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Abstract

In this work we propose a new set of partial differential equations (PDEs) which can be seen as a generalization of the
classical eikonal and transport equations, to allow for solutions with multiple phases. The traditional geometrical optics
pair of equations suffer from the fact that the class of physically relevant solutions is limited. In particular, it does not
include solutions with multiple phases, corresponding to crossing waves. Our objective has been to generalize these
equations to accommodate solutions containing more than one phase. The new equations are based on the same high
frequency approximation of the scalar wave equation as the eikonal and the transport equations. However, they also
incorporate a finite superposition principle. The maximum allowed number of intersecting waves in the solution can be
chosen arbitrarily, but a higher number means that a larger system of PDEs must be solved. The PDEs form a hyperbolic
system of conservation laws with source terms.

Although the equations are only weakly hyperbolic, and thus not well-posed in the strong sense, several examples show
the viability of solving the equations numerically. The technique we use to capture multivalued solutions is based on
a closure assumption for a system of equations representing the moments.

1. Introduction

In the direct calculation of wave propagation, the computational effort is larger at higher
frequencies. With constant accuracy the work grows algebraically with frequency. For sufficiently
high frequencies or short wavelengths it is unrealistic to compute the wave field directly. Fortunate-
ly, this is often the regime for which high-frequency asymptotic approximations are quite accurate.

Generically, phase and amplitude vary on a much slower scale than the dependent variables in
the original wave equations and are thus in principle easier to compute. The geometrical optics
type asymptotic expansions are used in many applications, for example in electromagnetic, elastic
and acoustic wave propagation.
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Traditionally, ray tracing has been the computational method of choice. Recently, however, the
geometrical optics approximations are also being solved by partial differential equation (PDE)
techniques. This is e.g. done in [5] and within the framework of seismology in [8, 10, 11]. The
PDE:s give only one unique phase at each point in space. In this paper we shall derive equations
which allow for multiple phases or crossing rays. The equations are based on the closure
assumption of a finite number of crossing rays for the kinetic formulation of geometrical optics.

1.1. High-frequency asymptotics

When high-frequency waves are treated, the computations can be simplified by considering the
asymptotic behavior of the solution as the frequency tends to infinity. There are two strongly
related ways to formulate this approximation: the PDEs of geometrical optics and ray tracing.
Typical wave phenomena, such as diffraction and interference, are lost in the leading terms of the
high-frequency approximation.

Classical geometrical optics is based on the scalar wave equation,

Uy +cVu=0. (1)

Here ¢ = ¢(x) is the local wave velocity of the medium. We also define the index of refraction as
n = c¢o/c with the reference velocity ¢, (e.g. the speed of light in vacuum). Geometrical optics
considers the case when the solution to (1) can be written as a series expansion of the form

u=etYE wlx, £)(iom) K )

Entering this expression into (1) and summing terms of the same order in w, to zero, we obtain
separate equations for the unknown variables in (2). The phase function ¢ will satisfy the eikonal
equation,

¢+ |V =0, 3)
and the amplitude coefficients w, solve the transport equations,

V¢ ° VWO + CZ V2¢ - ¢tt

: -0 4
(wo) + ¢ Vo] 2| V| Wo s 4
V- Vw2V —oy, 2 V23w — (Wi
) ; Lo TR ATRI . 5
(Ws1) + ¢ Vol + 2| V| Wi + 2 (Vo 0 )

For large  only the first term in the expansion (2) is significant, and the problem is reduced to
computing the phase ¢ and the first amplitude term wq. Note that once ¢ is known, the transport
equations are linear equations with variable coefficients. Solving (3) and (4) can be done by finite
difference methods.

The problem with the geometrical optics approach is that the class of solutions which justify an
expansion of the type (2) is limited. In particular, it does not include solutions with multiple phases,
corresponding to crossing waves. In fact, even in the case of a single-phase solution, the series does
not necessarily converge, for instance when the geometric boundaries create diffraction effects. We
shall concentrate on the multiple phase problem and assume the geometrical optics approxima-
tions of (3) and (4).
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The eikonal equation is a nonlinear PDE which requires extra conditions to have a unique
solution. This solution is known as the viscosity solution [3]. Of course, it does not have to agree
with the correct physical solution in all cases. At points where the correct solution should have
a multivalued phase, the viscosity solution picks out the phase corresponding to the first arriving
wave.

The eikonal equation’s inability to capture multi-phase solutions is related to its nonlinear
character. In the case of the linear wave equation, that it approximates, a linear combination of
solutions is also a solution. For the nonlinear eikonal equation, this superposition principle does not
hold. An example is shown in Fig. 1.

Solving the eikonal equation numerically as a PDE instead of using ray tracing has recently been
used in seismology. This technique is demonstrated in [8, 10, 11]. For these applications it is of
direct interest to determine the first arrival.

A second phase, corresponding to crossing rays, was calculated in [5] using two separate eikonal
equations. Boundary conditions for the second phase were given at the discontinuity of the first
phase or at a geometric reflecting boundary. This boundary could be difficult to determine.

Another way to treat high-frequency waves computationally is through ray tracing, which is
based on a kinetic formulation. The waves are postulated to be particles (photons) whose
trajectories are rays. The ray vector, p, is defined as the index of refraction multiplied by the unit
vector, s, in the direction of the ray, i.e., p = n$. For simplicity, we will henceforth let ¢, = 1, so that
the velocity vector v = ¢§ = ¢*p. A transport equation for particles in the space (x, p, t) can then be
derived. Denoting the density of particles by f(x,p, ) the evolution of f is described by the
Vlasov-type equation

ﬁ + v th+ CVx’?‘ fo: 0. (6)

Tracing the particle trajectories of (6) corresponds to ray tracing and also to the method of
characteristics for (3) and (6). Since (6) is linear the superposition principle is valid.

Because of the large number of independent variables (six in 3D), it is very hard numerically to
solve the full equation (6). If the equation is solved using ray tracing it is difficult to cover the full

(w
«

Fig. 1. Level curves of ¢ in the solution of the eikonal equation (3) for two interacting waves. Note how the superposition
principle does not hold. Instead, the first arriving wave takes precedence over the second at each point.
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domain with rays [10]. There will often be shadow zones where the field cannot be resolved. It is
also hard to determine the derivative of ¢, which is needed when computing the amplitude.

1.2. Moment formulation

In this paper we propose a middle way between geometrical optics and the kinetic model. It is
a high-frequency approximation through which the whole field can be solved. Moreover, the
superposition principle holds up to a point; the maximum allowed number of intersecting waves
can be chosen arbitrarily, but a higher number means that a larger system of PDEs must be solved.
The technique we use to capture multivalued solutions is based on a closure assumption for
a system of equations representing the moments (see [1]).

The starting point for this approach is the transport equation (6). Instead of solving the full
equation in phase space, we observe that when f is of a simple form in p, we can transform (6) to
a finite system of moment equations in the reduced space (x,t), analogously to the classical
approach of the hydrodynamic limit from a kinetic formulation. In particular, we are interested in
cases where, for given x and ¢, the density function f is nonzero only for a finite number of p. This
corresponds to a finite number of rays in different directions at each point.

This paper is organized as follows. In Section 2 the moment equations are derived from the
kinetic model for high-frequency waves. They are equivalent to the equations of geometrical optics.
We also explore some theoretical issues and find that the resulting hyperbolic equations are not
well-posed in the strong sense. Existence of solutions of unbounded variation is indicated. Next, in
Section 3, we describe the numerical approximations we have used to solve these equations for one
and two phases. The standard Lax-Friedrich method gives satisfactory results. Most elaborate,
and less viscous, methods like the Godunov method and the second-order TVD Nes-
syahu-Tadmor scheme, although converging well in L, suffer from problems locally and converge
poorly in L. For the two-phase system, the sensitivity of equations is more pronounced and
consequently it is harder to find stable numerical methods. After proper initialization, the equa-
tions can however be solved with the Lax—Friedrich method. We present computational results in
Section 4.

2. Derivation of the moment equations

In this section we will derive the system of PDEs that follows from the kinetic model and the
assumption that a maximum of N rays pass through any given point in space. The analysis is
carried out in two-dimensional space.

The derivation of the moment equations is based on the transport equation (6). This equation
comes from the Hamiltonian system

dx _

dt

d
VHE PO, = = VHEp.1), ™

where the corresponding density function f(x, p, t) solves

S+ Ve (fV,H) = V- (f ViH) = 0. t)
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Eq. (6) follows from (8) when

pl?
H—EF. (9)

2.1. The moment equations

We start by defining the moments m;;. With p = (py, p»), let

iy — j P pd fdp. (10)
&2

Next, we multiply (6) by p' p4 and integrate over R? with respect to p. Using definition (10), we get
the following moment equation:

Wz(mij)z + (M1 M)y = nem—qj + jnnymi -1, (11)

where we have used the fact that f has compact support in p. Since this equation is valid for all
i,j = 0, we have an infinite system of moment equations. For uniformity in notation we have
defined m; -y =m_, ; =0, Vi

System (11) is not closed. If truncated at finite i and j, there are more unknowns than equations.
To close (11) we use the assumption that for fixed values of x and ¢, the particle density f is nonzero
at a maximum of N points, and only when |p| = {x). Thus, f can be written as

N
fle,p.t) Z g 0(lp| —n,argp —0y). (12)

The new variables that we have introduced here are g, = g, (x, t), which corresponds to the strength
(particle density) of ray k, and 6, = 0,(x, t) which is the direction of the same ray. Inserting (12) into
(10) yields

N
= Y n'tig, cos' O sin’ by, (13)
k=1

which is the expression for the moments that we will use.

A system describing N phases needs 2N equations, corresponding to the N ray strengths g, and
their directions 0,. It is not immediately clear which equations to select among the candidates in
(11). Given the equations for a set of 2N moments, it must be possible to write the remaining
moments of these equations in terms of the leading ones. This is not always true. For instance, with
the choice of m,, and mq,, for N = 1, the quadrant of the angle 6 cannot be recovered, and
therefore in general not the sign of the moments.

We choose here the equations for my_, and mq , with k = 1, ..., N. This system can be formally
closed for N = 1, 2. After scaling the moments, n°*/i;; = m,;, those equations take the following
form:

N> (o) T (M« 1.0)x + (P 1)y

= k(”x'ﬁkf 1o = NxMyyq 0 — Wy'ﬁk. 1) (14)
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n* (o, i) + (g )5 + (o, k41 )y
= k(”]yﬁlo.k—l — NxMy g — HyMlg k+1)- (15)

To simplify notation, we will henceforth write my, for #i,.
We introduce new variables,

T
U= (uy, Uy, Uz, Ug, ..., UsN 1, UzN)
= (gy cos By, g, sinfy, g, cos0,,g,sinb,, ..., gy cosOy, gy sinOy)". (16)

These variables have a physical interpretation; the vector (u,;_ 1, t5;) shows the direction and
strength of ray k.

To write out the equations for « in a concise form we need a few definitions. Let I be the 2 x 2
identity matrix, and

I 1 1

cos 8, 0 D D D
D"=< 0 sinf}k>’ 4= D_% D? N D% ‘ (17

DY™! D‘Ez"‘ DY7!
Moreover,
D =diag(D, D,,....Dy), (18)
C = diag(cos 0,I,cos 6,1, ...,cos Ox1), (19)
S =diag(sin6,I,sin 8,1, ...,sin Oy1), (20)
T = diag(Z, 21, ..., NI), (21)
R = diag(\nx, Hys oevs Hxs ;1},}. (22)
~v

2N elements

These definitions let us write our PDEs as a system of nonlinear conservation laws with source
terms,

n*(Au), + (nACu), + (nASu), = TARD ' —y.C —n,S)u. (23)
Note that R and 4 commute, R4 = AR.

2.2. A comparison with geometrical optics

To see how the moment equations (23) are equivalent formulations of the equations of geometri-
cal optics, we present the following derivation for smooth solutions.
The additional definitions

O = diag(0, 1, 0-1, ..., 051), (24)
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g:(gl,glag?.’gZa"'9gN,gN)T~ (25)
8 J
2N elevments

will help us write a separated form of (23). Since each element of the matrices only depends on one
variable (one of the 6,’s), we can let the prime denote elementwise differentiation of a matrix. Using
the identities (4D) = TAD' and R = (n.D + n,D")C + (n,D —n,D")S, Eqgs. (23) can be written as

AD(n*g, + (nCg). + (nSg),) + (AD) (>0, + (nS). — (nC),)g = 0. (26)

Noting that C, S and @ are diagonal and that they all, together with g, have their elements ordered
pairwise, a solution is given by solving the N separated systems

n*(Ok) + (1 5in Oy) — (1 cos by), = 0, k=1,...,N. (27)
(g + (1gxcos i) + (ngx sin 0), = 0,

On the other hand, after some algebraic manipulations of (3) and (4), we get

.2 0,\ o[ &, g ) _
" ““”(m)* <|Vm> m(ﬂV@) O

¢ ¢ ¢ 2
202 x 2 Py )\ _
TE" T <“%vm>(wG“HwJ .
If we identify the variables of (23) as
gr = Wi ks mwﬁjm” in 0y — 2% N, (29)

, sinf, = , k=1,..
| Vbl IV
they will solve (27) and hence (23).

2.3. Analysis of the conservation laws

For simplicity we will mainly deal with the single phase, N = 1, one-dimensional case where the
medium is vacuum, # = const. = 1. This system reads

(g cos ), + (g cos? 0), = 0,
(gsinB), + (gcosOsinf), =0.

(30)

With the u variables defined in (16) as conserved quantities, the system can be written in the
standard form of a conservation law,

ui

ot flu), =0, flu)=|Vuitui] (31)

Uy

\/u% + u%
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The Jacobian of f with respect to u has the following form:

g)::G<cos() —sm())G_l’ G:<c050 —sm()) (32)

Ju 0 cos ( sin 8 cos 0

Thus, the linearized problem has a double real eigenvalue, cos®, and an incomplete set of
eigenvectors; the system (31) is only weakly hyperbolic. In general, this means that (31) is not
well-posed in the strongly hyperbolic sense. The system is likely to be much more sensitive than
regular hyperbolic systems. The solution of the linearized problem with frozen coeflicients loses one
derivative. The L, norm of the solution at time ¢ > t, can be estimated in terms of the H; norm of
the initial data at time t = t,. The sensitivity of the equations is reflected in difficuities in finding
stable numerical methods to solve them (see Section 3). If the solution has a shock, the double
eigenvalue means that there are always two characteristics incident to the shock at each side.
Shocks are thus overcompressive.

The existence of solutions to (31) is also an open question. It appears that solutions cannot be
expected to be of bounded variation. In fact, analytic and numerical evidence suggest that (31) can
have measure valued solutions, i.e., of delta function type (cf. Fig. 5). An extended solution concept
is needed to accommodate measure valued solutions. This problem was addressed in [2, 4], where
also existence of such solutions for certain conservation laws was proved. Entropy conditions and
uniqueness of solutions to (31) are even more uncertain.

The appearance of a delta function is closely linked to when the physically correct solution
passes outside the class of solutions that the system (23) describes. If initial data dictate a physical
solution with N phases for t > T the system (23) with M < N phases will have a measure valued
solution for t > T. In the case of (31), a delta function will appear in the solution for ¢t > T. In the
case of (31), a delta function will appear in the solution when multiple phases are present.

The statements above are supported by our numerical simulations. We will consider a one-
dimensional example. In vacuum, # = 1, the separated system (27) can be rewritten as

(O + (sin th)x = 0,

(gx)e + €08 Ok (gi)x = gi(cos Oy)s, k=lhoon &9
The equation for 0, is known to develop shocks in finite time. The angle 6, will be constant along
characteristics, which are straight lines corresponding to rays. The shock develops where character-
istics cross, i.e., where two wave fields meet. The equation for g, is an ordinary transport equation
with a source term involving the derivative of cos 6),. Along characteristics, which are the same for
both equations, the source term is zero, except at a shock where it becomes a delta function. The
resulting solution for g, is a delta function where the phase “should” have split into two new phases.

It is interesting again to compare the moment equations with the eikonal and transport
equations (3) and (4). The latter also form a weakly hyperbolic system with the same eigenvalue as
(31). As was mentioned before, the viscosity solution picks out the phase corresponding to first
arrival where the physically correct phase is multivalued. When wave fields meet, there will
therefore in general be a jump in ¢. At these points, the first amplitude coefficient w, has a measure.
Hence, the two different formulations are similar also in this respect.
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For the two-dimensional case, another function, g, is added to (31),

Uiy
/2 2
uy + us
. 34)
u3 (

,/u%+u§

Taking a linear combination of the Jacobians for f and g we get

u +fu) +8u), =0,  glu)=

) %
J(0=9f1,°(2)3:°<1~—f+012~—g
ou ou
cost) —sin0 sin(  cos® iy
"G[“1< 0 coso>+°‘2< 0 sin@)]c : (33)

with the same rotation G as in (32). Regardless of the choice of (a;, «,), we still only have one
eigenvalue and an incomplete set of eigenvectors.
In the general case with N phases, the governing equations (23) can be written as
Fo(u), + Fy(u), + F>(u), =0, (36)

where F, are rather complicated functions. (In Section 3 the functions are given explicitly for the
case N = 2.) Denoting the Jacobians of F, with J;, the following relationship can be derived:

aydy + oy = Jo diag(J(0,, o, az), ..., J(Oy, o1, 22)). (37)

This shows that the eigenvalues of the general system are simply the union of the eigenvalues
of N systems of the type (34). It also shows that there will not be more than N eigenvectors,
for the 2N x 2N system. Hence, we have shown that the general system (23) is weakly hyperbolic.

3. Numerical approximations

This section includes some results on the numerical treatment of (23). As was discussed in the last
section, system (23) is very sensitive, and this creates problems for the numerical methods. The
sensitivity derives from two facts. Firstly, the system is only weakly hyperbolic. Secondly, since
numerical errors can induce extra, unphysical, low-amplitude phases, spurious delta functions can
appear even where the analytic solution is smooth.

For the numerical methods we will use the following notation. Space and time is discretized
uniformly with step sizes Ax, Ay and At. The grid function U7; approximates the analytic solution,

Ui, ~ u(iAx, j Ay, nAt), (38)

where u are the variables introduced in (16).
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3.1. Single phase

The point of departure for our numerical approximations is the basic first-order accurate
Lax—Friedrich finite difference method. For the one phase system in a homogeneous medium,
n = const.,, it takes the form

U:‘}H =W, + Ul j+ UL+ UL 1)

At
—E(FI(U?+1.J') —F(Ui-1.}))

At " .
——(FZ( lj+1)_F2(Ul,]*1)), (39)
2Ay
with
ui Uiy
2+ ?) 2_|_ 22
Fiay=| VT2 = VT (40)
Uius ”%
Jui +u3 Jut +u3

Even if the Lax—Friedrich method is only of first order, it works quite well and remains stable
despite the sensitivity of the equations. Most of our results are produced using this method. The
purpose of the numerical experiments is just to show the feasibility of the moment closure
technique and for this purpose a first-order method is sufficient. The reason for the Lax—Friedrich
scheme’s stability is that it introduces a substantial amount of viscosity, which implies that
discontinuities in the solution are smeared out.

Less smearing of shocks is obtained with the Godunov method (see, e.g., [6]), another first-order
method which adds a smaller measure of viscosity than the Lax—Friedrich method. The two-
dimensional Godunov method is constructed by applying an ordinary splitting approach.

Even though the Godunov method applied to the single-phase system converges in L; (see
Table 1) there are large L. errors also for smooth problems (see Table 2 and Fig. 3).

A second-order accurate scheme introduces less artificial viscosity and can therefore be expected
to be more sensitive. To avoid oscillations at discontinuities, the so called TVD methods are
desirable [6]. These nonlinear methods use limiters to ensure that the method does not introduce
new artificial extrema in the solution. At an extremum, TVD methods are at most first-order
accurate.

We have implemented the Nessyahu—Tadmor method with the min-mod limiter [7]. It is
a second-order TVD method based on the Lax—Friedrich structure. To preserve second-order
accuracy when moving from the one-dimensional to a two-dimensional method, Strang splitting
[9] was used. The result is however not perfectly satisfactory. The on/off switching of the limiter
seems to induce oscillations. The convergence rate for the Nessyahu-Tadmor scheme turns out to
be somewhat slower than that of Lax—Friedrich in L, and only marginally higher in L, (see
Tables 1 and 2).
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Table 1
L, norm of the errors for test case A (see Section 4), using the single-phase
equations
Ax Lax—Friedrich Godunov Nessyahu-Tadmor
L,(err) order L (err) order Ly (err) order

1/10 0.00788 0.01130 0.00480

0.85 0.80 043
1/20 0.00433 0.00650 0.00357

0.92 0.69 0.98
1/40 0.00229 0.00404 0.00181

0.96 0.78 1.11
1/80 0.00118 0.00235 0.000839

0.98 0.85 1.11
1/160  0.000599 0.00130 0.000390
Table 2
L. norm of the errors for test case A (see Section 4), using the single-phase
equations
Ax Lax—Friedrich Godunov Nessyahu-Tadmor

L, (err) order  L,(err) order L. (err) order

1/10 0.0949 0.3038 0.0278

1.26 0.062 0.25
1/20 0.0397 02911 0.0235

1.21 0.022 0.30
1/40 0.0171 0.2867 0.0191

1.15 0.017 1.15
1/80 0.00771 0.2834 0.00857

1.09 0.010 0.54
17160 0.00363 0.2815 0.00589

3.2. Two phases

185

It is more difficult to get reliable calculations when solving (23) with two phases than in the case
of a single phase. The two-phase equations add a few new problems to the numerical methods. In
each time step a nonlinear system of equations must be solved. The Jacobian of this system can be
singular. Being careful when solving the system, however, it seems possible to compute solutions for

most configurations.
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In the two-phase case, we have only used the Lax—Friedrich method. With a homogeneous
medium, it can be written as

Fo(US'Y)Y =3(Fo (Ut ) + Fo(Uisy,))
+ Fo(Ui ;1) + Fo(Uf j44))

At
2A (FI(U+1.j)_F1(U?_1.j))
A n
2A\ (FZ U1J+1)—F2(Ul j*l))’ (41)
where
Uy + Us
U, + Uy
Folu) = ui N u3 ; (42)
Jui +us o Jui+ug
2 . ul
\/uf-i-u% VUi +ui
2 2
i Uz UiUs Uz Uy
\/uz + u? /.2 2 \/
1 2 \/u3+u4 u1+u2 u3+u4
Ui, UzUy u% M4
Jui +us o Jui+ui VUi + u3 \/u3+u4
Fi(u) = , Fau)=
u3 u3 uu, uluy
ui +ui  ud+ul ui +u3  ui +ui
uyu3 usuz u3 ul
ul +ui  ui+u u? +ud  ui+ul

We see from (41) that for each iteration, at each point, it is necessary to solve a nonlinear system of
equations of the type

Fo(Ui' ') = dy;. (43)

We use the standard Newton method, which works well in most cases. Initial values for the Newton
iterations can be either the previous U value, Uj;, or the solution to the linear system Au = d, where
A(0y,0;) is the matrix defined in (17) evaluated at the angles corresponding to U7;.
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The Newton method uses the Jacobian of F, in the iterations. One problem is that, in general,
this Jacobian is singular at some points in the computational domain. More specifically, the
Jacobian,

1 0 1 0
0 1 0 1
J =
° 2cos 0y —cos®;, —sin0; +sin®0; 2cosfh, —cos’B, —sinh, + sin®0,
—cosfly +cos*f, 2sin0; —sin®0;, —cosO, +cos*f, 2sinf, —sin’0,
(44)
is singular when
cosfly =cosfl, or sinfl; =sinf,, 45)

since then the first (second) and third (fourth) columns are equal.
Another feature of system (43) should also be noted. It has always at least two solutions,
since

Fk(ul,uz,bl3,u4)=Fk(U3,U4,U1,u2), k=0, 17 2 (46)

The two phases are thus interchangeable, which from a physical stand-point is quite natural.
Numerically, it has the effect that we cannot be certain which of the two roots the Newton method
finds. Therefore, the numerically calculated variables u,, u,, us, u, can be very discontinuous over
the domain, even though the moments, which we get by applying the F, to the variables, are
smooth.

4. Results

In this section we show results from three different test cases. In all cases we have considered
a homogeneous medium with the sources located outside the computational domain. We use
the value of the exact solution as a Dirichlet boundary condition on all boundaries. The test
cases are

(A) the rectangle 0 < x < 1 and 0 < y < 2; one source located at coordinates (— 0.2, 1); smooth
point source with exact solution g = max(0,t —r)*/r,

(B) the rectangle 0 < x < 1 and 0 < y < 1; two sources located at coordinates (— 0.2, — 0.2) and
(1.2, 1.2); smooth point sources with exact solution g, = max(0, t —r,)*/ri, k = 1,2,

(C) the same rectangle as in B but with sources located at coordinates (— 0.3, 0.65) and (1.3, 0.35);
discontinuous point sources with exact solution g, = H(t —ry)/r, k=1, 2.
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The variable r, = r,(x, y) is the distance to source k. General results for test case A are shown in
Fig. 2, where the Lax—Friedrich method was used to solve the N = 1 system (39, 40). The difficulties
with using the Godunov and the Nessyahu-Tadmor methods for the same problem are highlighted
in Figs. 3 and 4, respectively. Convergences for the different methods are summarized in Tables
1 and 2.

For test case B we only used the Lax—Friedrich method. In Fig. 5 the single-phase system was
solved, even though the physically correct solution contains two phases. A measure valued solution
is suggested. In Fig. 6 we used the N = 2 system (41, 42) for the same problem and it captures both
phases.

Also for test case C, all solutions were computed using the Lax—Friedrich method. We present
the results for the N = 2 system in Fig. 7.

g (u1.u2)

x

Fig. 2. Solution at time t = 0.85 of the single-phase system for test case A, using Lax—Friedrich with 40 x 80 points. The
top left figure is a contour plot of the ray strength g. The top right figure shows the vector field # = (u,, u,). The bottom
figure shows g.
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Fig. 3. Solution at time ¢ =0.85 of the single-phase system for test case A, using the Godunov method with
40 x 80 points. The left figure is a contour plot of the ray strength g. The right figure shows ¢ in a vertical cut
at x =0.2.

g g(x=0.2)
2, . 05 - .
|
18% 4 0451
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Fig. 4. Solution at time t = 0.85 of the single-phase system for test case A, using the Nessyahu-Tadmor method
with 40 x 80 points. The left figure is a contour plot of the ray strength g. The right figure shows g in a vertical cut
at x =0.2.
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Fig. 5. Solution at time ¢ = 3.0 of the single-phase system for test case B, using the Lax—Friedrich method with 80 x 80
points. The figure shows ray strength g.

X

Fig. 6. Solution at time ¢ = 3.0 of the two-phase system for test case B, using the Lax-Friedrich method with 80 x 80
points. The figure shows the combined ray strength g, + g, = ngo.
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Fig. 7. Solution of the two-phase system for test case C, using the Lax—Friedrich method. The top figure shows the vector
fields (u,, u>) and (u3, u4) superimposed at time ¢ = 0.85, computed using 40 x 40 points. The bottom figure shows the

combined strength of the two waves, g; + g, =
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