figure 5.2: Hyperbolicity check for the three-layer system (2.1) with hm = 0.01 (left) and hm = 0.05
(right): The blue points represent the range of hyperbolicity.
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Figure 5.3: The same as in Figure 5.2 but with hm = 0.1 (left) and hm = 0.2 (right).

As one can see in Figures 5.2 and 5.3, in the three-layer case (unlike the two-layer one), there
is no clear dividing line between the hyperbolic and nonhyperbolic regions for small and even
intermediate values of hm. However, one can observe that the hyperbolic region increases as hm
increases. When hm reaches hm = 1.9 min ((1− α)H,αH), the hyperbolic region for the three-layer
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Figure 5.4: The same as in Figures 5.2 and 5.3 but with hm = 1.9 min ((1− α)H,αH).

system (see Figure 5.4) becomes about twice larger than the one for the corresponding two-layer
system (see Figure 5.1). This experiment suggests that in order to significantly improve the
hyperbolicity of the two-layer shallow water system, we need to introduce an unrealistically deep
intermediate layer, which clearly cannot be considered as a “buffer” layer. Therefore, we arrive at
the conclusion that even though adding the third layer may improve the stability properties of the
two-layer shallow water system, a rigorous justification of the extent of the possible improvement
is still an open problem we plan investigate in our future work.
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[7] M. Castro, P. LeFloch, M. Muñoz-Ruiz, and C. Parés, Why many theories of
shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput.
Phys., 227 (2008), pp. 8107–8129.
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