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Abstract In [16] a visco-elastic relaxation system, called the relaxed Burnett system, was proposed by Jin

and Slemrod as a moment approximation to the Boltzmann equation. The relaxed Burnett system is weakly

parabolic, has a linearly hyperbolic convection part, and is endowed with a generalized entropy inequality. It

agrees with the solution of the Boltzmann equation up to the Burnett order via the Chapman-Enskog expansion.

We develop a one-dimensional non-oscillatory numerical scheme based on the relaxed Burnett system for

the Boltzmann equation. We compare numerical results for stationary shocks based on this relaxation scheme,

and those obtained by the DSMC (Direct Simulation Monte Carlo), by the Navier-Stokes equations and by

the extended thermodynamics with thirteen moments (the Grad equations). Our numerical experiments show

that the relaxed Burnett gives more accurate approximations to the shock profiles of the Boltzmann equation

obtained by the DSMC, for a range of Mach numbers for hypersonic flows, than those obtained by the other

hydrodynamic systems.
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1 Introduction

Dynamics of a moderately rarefied gas of monatomic molecules is often represented by the
Boltzmann equation. Observable quantities such as density, velocity, temperature, etc., are
derived as expectations of a probability density function f(xxx, ξξξ, t) satisfying the Boltzmann
equation (see [7, 36])

f+ξξξ · ∇f =
1
ε
Q(f, f),

where xxx denotes the position of a particle at time t moving with velocity ξξξ, Q is the integral col-
lision operator, and ε is the Knudsen number which is proportional to the mean free path of the
gas. The main numerical difficulty to solve the Boltzmann equation is its high dimensionality.
There are two practical methods being used in applications. One is the DSMC (Direct Simula-
tion Monte-Carlo[3, 30] and the others are moment methods that provide continuum equations
for the observable macroscopic equations. DSMC offers much less computational cost than a
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deterministic method, but on the other hand it yields low accuracy and statistically fluctuat-
ing results and the convergence in general is very slow. Moment methods, among them the
Grad’s thirteen moment equations[13] and the extended Thermodynamics equations[26], defined
in physical space, are generally faster than DSMC but the results deviate from that of the
Boltzmann at high Mach numbers.

In this paper we propose a new numerical scheme based on the Chapman-Enskog expansion
(see [7, 10, 36]) for the Boltzmann equation. This scheme is a numerical discretization of the
relaxation approximation proposed by Jin and Slemrod[16, 17] and its conceptual basis is indeed
the Chapman-Enskog expansion.

The classical Chapman-Enskog procedure for the Boltzmann equation is a well known tool
for bridging the gap between kinetic theory as described by the Boltzmann equation for the
evolution of a monatomic gas and continuum mechanics. The Chapman-Enskog expansion is a
formal power series ordered by the viscosity µ which is itself proportional to the non-dimensional
Knudsen number, i.e.,

TTT = − pIII − PPP , p = Rρθ,

PPP =µΠΠΠ(1) + µ2ΠΠΠ(2) + µ3ΠΠΠ(3) + · · · , qqq = µΞΞΞ(1) + µ2ΞΞΞ(2) + µ3ΞΞΞ(3) + · · · .

The coefficients ΠΠΠ(j), ΞΞΞ(j), j = 1, 2, · · · are obtained from the Boltzmann equation and have
been determined up to j = 2 (Burnett order) (cf. [10, 36]) and in one space dimension up to
j = 3 (super-Burnett order) (cf. [12]). (We remind the readers that all physical quantities in
this paper and their mathematical definitions are given in the Nomenclature at the end of the
paper.)

In practice however the Chapman-Enskog expansion as a tool for solving the Boltzmann
equation has had limited practical value. Truncation at first order yields the Navier-Stokes
equations which as µ ceases to be small becomes a poor approximation to solutions of the
Boltzmann equation (cf. [21, 26]). Truncation at order µ2 yields the Burnett equations which
possesses the unphysical property of yielding linearly unstable rest states (cf. [1, 5, 23, 24, 25]).
Simply by expanding to the higher order will not remove this instability (cf. [31]).

In addition, the Chapman-Enskog expansion destroys the material frame indifference at the
Burnett order (cf. [4]).

Despite the linear instability of the Burnett equations, numerical solutions on augmented
Burnett equations (cf. [1, 11, 36]) suggest that they provide more accurate solutions in the
shock layer than those of the Navier-Stokes equations when compared with the direct simulation
Monte-Carlo method of the Boltzmann equation. In [1, 11, 36] the augmented Burnett equations
were obtained either by removing the unstable term from or by adding linearly stabilizing
terms of the super Burnett order to the stress and heat flux. Unfortunately the augmented
Burnett equations possess two drawbacks. First, numerically they require resolution of the
super-Burnett stabilizing terms which practically means numerical resolution of derivatives up
to fourth order. This is rather a cumbersome approach in several space dimensions. Secondly,
the augmented Burnett equations have not been shown to have a globally defined entropy
possessing the usual property of satisfying an entropy inequality.

In [16], a visco-elastic relaxation approximation was introduced as an approximation to the
Boltzmann equation. This relaxation system has the following properties.
(i) It requires at most resolution of second derivatives in spatial variables;
(ii) it possesses a globally defined “entropy” like function;
(iii) when expanded via the Chapman-Enskog expansion, it matches the classical Chapman-

Enskog expansion for the Boltzmann equation to the Burnett order.
Specifically the pressure deviator and heat flux were relaxed by rate equations to obtain a system
of local equations that can recover the Burnett equations via the Chapman-Enskog expansion
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with a correction at the super-Burnett order. By doing this, a system of thirteen local equations
were obtained that is linearly stable. This system is weakly parabolic with a linearly hyperbolic
convection part. Moreover, it is endowed with a generalized entropy inequality. The nonlinear
entropy inequality guarantees the irreversibility of the relaxation process. The localness of this
system is attractive for a robust numerical approximation to the gas dynamics valid to the
Burnett order.

In recent years, relaxation approximations have been used as an effective tool to design
numerical methods — known as the relaxation schemes. In [18] a generic way to relax a general
system of hyperbolic conservation laws was introduced by Jin and Xin, which induced a class
of relaxation schemes free of Riemann solver and local characteristic decomposition for inviscid
gas dynamics. A physically natural pressure relaxation method was developed by Coquel and
Perthame for an inviscid general gas[9].

In this paper, for one-dimensional problem, we propose a class of relaxation schemes for
the Boltzmann equation based on the relaxed Burnett system by Jin and Slemrod. There are
two main difficulties when discretizing this system. First, the equations for the stress deviator
and heat flux are not in conservative form, thus canonical shock capturing methods, developed
by hyperbolic systems of conservation laws, cannot be applied directly. Secondly, the stiff
relaxation terms need to be discretized properly so the scheme is efficient even for small mean
free paths.

Our relaxation schemes combine a conservative solver for the conserved part of the system
(balance laws for density, momentum and energy), while for equations of PPP and qqq we discretize
the spatial derivatives using slope limiters and central differences. These discretizations are
carried out conveniently using a staggered grid, as in a staggered non-oscillatory central scheme.

We compare the numerical results obtained by this relaxation scheme with those obtained by
DSMC, the Navier-Stokes equations and the extended thermodynamics (with thirteen moments)
for one-dimensional stationary shocks with various Mach numbers. Our results show that the
relaxed Burnett system offers more accurate shock profiles compared to the DSMC than other
hydrodynamic theories.

The paper is divided into five sections after this Introduction. Section 2 reviews the relaxed
Burnett system introduced by Jin and Slemrod. We also derive boundary conditions for this
system using the moment definition from the probability density distribution. Section 3 reviews
several main properties of the relaxed Burnett system, and computes the linear dispersion
relation. In Section 4 we introduce the numerical discretization for the one-dimensional relaxed
Burnett system. In section 5 we solve a one-dimensional stationary shock problem by the
newly introduced relaxation scheme, and compare it with DSMC, Navier-Stokes and extended
thermodynamics. We end the paper with a few concluding remarks in Section 6.

2 The Relaxed Burnett System

2.1 The Field Equations of Balance

The field equations of balance for continuum fluid dynamics in the absence of heat sources are
as follows

ρ̇+ ρdivuuu = 0 (mass conservation), (1)
ρ u̇uu+ grad p+ divPPP = ρ bbb (linear momentum conservation), (2)

PPP = PPPT (rotational momentum conservation), (3)
ρ ė + pdivuuu+ PPP · SSS + div qqq = 0 (energy conservation), (4)
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where
e = ψ − θ

∂ψ

∂θ
, η = −∂ψ

∂θ
, p = ρ2 ∂ψ

∂ρ
. (5)

Differentiation of the expression for the Helmholtz free energy ψ = ε− θη yields

ρ θ η̇ = ρ ė− ρ ρ̇
∂ψ

∂ρ
,

which when combined with (1) and (4), yields the entropy production equation

ρ θ η̇ = −PPP · SSS − div qqq. (6)

Division by θ yields the total entropy product rate of a fluid occupying domain B ⊂ IR3

d

dt

∫
B
ρ η dV = −

∫
B

PPP · SSS
θ

+
qqq · grad θ

θ2
dV −

∫
∂B

qqq · nnn
θ

dA. (7)

The Clausius-Duhem inequality is a common albeit not universally accepted form of the
second law of thermodynamics. It asserts

d

dt

∫
B
ρ η dV +

∫
∂B

qqq · nnn
θ

dA ≥ 0,

which in turn from (7) requires PPP , qqq to satisfy∫
B

PPP · SSS
θ

+
qqq · grad θ

θ2
dV ≤ 0

for all fluid domains B. However the classical Clausius-Duhem inequality is inconsistent with
PPP , qqq delivered by the Chapman-Enskog expansion beyond Navier-Stokes order.

2.2 The Chapman-Enskog Expansion

The Chapman-Enskog expansion for a monatomic gas of spherical molecules yields the consti-
tutive relations

e =
3
2
Rθ, p = Rρθ, µ = µ(θ), (8)

ψ = Rθ log ρ− 3
2
Rθ log θ +

3
2
Rθ − a θ + b, (9)

η = −R log ρ+
3
2
R log θ + a. (10)

where a, b are constants of integration.
In addition the expansion provides representations for the pressure deviator tensor PPP and

heat flux vector qqq in terms of a series which may be ordered via powers of the viscosity µ in
terms of the total number of space plus time derivatives. Following the notation of Ferziger
and Kaper[10] we record

PPP = µPPP (1) + µ2PPP (2) + · · · , (11)

qqq = µqqq(1) + µ2qqq(2) + · · · , (12)

where the expressions for PPP (1), PPP (2), qqq(1), qqq(2) are as follows

PPP (1) = − 2SSS, (13)
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qqq(1) = − 3
2
MR grad θ, (14)

PPP (2) =ω1
1
p

(divuuu)SSS + ω2
1
p

{
ṠSS −LLLSSS − SSSLT +

2
3

tr (SSSLT )III
}

+ ω3
1
ρ θ

{
grad2θ − 1

3
∆θIII
}

+ ω4
1

ρ p θ

{1
2

grad p⊗ grad θ +
1
2

grad θ ⊗ grad p− 1
3

grad p · grad θ III
}

+ ω5
1
ρ θ2

{
grad θ ⊗ grad θ − 1

3
|grad θ|2 III

}
+ ω6

1
p

{
SSS2 − 1

3
tr (SSS2)III

}
, (15)

qqq(2) =θ1
1
ρ θ

(divuuu) grad θ + θ2
1
ρ θ

(
(grad θ)• −LLLT grad θ

)
+ θ3

1
p ρ

(SSS grad p) + θ4
1
ρ

divSSS + θ5
1
ρ θ

SSS grad θ. (16)

One drawback of the Chapman-Enskog expansion is that, if truncated at the Burnett or
higher order, it destroys the property of material frame indifference. In particular, in (15) and
(16), the ω2 term in PPP (2) and the θ2 term in qqq(2) are both material frame dependent. It cannot
be recovered by replacing the material derivative with the space derivative using the Euler or
Navier-Stokes equations[4].

The coefficients ω1, · · · , ω6, θ1, · · · , θ5 are functions of θ and are not independent. For a
gas of spherical molecules the following universal relations have been derived by Truesdell and
Muncaster[36] generalizing more specialized relations:

ω3 = θ4,

θ1 =
2
3

(7
2
− µ′(θ)

µ(θ)
θ
)
θ2 − 1

3
θ
∂θ2
∂θ

,

ω1 =
2
3

(7
2
− µ′(θ)

µ(θ)
θ

)
ω2 − 1

3
θ
∂ω2

∂θ
.

(17)

Furthermore for gases of ideal spheres in which the collisions are purely elastic or satisfy an
inverse kth-power attraction between molecules, the coefficients ω1, ω2, · · · , θ5 are independent
of θ. In addition the relations

θ1
θ2

=
ω1

ω2
=


2
3

(3k − 5
k − 1

)
for inverse kth power molecules,

2 for ideal spheres

hold.
Exact determination of ω1, ω2, · · · , θ5 has only been accomplished for a gas of Maxwellian

(k = 5) molecules. For the more general case only approximations to ω1, ω2, · · · , θ5 have been
obtained. The classical approximation result (say as found in [10, p.149]) is

ω2 � 2, ω3 � 3, ω4 � 0, ω5 � µ′(θ) θ ω3

µ(θ)
, ω6 � 8,

θ2 � 45
8
, θ3 � −3, θ4 � 3, θ5 � 3

(35
4

+
θ

µ
µ′(θ)

)
, M � 5

2
.

(18)

For Maxwell molecules the relations (18) are exact

θ1
θ2

=
ω1

ω2
=

5
3
,

θµ′(θ)
µ(θ)

= 1,

and µ is linear in θ.
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In this paper we shall assume that in addition to (17) the following relations hold

θ3 + ω3 + ω4 = 0, ω5 =
µ′(θ) θ
µ(θ)

ω3, θ5 = θ5 +
µ′(θ) θ
µ(θ)

ω3,

ω3 > 0, θ2 > 0, θ5 > 0, θ5 a constant.
(19)

Notice the assumption (19) holds for the approximation (18) but does not assume the molecules
are ideal spheres or satisfy an inverse kth power attraction law. Of course (17), (19) are satisfied
by Maxwell molecules. However we reiterate the fact that relation (17) and the first equation
in (19) are universal for all spherical molecules (cf. [34]).

2.3 The Relaxation Approximation

Since it is the material derivative terms on the right hand side of (15) and (16) that introduce
the linear instability[33], a relaxation approximation that regularizes PPP and qqq was introduced
by Jin and Slemrod in [16]. There rate type relaxation equations for PPP and qqq, in the spirit of
viscoelastic fluids, were introduced. The resulting relaxed Burnett system for ρ,uuu, e,PPP and qqq
take the following form:

ρ̇+ ρdivuuu = 0, (20)
ρ u̇uu+ grad p+ divPPP = ρ bbb, (21)

PPP = PPPT , (22)

ṖPP −LLLPPP − PPPLLLT +
2
3

tr (PPPLLLT ) III = − 2p
ω2µ

(PPP − PPP eq), (23)

ρ ė + pdivuuu+ PPP · SSS + div qqq = 0, (24)

q̇qq −LLLT qqq = − 3Mp

2 θ2 µ
(qqq − qqqeq), (25)

where

PPP eq = −2µSSS + PPP 2 + PPP 3, (26)

with

PPP 2 = − µ
ω1

2p
(divuuu)PPP +

ω2 µ
′(θ) θ̇

2p
PPP + µ2 ω3

ρ θ

{
− grad

( qqq
3
2µMR

)
+

1
3

div
( qqq

3
2µMR

)
III

}
+ µ

ω4

ρ p θ

{
− 1

2
grad p⊗

( qqq
3
2MR

)
− 1

2
( qqq

3
2MR

)
⊗ grad p+

1
3

grad p ·
( qqq

3
2MR

)
III

}
− µ

ω5

ρ θ2

{
1
2

grad θ ⊗
( qqq

3
2MR

)
+

1
2

( qqq
3
2MR

)
⊗ grad θ +

1
3

grad θ ·
( qqq

3
2MR

)
III

}
− µ

ω6

2p

{1
2

(SSSPPP + PPPSSS) − 1
3

tr (PPPSSS) III
}
, (27)

PPP 3 =µ2
[ ω̂2

p2
trSSS2 + ω̂3

|grad θ|2
Rρ2θ3

]
PPP + µ

γ̂1

p θ

(
θ̇ +

2
3
θ divuuu

)
PPP + ω̂4

[ µ3

MRρ2

( 1
2µ θ

P ij
)

,k

]
,k
,
(28)

and

qqqeq = −3
2
µMR grad θ + qqq2 + qqq3, (29)



A Relaxation Scheme for Solving the Boltzmann Equation Based on the Chapman-Enskog Expansion 43

with

qqq2 = − 2µ
θ1

3MRρθ
(divuuu)qqq +

2θ2θ̇µ′(θ)
3MRρθ

qqq − µ
θ3

2p ρ
PPP grad p

− µ2 θ4
2ρ

div
(PPP
µ

)
− µ

θ5
2ρ θ

PPP grad θ, (30)

qqq3 =µ2
[ θ̂2
p2

trSSS2 + θ̂3
|grad θ|2
Rρ2θ3

]
qqq + µ

λ̂1

ρ θ2

(
θ̇ +

2
3
θ divuuu

)( qqq
3
2MR

)
+ θ̂4

[µ3θ

ρ2

( 2
3MRµθ2

qi

)
,k

]
,k
. (31)

In (28) and (31) conventional summation notation is used. Since the energy equation (24)
implies that

θ̇ +
2
3
θ divuuu =

2
3ρR

(−PPP · SSS − div qqq), (32)

system (20)–(25) is weakly parabolic and local (does not contain θ̇ on the right hand side) after
using (31). Moreover, (31) suggests that θ̇ + 2

3θ divuuu = O(µ), and PPP 3 and qqq3 are O(µ3), thus
belong to the super Burnett order. It is a trivial observation that (20)–(25) yield a representation
of PPP , qqq in powers of µ, which agrees with the classical Burnett equations, i.e., terms of order µ2

from the Chapman-Enskog expansion of the Boltzmann equation, with corrections at O(µ3).
Yet unlike the augmented Burnett systems of [1, 11, 36] the system possesses spatial derivatives
only up to the second order.

2.4 Boundary Conditions

The Chapman-Enskog expansion in itself prescribes no boundary conditions. We can derive
the boundary conditions if we associate density ρ, velocity uuu, stress deviator PPP and heat flux qqq
with their relations defined by the moment of probability density distribution.

Consider the probability density distribution f(xxx, , ξξξ), solution of the Boltzmann equation.
Let ccc = ξξξ − uuu be the peculiar velocity. Then the connection between f and the macroscopic
quantities are established by the moments:

ρ =
∫

IR3
f dξξξ, ρuuu =

∫
IR3

fξξξ dξξξ,

Pij =
∫

IR3
cicjf dξξξ, i �= j, qi =

1
2

∫
IR3

ci|ccc|2f dξξξ,
(33)

Now following [13], we consider for simplicity the boundary perpendicular to the x1-axis
with specular reflective boundary conditions:

f(ξξξ) = f+(ξξξ) + f−(ξξξ), (34)
f+(ξξξ) = 0 for ξ1 < 0, f−(ξξξ) = 0 for ξ1 > 0, (35)
f+(ξ1, ξ2, ξ3) = f−(−ξ1, ξ2, ξ3). (36)

This is of course equivalent to the statement that f is even in ξ1. Hence

ρu1 =
∫

IR3
ξ1f d ξ1ξ2ξ3,

being the integral of an odd function on −∞ < ξ1 < ∞ must vanish and hence u1 = 0 on the
boundary, i.e., uuu · nnn = 0, where nnn is the unit normal to the boundary. Since u1 = 0 on the
boundary, c1 = ξ1, thus q1 = 0, P12 = P13 = 0 as well. Hence we have qqq · nnn = 0.
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PPPnnn delivers the tractions on the surface which in our case is PPPnnn = (P11, P12, P13) and hence
the surface traction is parallel to the surface normal nnn, i.e., PPPnnn× nnn = 000.

Since for a smooth surface we may locally arrange the coordinates so that the surface
is locally perpendicular to the x1 axis, Grad’s conditions for specularly reflective boundary
condition for an arbitrary smooth surface are simply uuu · nnn = 0, qqq · nnn = 0, PPPnnn× nnn = 000, where nnn
is a normal to the surface.

3 Properties of the Relaxed Burnett System

To make the paper more complete we review in this section two main properties of the relaxed
Burnett equations, namely, the global generalized entropy inequality and the (local) hyperbol-
icity of the linearized system. Both were proved in [16]. We also give the linear dispersion
relation.

3.1 Generalized Entropy Inequality

Under certain assumptions the following generalized entropy inequality for the relaxation sys-
tems (20)–(26)can be established. This inequality guarantees the irreversibility of the relaxation
process. In addition to the classical entropy for the Navier-Stokes equations, the generalized
entropy also depends on the nonequilibrium variables PPP and qqq.
Theorem 3.1. Let PPP , qqq be given by (20)–(31) with

λ̂1 = −1
2
θ
∂θ2
∂θ

− θ2θ
µ′(θ)
µ(θ)

+
3
2
θ2, (37)

γ̂1 = −1
2
θ
∂ω2

∂θ
− ω2 θ

µ′(θ)
µ(θ)

+ ω2, (38)

in (28), (31) respectively.
Assume that ω̂4 ≥ 0, θ̂4 ≥ 0. Furthermore, define zzz ∈ IR5 by

zzz =
[(trPPP 2

θ

)1/2

,

√
2
3

|qqq|√MRθ
, µ

(trSSS2 trPPP 2)1/2

p(Rθ)1/2
, µ

√
2
3

(trSSS2)1/2|qqq|
p θ(MR)1/2

,

√
2
3
|grad θ| |qqq|
p θ3/2

]
,

then the following entropy inequality holds:

ρ
{
− η +

1
2

tr
( ω2PPP

2

4ρ p θ

)
+

1
3MR

( 2 θ2|qqq|2
3MRρ2θ3

)}•
+ div

{ qqq
θ

+
ω3PPPqqq

3MRρθ2

}
− ω̂4

∂

∂xk

[ µ3

MRρ2

1
2µ θ

P ij
( 1

2µ θ
P ij
)

,k

]
− θ̂4

∂

∂xk

[µ3

ρ2

( 2
3MRµθ

)
qi

( 2
3MRµθ

qi

)
,k

]
≤− 1

µ
zzz ·DDDzzz, (39)

where

DDD =



1
2

0
−|ω6 − 2ω2|

8
√

2
0 −| − θ5 − ω3 + θ ω′

3(θ)|√
6M

0 1 0 − 1
3M 0

−|ω6 − 2ω2|
8
√

2
0 −ω̂2 0 0

0 − 1
3M 0 −θ̂2 0

−| − θ5 − ω3 + θ ω′
3(θ)|√

6M 0 0 0 − θ̂3
M


.
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DDD is positive definite if ω̂2 < 0, θ̂2 < 0, θ̂3 < 0 are sufficiently large in absolute value, ω̂3 ≤ 0,
and

∣∣− θ5 − ω3 + θω′
3(θ)
∣∣, |ω6 − 2ω3| are bounded.

Remark 3.1. In the above Theorem the positive definiteness of D is a sufficient condition
but may not be necessary. The necessary condition to obtain the entropy inequality remains an
open problem.
Remark 3.2. If ω̂4 = θ̂4 = 0, namely, the dissipative terms in PPP 3 and qqq3 are not present, the
entropy condition still holds and the entropy and the entropy flux in (39) agree with those of
Grad’s thirteen moment theory[26]. The generalized entropy, as in Grad’s theory, is not globally
convex. However, it is locally convex around the equilibrium solution (ρ and θ are constants),
thus the rest state (u = 0) is stable, in contrast to the Burnett equations where the rest state is
unstable.

3.2 Hyperbolicity

The hyperbolicity of the relaxation approximation (20)–(25), when the parabolic terms are
omitted, was proved in [16] in one-dimension for rest state. To reduce the system to the one
dimensional case, which will be used in our numerical experiments, we assume that all quantities
depend on x only, uuu =

(
u(x, ), 0, 0

)
and look for special solution P 23 = P 13 = P 12 = q2 = q3 = 0.

It is easy to show that these are exact solutions to (23) and (25). Furthermore, one can show
that P 22 = P 33 is also consistent with (23) and (25). Since PPP has zero trace, this implies that

P 22 = −1
2
P 11.

Thus we are left with five independent variables ρ, u, θ, P 11 = σ and q1 = q, satisfying the
system

ρ+uρx + ρux = 0, (40)

u+uux +
1
ρ
px +

1
ρ
σx = 0, (41)

θ+u θx +
2p

3ρR
ux +

2
3ρR

σux +
2

3ρR
qx = 0, (42)

σ+uσx − 4
3
σux = − 2p

ω2µ
(σ − σeq), (43)

q+uqx − qux = −3Mp

2 θ2µ
(q − qeq), (44)

where
σeq = −4

3
µux + σ2 + σ3, (45)

with

σ2 = − µ
ω1

2p
σux +

ω2µ
′(θ) θ̇
2p

σ − µ2 4ω3

9ρ θ

( q

µMR

)
x
− µ

4ω4

9ρ p θ
q

MR
px

− µ
4ω5

9ρ θ2

q

MR
θx − µ

ω6

6p
σux, (46)

σ3 =µ2
[2ω̂2

3p2
ux

2 + ω̂3
θx

2

Rρ2θ3

]
σ − µ

γ̂1

p θ

2
3ρR

(σ2ux + σqx) + ω̂4

[ µ3

MRρ2

( σ

2µ θ

)
x

]
x
,

(47)

and
qeq = −3

2
µMRθx + q2 + q3 (48)
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with

q2 = − 2µ
θ1

3MRρθ
qux +

2θ2θ̇µ′(θ)
3MRρθ

q − µ
θ3

2p ρ
σpx − µ2 θ4

2ρ

(σ
µ

)
x
− µ

θ5
2ρ θ

σθx, (49)

q3 =µ2
[2θ̂2

3p2
ux

2 + θ̂3
θx

2

Rρ2θ3

]
q − µ

λ̂1

ρ θ2

2
3ρR

(σux + qx)
( q

3
2MR

)
+ θ̂4

[µ3θ

ρ2

( 2
3MRµθ2

q
)

x

]
x
. (50)

Set ω̂4 = θ̂4 = 0. Upon using p = Rρθ, and (42) to replace θ̇, one obtains the Jacobi matrix
for the relaxation system (40)–(44)

JJJ =



u ρ 0 0 0
Rθ

ρ
u R

1
ρ

0

0 J32 u 0
2

3Rρ
J41 J42 J43 u J46

J51 J52 J53 J54 J56


, (51)

where for Maxwellian molecules

J32 =
2
3
θ +

2
3Rρ

σ, (52)

J41 = 0, J42 =
7
3
σ +

4
3
p+

2
3
σ2

p
, J43 = 0, J46 =

2
3
σ

p
+

8
15
, (53)

J51 = − p

ρ2
σ, J52 =

q

p
σ +

4
3
q, J53 =

5
2
pR +

31
4
Rσ, J54 =

p

ρ
, J56 = u+

q

p
,

(54)

while the characteristic polynomial becomes (upon changing u− λ→ −λ)

λ[λ4 + a3λ
3 + a2λ

2 + a1λ + a0], (55)

with the coefficients

a0 =
123
10

Pσ

ρ2
+ 3

p2

ρ2
+

587
90

σ2

ρ2
, a1 =

7
5
q

ρ
+

41
45

qσ

pρ
,

a2 = − 26
5
p

ρ
− 53

6
σ

ρ
− 2

3
σ2

pρ
, a3 = −q

p
.

Linearizing system (40)–(44) around the rest state (ρ, 0, θ, 0, 0), where ρ, θ are constants.
In this case, the characteristic polynomial (55) reduces to

λ
[
λ4 − 26

5
p

ρ
λ2 + 3

(p
ρ

)2]
,

where p = Rθρ. This polynomial has been shown in [16] to have five distinct roots

0, ±
√

13
5

±
√

94
25

√
p

ρ
.

Thus the linearized relaxation system, when the parabolic terms are omitted, is hyperbolic.
This shows that the relaxation system is at least locally well-posed for initial value problems.
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By incorporating the weakly parabolic terms this well-posedness is conjectured but remains an
open problem.

3.3 Dispersion Relation

If we set z = ρ c2
0

ω µ , c
2
0 = 5

3 Rθ, the dispersion relation is obtained by setting vvv = (ρ, u, θ, σ, q)T

equal to ei(ω−kx)vvv0 and looking for the non-trivial solution of

det
[ω
k
III − JJJ +

i

k
AAA− i kBBB

]
= 0.

Here

A44 = −6ω z
5ω2

, A55 = −9Mωz

10 θ2
, B44 =

ω̂4 c
2
0

ω2Mωz
, B55 =

θ̂4 c
2
0

θ2 ωz
.

Hence in the limit as ω → ∞, i.e., z → 0, A44 = A55 = 0. If furthermore we restrict ourselves
to the case with no diffusion: ω̂4 = θ̂4 = 0, then BBB = 0 and we see that ω

k will be precisely equal
to the eigenvalue of JJJ :

0, ±
√

13
5

±
√

94
25

√
p

ρ
.

Since p
ρ = 3

5c
2
0, we have

ω

k c0
= 0,

ω

k c0
= ±

√
3

5

√
13 ±

√
94 = ±1.649 · · · ,±0.6294 · · · .

The nonzero values are identical to those obtained by Grad[13] and extended thermodynamics
of 13 variables (cf. [26]).

In the case θ̂4 > 0, ω̂4 > 0, we obtain ω
k c0

→ ∞ as z → 0 as in the Navier-Stokes theory.

4 Numerical Schemes

4.1 Formulation and Time Splitting

We will devise a numerical scheme for one dimensional system (40)–(44). Since the system
cannot be written in conservative form we use the following form to devise our numerical
approximations:

U+F (U, V )x = 0, V+G(U, V, Ux, Vx) = D(U, V, Ux, Vx)x, (56)

where

U =

 ρ
ρ u

1
2
ρ u2 +

3
2
p

 , V =
(
σ
q

)
, F (U, V ) =

 ρ u
ρ u2 + p+ σ

1
2
ρ u3 +

5
2
up+ σu + q

 , (57)

G(U, V, Ux, Vx) =

uσx − 4
3
σux +

2p
ω2µ

(σ − σ̃eq)

uqx − qux +
3Mp

2θ2µ
(q − q̃eq)

 , (58)

D(U, V, Ux, Vx)x =


2p
ω2µ

ω̂4

[ µ3

MRρ2

( σ

2µθ

)
x

]
x

3Mp

2θ2µ
θ̂4

[µ3θ

ρ2

( 2
3MRµθ2

q
)

x

]
x

 =


2p
ω2µ

d1

3Mp

2θ2µ
d2

 , (59)
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and now

σ̃eq = −4
3
µux + σ2 + σ̃3, σ̃3 = σ3 − d1, (60)

q̃eq = −3
2
µMRθx + q2 + q̃3, q̃3 = q3 − d2. (61)

As in standard numerical methods for hyperbolic systems with relaxations, we use operator
splitting by splitting the convective operators

U+F (U, V )x = 0, V+G(U, V, Ux, Vx) = 0, (62)

from the rest (diffusive operators and source terms)

U=0, V=D(U, V, Ux, Vx)x. (63)

The main advantage of this splitting is that, in the diffusion step, U=0, thus the V equations
can be solved with a fully implicit method — which has a good stability property — without
solving nonlinear systems of algebraic equations.

4.2 Discretizations

Let us consider the convective step

U+F (U, V )x = 0, (64)
V+G(U, V, Ux, Vx) = 0. (65)

For spatial discretizations we use a staggered grid as in [22, 28]. Define the grid points as

xj = j∆x, xj+1/2 = xj +
1
2

∆x, j = · · · ,−2,−1, 0, 1, 2, · · · , (66)

and use the standard notation for cell-averages:

Un+1
j+1/2 =

1
∆x

∫ xj+1

xj

U(x,n+1 ) dx, V n+1
j+1/2 =

1
∆x

∫ xj+1

xj

V (x,n+1 ) dx. (67)

By integrating system (64), (65) over the cell [xj , xj+1] × [n,n+1 ] one obtains

Un+1
j+1/2 =

1
∆x

∫ xj+1

xj

U(x,n ) dx+
1

∆x

∫ n+1

n

F
(
U(xj , ), V (xj , )

)− F
(
U(xj+1, ), V (xj , )

)
dt,

V n+1
j+1/2 =

1
∆x

∫ xj+1

xj

V (x,n ) dx+
1

∆x

∫ n+1

n

∫ xj+1

xj

G
(
U(x, ), V (x, ), Ux(x, ), Vx(x, )

)
dx dt.

At each time level n = n∆ we approximate U(x,n ) and V (x,n ) by their piecewise linear
approximations

LUj(x, ) = Uj() + (x− xj)
U ′

j

∆x
, xj−1/2 < x < xj+1/2, (68)

LVj(x, ) = Vj() + (x− xj)
V ′

j

∆x
, xj−1/2 < x < xj+1/2, (69)

where U ′
j and V ′

j are numerical derivatives such that

U ′
j

∆x
= Ux(xj , ) +O(∆x),

V ′
j

∆x
= Vx(xj , ) +O(∆x). (70)
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Then (68) becomes

Un+1
j+1/2 =

1
2

(Un
j + Un

j+1) +
1
8
[
(Un

j )′ − (Un
j+1)′

]
+

1
∆x

∫ n+1

n

F
(
U(xj , ), V (xj , )

)− F
(
U(xj+1, ), V (xj+1, )

)
dt,

V n+1
j+1/2 =

1
2

(V n
j + V n

j+1) +
1
8
[
(V n

j )′ − (V n
j+1)′

]
+

1
∆x

∫ n+1

n

∫ xj+1

xj

G
(
U(x, ), V (x, ), Ux(x, ), Vx(x, )

)
dx dt.

The semi-discrete approximation can be rewritten in the form

Un+1
j+1/2 =

1
2

(Un
j + Un

j+1) − 1
8
[
(Un

j+1)′ − (Un
j )′
]− λ(Fj+1 − Fj), (71)

V n+1
j+1/2 =

1
2

(V n
j + V n

j+1) − 1
8
[
(Vj+1)′ − (V n

j )′
]− ∆Gj+1/2, (72)

where λ = ∆/∆x and

Fj =
1
∆

∫ n+1

n

F
(
U(xj , ), V (xj , )

)
dt, (73)

Gj+1/2 =
1
∆

∫ n+1

n

1
∆x

∫ xj+1

xj

G
(
U(x, ), V (x, ), Ux(x, ), Vx(x, )

)
dx dt. (74)

To achieve the second order accuracy in space for smooth solutions we use a midpoint
rule to approximate the space integral in (74) and then apply central differencing to the space
derivatives to get

1
∆x

∫ xj+1

xj

G
(
U(x, ), V (x, ), Ux(x, ), Vx(x, )

)
dx

≈G(U(xj+1/2, ), V (xj+1/2, ), Ux(xj+1/2, ), Vx(xj+1/2, )
)

≈G
(
U(xj+1/2, ), V (xj+1/2, ),

U(xj+1, ) − U(xj , )
∆x

,
V (xj+1, ) − V (xj , )

∆x

)
. (75)

To guarantee the non-oscillatory nature of the scheme we use the non-oscillatory TVD
numerical derivative for U and V

U ′
j = Minmod (∆Uj+1/2, ∆Uj−1/2), (76)

V ′
j = Minmod (∆Vj+1/2, ∆Vj−1/2), (77)

where ∆Uj+1/2 = uj+1 − uj , ∆Vj+1/2 = Vj+1 − Vj and Minmod is the multivariable MinMod
function given by

Minmod (x1, x2, · · ·) =


min

j
{xj} if xj > 0, ∀ j,

max
j

{xj} if xj < 0, ∀ j,
0 otherwise.

(78)

However other choices, like UNO numerical derivatives are also possible (cf. [14, 27]).
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4.2.1 Semi-implicit Predictor-Corrector Time Discretization

To define the numerical scheme we should approximate the time integrals

1
∆

∫ n+1

n

F
(
U(xj , ), V (xj , )

)
dt, (79)

1
∆

∫ n+1

n

G
(
U(xj+1/2, ), V (xj+1/2, ),

U(xj+1, ) − U(xj , )
∆x

,
V (xj+1, ) − V (xj , )

∆x

)
. (80)

This can be done in different ways, and we refer [28, 29] for a recent discussion on several second
order time discretizations for hyperbolic systems with relaxation. Stability considerations sug-
gest the use of implicit time integrators for the previous system (79)–(80). From our numerical
experiments this seems essential in the computation of high Mach number flows. For example
a backward Euler type method is given by

1
∆

∫ n+1

n

F
(
U(xj , ), V (xj , )

)
dt ≈ F

(
U(xj ,

n+1 ), V (xj ,
n+1 )

)
, (81)

1
∆

∫ n+1

n

G
(
U(xj+1/2, ), V (xj+1/2, ),

U(xj+1, ) − U(xj , )
∆x

,
V (xj+1, ) − V (xj , )

∆x

)
≈G
(
Un+1

j+1/2, V
n+1
j+1/2,

U(xj+1,
n+1 ) − U(xj ,

n+1 )
∆x

,
V (xj+1,

n+1 ) − V (xj ,
n+1 )

∆x

)
, (82)

where the values of U(xj ,
n+1 ) and V (xj ,

n+1 ) must be computed using a suitable predictor
formula. We use the explicit approximations

U(xj ,
n+1 ) ≈ Un+1

j = Un
j + λ(Fn

j )′, (83)

V (xj ,
n+1 ) ≈ V n+1

j = V n
j + ∆G

(
Un+1

j , V n+1
j ,

(Un
j )′

∆x
,

(V n
j )′

∆x

)
, (84)

where (Fn
j )′/∆x is at least a first order approximation of F

(
U(xj ,

n ), V (xj ,
n )
)
x
, computed for

example using the same MinMod limiter. Thanks to the explicit predictor and the linear nature
of G with respect to V n+1

j this scheme under development can be implemented explicitly.
Remark 4.1. Note that slightly better stability properties without increasing the computational
complexity of the algorithm can be obtained by taking U ′

j also at time n+1 instead of n in the
predictor step (84). Alternatively a fully implicit approach will require the use of some iterative
solvers in the predictor step.

Collecting all together (73)–(75) and (81)–(82) we have the numerical scheme given by the
predictor (83)–(84) and the corrector

Un+1
j+1/2 =

1
2

(Un
j + Un

j+1) − 1
8
[
(Un

j+1)′ − (Un
j )′
]− λ

(
F (Un+1

j+1 , V
n+1
j+1 ) − F (Un+1

j , V n+1
j )

)
,
(85)

V n+1
j+1/2 =

1
2

(V n
j + V n

j+1) − 1
8
[
(V n

j+1)′ − (V n
j )′
]

(86)

− ∆tG
(
Un+1

j+1/2, V
n+1
j+1/2,

Un+1
j+1 − Un+1

j

∆x
,
V n+1

j+1 − V n+1
j

∆x

)
, (87)

where Un+1
j and V n+1

j on the right hand side are given by (83) and (84). Although the above
scheme has some implicit terms, it can be solved explicitly by first obtaining Un+1

j+1/2 and then
use it in (87), since G is linear in V and Vx.
Remark 4.2. To obtain second order accuracy in time for moderate stiff problems it is enough
to replace the time integrations in (81) and (82) by the trapezoidal rule. The construction of
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time discretizations that work with uniform second order accuracy with respect to the stiffness
parameter is currently under investigations.
Remark 4.3. Different strategies may also be adopted to remove the staggering from the grid.
For example using a nonstaggered high resolution Lax-Friedrichs scheme as in [27] or simply
using a projection technique like in [15]. This will be particularly important in consideration of
future multidimensional computations.

4.2.2 Diffusive Terms

Finally, the system containing diffusive and source terms

U=0, V=D(U, V, Ux, Vx)x, (88)

are approximated by standard central difference on the grid point xj in the form

D(U, V, Ux, Vx)x |x=xj

≈ 1
∆x

[
D
(
Uj+1/2, Vj+1/2,

Uj+1 − Uj

∆x
,
Vj+1 − Vj

∆x

)
−D

(
Uj−1/2, Vj−1/2,

Uj − Uj−1

∆x
,
Vj − Vj−1

∆x

)]
,

combined with a fully implicit backward Euler discretization in time. For the approximation of
the values Uj±1/2 and Vj±1/2 we use the simple averages

Uj±1/2 =
Uj + Uj±1

2
, Vj±1/2 =

Vj + Vj±1

2
.

The resulting discretization forms a tridiagonal linear system that can be solved efficiently in
a direct way. The same clearly applies if we consider its natural second order extension based
on the Crank-Nicolson time integration.
Remark 4.4. The combination of the two steps (62) and (63) gives a first order splitting
scheme in time. Second order extensions can be obtained using Strang splitting[35] or the Runge-
Kutta schemes presented in [2, 29].

5 Numerical Results

In this section we compare numerical solutions of the one dimensional stationary shock waves for
rarefied gas dynamics obtained by the Relaxed-Burnett (RB) equations (40)–(45), the Navier-
Stokes equations and the Extended Thermodynamics (ET) approximations. Serving as reference
solutions we use the results given by Monte Carlo simulations (DSMC) for the full Boltzmann
equation.

The DSMC simulations have been performed in the case of Maxwellian molecules and thanks
to the stationary nature of the problem an efficient averaging technique has been used to obtain
profiles with a small amount of fluctuations. We refer to [3, 30] for further details.

For the sake of completeness we present also the the Navier-Stokes (NS) equations

ρ+(ρu)x = 0, (ρu)+(ρu2 + p+ σ)x = 0,(1
2
ρu2 +

3
2
p
)

+

(1
2
ρu3 +

5
2
up+ σu + q

)
x

= 0,

σ = −4
3
µux, q = −3

2
µMRθx, µ = εθ,

(89)
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and the Extended Thermodynamics (ET) equations

ρ+(ρu)x = 0, (ρu)+(ρu2 + p+ σ)x = 0,(1
2
ρu2 +

3
2
p
)

+

(1
2
ρu3 +

5
2
up+ σu + q

)
x

= 0,(2
3
ρu2 + σ

)
+

(2
3
ρu3 +

4
3
up+

7
3
σu +

8
15
q
)

x
= −ρσ

ε
, (90)

(ρu3 + 5up+ 2σu + 2q)+
(
ρu4 + 5

p2

ρ
+ 7

σp

ρ
+

32
5
qu+ u2(8p+ 5σ)

)
x

= −2ρ
ε

(2
3
q + σu

)
.

0 10 20 30 40 50 60 70 80 90
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

x

ρ(
x,

t)

ε=1, t=100.0, N=400

0 10 20 30 40 50 60 70 80 90
−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

x

u(
x,

t)

ε=1, t=100.0, N=400

0 10 20 30 40 50 60 70 80 90
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

x

θ(
x,

t)

ε=1, t=100.0, N=400

0 10 20 30 40 50 60 70 80 90
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

x

σ(
x,

t)

ε=1, t=100.0, N=400

0 10 20 30 40 50 60 70 80 90
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x

q(
x,

t)

ε=1, t=100.0, N=400

0 10 20 30 40 50 60 70 80 90
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

en
tro

py

x

ε=1, t=100.0, N=400

Fig. 1(a) Numerical solution of Navier-Stokes equations for M=1.4 at time =100. Continuous line

DSMC result.

Note that the ET equations, with the number of moments used in (90), are the same as
Grad’s thirteen moment equations[26].
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Both system has been solved using the same staggered grid. For system (89) we have
adapted the same discretization as for the RB system (by removing all the Burnett and super
Burnett orders). While for system (90) we use the central scheme recently proposed in [28].
We omit the details.
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Fig. 1(b) Numerical solution of Extended-Thermodynamics equations for M=1.4 at time =100. Con-

tinuous line DSMC result.

The relaxation model has been considered in the form (56) with µ = ε θ (Maxwellian
molecules), R = 1 and the set of parameters given by (18).

The test problem is given by a one-dimensional stationary shock profiles for ε = 1 and
different values of the Mach number ranging form 1.4 to 10. In all our numerical examples the
gas is initially at the upstream equilibrium state in the left half-space and in the downstream
equilibrium state in the right-half space. The two states being smoothly connected with an
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hyperbolic tangent function.
The upstream state is determined from the downstream state using the Rankine-Hugoniot

relations [37].
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Fig. 1(c) Numerical solution of Relaxed-Burnett equations for M=1.4 at time =100. Continuous line

DSMC result.

In the present calculations, the downstream state is characterized by ρ = 1.0, T = 1.0,
and by the Mach number M of the shock. The downstream mean velocity is then given by
u = −M√

γT , with γ = 5/3.
The infinite physical space is truncated to the finite region [−L,L] where L depends on the

Mach number considered. The reference solution is obtained using the DSMC method with 200
space cells and 100 particles in each downstream cell and averaging over approximatively 106

time steps after the ’stationary time’ = 100. We report the result obtained with the different
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schemes using 400 space cells at time = 100 after the stationary state has been reached.
We remark that the relaxed Burnett equations (56) have the additional free parameters

θ̂2, θ̂3, θ̂4 and ω̂2, ω̂3, ω̂4 at the super Burnett terms. A possible strategy to select these param-
eters is to perform a least square fitting procedure on several test cases with different Mach
numbers. Our results suggest that these values can be chosen independently of the Mach num-
ber and that a reasonable choice, based on the least square fitting of a Mach 4 shock obtained
by the DSMC, is given by

θ̂2 = −60, θ̂3 = 100, θ̂4 = 25, ω̂2 = −20, ω̂3 = 20, ω̂4 = 20.
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Fig. 2(a) Numerical solution of Navier-Stokes equations for M=4.0 at time =100. Continuous line

DSMC result.

Unfortunately this set of parameters does not satisfy the sufficient condition for a generalized
entropy inequality stated by Theorem 3.1 (since ω̂2, ω̂3 and θ̂3 are positive). However numerical
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evidence seems to indicate that the same entropy inequality holds. It is an open question to
understand if it is possible to remove some of the sign assumptions in the proof.

The entropy function

η = log(ρ) − 3
2

log(θ) +
ω2(p11 − p)2

8p2
+

2θ2q2

9M2ρ2θ3
. (91)

has been computed for all models (including DSMC).
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Fig. 2(b) Numerical solution of Extended-Thermodynamics equations for M=4.0 at time =100. Con-

tinuous line DSMC result.

In Figures 1(a,b,c), we plot the result obtained for M = 1.4 using the different models. The
convergence speed to the stationary state is comparable. As expected, the results show that
essentially all approximations are almost equivalent and provide a reasonable good description
of the rarefied shock. The same conclusions can be drawn for weaker shocks where the Mach
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number is closer to one.
Next we consider the case of M = 4.0

(
see Figures 2(a,b,c)

)
. A marked improvement of the

numerical solution obtained with the RB model with respect to ET and NS models is evident
in the computations of all physical quantities. A slightly more restrictive CFL condition is
required by the RB central scheme if compared with the corresponding ET and NS central
schemes (about one half).
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Fig. 2(c) Numerical solution of Relaxed-Burnett equations for M=4.0 at time =100. Continuous line

DSMC result.

Finally we give the result of the computations for M = 10 in Figures 3(a,b,c). Again the
solution obtained with the RB equations outperforms the solutions of the ET and NS equations.
However the restriction on the CFL condition of the RB scheme here is more severe and it is an
open question at present to understand if this is due to an increase of stiffness with the Mach



58 Shi Jin, et al.

number in the RB equations or to some instability phenomena that occur in the RB model at
very high Mach numbers. This is under study.

6 Conclusions

We have proposed a class of relaxation schemes for the one-dimensional Boltzmann equation
based on the relaxed Burnett system by Jin and Slemrod[16]. The schemes combine a conser-
vative solver for the conserved part of the system (balance laws for density, momentum and
energy), while for the equations in non conservative form (heat flux and stress) we discretize the
spatial derivatives using slope limiters and central differences. This is carried out conveniently
using a staggered grid, as in a staggered non-oscillatory central scheme (cf. [27]).
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Fig. 3(a) Numerical solution of Navier-Stokes equations for M=10.0 at time =100. Continuous line

DSMC result.
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The numerical results for a stationary shock wave with different Mach numbers are promising
and it appears that the relaxed Burnett system offers more accurate shock profiles compared to
the DSMC than other hydrodynamic theories (Navier-Stokes and extended thermodynamics).
Further numerical experiments and extension of the present schemes to the multi-dimensional
case will be presented elsewhere.
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Fig. 3(b) Numerical solution of Extended-Thermodynamics equations for M=10.0 at time =100. Con-

tinuous line DSMC result.

Nomenclature

bbb body force
B subset of Euclidean space
div divergence
e internal energy density
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grad gradient
III unit tensor
LLL velocity gradient (LLL = graduuu)
M Maxwell number
nnn unit exterior normal
PPP pressure deviator (PPP = [P ij ]3×3)
ppp mean normal pressure
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Fig. 3(c) Numerical solution of Relaxed-Burnett equations for M=10.0 at time =100. Continuous line

DSMC result.

qqq energy flux vector (qqq = [q1, q2, q3]T )
RRR gas constant
SSS distortion tensor

(
SSS = 1

2 (graduuu+ (graduuu)T − 2
3 divuuuIII)

)
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TTT stress tensor (TTT = −pIII − PPP )
ttt time
tr trace
uuu macroscopic velocity
xxx cartesian coordinate

(
xxx = (x, y, z)

)
µ viscosity
ρ mass density
η specific entropy
ψ Helmhotz free energy, ψ = ε− θη
θ temperature
θi, θ̂i coefficients of the Chapman-Enskog expansion for qqq
ωi, ω̂i coefficients of the Chapman-Enskog expansion for PPP
γ̂1, λ̂1 coefficients of the super Burnett terms
(•) material derivative of ( ), i.e. (•) = ∂

∂ ( ) + uuu · grad ( )
⊗ dyadic product, i.e. (uuu⊗ vvv)ij = uivj

· inner product, i.e. uuu · vvv = uivi for vectors uuu, vvv;
AAA ·BBB = tr(AAAB) for tensors AAA,BBB.

Acknowledgement L. Pareschi thanks the Department of Mathematics and Center for the
Mathematical Sciences at University of Wisconsin-Madison for their hospitality during his visit.

References

[1] Agarwal, R., Yun, K., Balakrishnan, R. Beyond Navier-Stokes: Burnett Equations for Flow Simulations
in Continuum-transition Regime. AIAA 99-3580, 30th AIAA Fluid Dynamics Conference, Norfolk, VA, 28
June–1 July, 1999

[2] Ascher, U., Ruth, S., Spiteri, R.J. Implicit-explicit Runge-Kutta Methods for Time Dependent PDE’s.
Appl. Numer. Math., 1997, 25: 151–161

[3] Bird, G.A. Molecular Gas Dynamics. Oxford University Press, London, 1994
[4] Biscari, P., Cercignani, C., Slemrod, M. Time Derivatives and Frame Indifference Beyond Newtonian Fluids.

C.R. Acad. Sci. Paris (Series 11), 2000, 328(b): 417–422
[5] Bobylev, A.V. The Chapman-Enskog and Grad Methods for Solving the Boltzmann Equation. Soviet

Physics Doklady, 1982, 27(1): 71–75
[6] Bobylev, A.V. On the Structure of Spatially Homogeneous Normal Solutions of a Nonlinear Boltzmann

Equation for a Mixture of Gases. Soviet Physics Doklady, 1980, 25: 30–32
[7] Cercignani, C. The Boltzmann Equation and Its Applications. Springer-Verlag, New York, 1988
[8] Chen, G.Q., Levermore, C.D., Liu, T.P. Hyperbolic Conservation Laws with Stiff Relaxation Terms and

Entropy. Communications in Pure and Applied Mathematics, 1994, 47: 787–830
[9] Coquel, F., Perthame, B. Relaxation of Energy and Approximate Riemann Solvers for General Pressure

Laws in Fluid Dynamics. SIAM J. Num. Anal., 1998, 35: 2223–2249
[10] Ferziger, J.H., Kaper, H.G. Mathematical Theory of Transport Processes in Gases. North Holland,

Amsterdam, 1972
[11] Fiscko, K.A., Chapman, D.R. Comparison of Burnett, Super-Burnett and Monte-Carlo Solutions for Hy-

personic Shock Structure. Proc.16th International Symposium on Rarefied Gas Dynamics, Pasadena,
California, July 11–15, 1988

[12] Foch, T.D. On the Higher Order Hydrodynamic Theories of Shock Structure. Acta Physica Austriaca,
Supplement, 1973, X: 123–140

[13] Grad, H. Asymptotic Theory of the Boltzmann Equation. Physics of Fluids, 1963, 6: 147–181
[14] Harten, A., Osher, S. Uniformly High Order Accurate Non-oscillatory Scheme I. SIAM J. Numer. Anal.,

1987, 24: 279–309
[15] Jang, G.S., Levy, D., Lin, C.T., Osher, S., Tadmor, E. High-resolution Non-oscillatory Central Schemes

with Non-staggered Grids for Hyperbolic Conservation Laws. SIAM J. Num. Anal., 1998, 35: 1892–1917
[16] Jin, S., Slemrod, M. Regularization of the Burnett Equations via relaxation. J. Stat. Phys., 2001, 103(5-6):

1009–1033
[17] Jin, S., Slemrod, M. Regularization of the Burnett Equations for Fast Granular Flows via Relaxation.

Physica D, 2001, 150: 207–218
[18] Jin, S., Xin, Z.P. The Relaxation Schemes for Systems of Conservation Laws in Arbitrary Space Dimensions.

Comm. Pure Appl. Math., 1995, 48: 235–276



62 Shi Jin, et al.

[19] Joseph, D.D. Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag, New York, 1990
[20] Levermore, C.D. Moment Closure Hierarchies for Kinetic Theories. J. Stat. Phys., 1996, 83: 1021–1065
[21] Levermore, C.D., Morokoff, W.J. The Gaussian Moment Closure for Gas Dynamics. SIAM J. Appl. Math.,

1998, 59: 72–96
[22] Liotta, F., Romano, V., Russo, G. Central Schemes for Balance Laws of Relaxation Type. SIAM J. Numer.

Anal., 2000, 38: 1337–1356
[23] Luk’shin, A.V. On the Method of Derivation of Closed Systems for Macroparameters of Distribution

Function for Small Knudsen Numbers. Doklady AN SSSR , 1983, 170: 869–873 English Translation in
Soviet Physics Doklady, 1983, 28: 454–456

[24] Luk’shin, A.V. Hydrodynamical Limit for the Boltzmann Equation and Its Different Analogs. In: Numer-
ical and Analytical Methods in Rarefied Gas Dynamics, Moscow Aviation Institute, Moscow 1986, 37–43

[25] Luk’shin, A.V. The Cauchy Problem for the Boltzmann Equation. Hydrodynamical limit. In: Numerical
Methods in Mathematical Physics, Moscow State University, Moscow 1986, 61–91

[26] Müller, I., Ruggeri, T. Rational Extended Thermodynamics. 2nd ed., Springer, 1998
[27] Nessyahu, H., Tadmor, E. Nonoscillatory Central Differencing for Hyperbolic Conservation Laws. J. Comp.

Phys., 1990, 87: 408–463
[28] Pareschi, L. Central Differencing Based Numerical Schemes for Hyperbolic Conservation Laws with Relax-

ation Terms. SIAM J. Num. Anal., 2001, 39(4): 1395–1417
[29] Pareschi, L., Russo, G. Implicit-Explicit (IMEX) Runge-Kutta Schemes for Stiff Systems of Differential

Equations. Advances in Theor. of Comp. Math., Vol.3, Recent Trends in Numerical Analysis, Donato
Trigiante Ed., 269–288, 2000

[30] Pareschi, L., Russo, G. An Introduction to Monte Carlo Methods for the Boltzmann Equation. ESAIM:
Proceedings, CEMRACS 1999, Vol.10, 35–75, 2001

[31] Renardy, M. On the Domain Space for Constitutive Laws in Linear Viscoelasticity. Arch. Rat. Mech.
Anal., 1984, 85: 21–26

[32] Sanders, R., Weiser, A. A High Order Staggered Grid Method for Hyperbolic Systems of Conservation
Laws in One Space Dimension. Comp. Meth. in App. Mech. an Engrg., 1989, 75: 91–107

[33] Slemrod, M. Constitutive Relations for Monatomic Gases Based on a Generalized Rational Approximation
to the Sum of the Chapman-Enskog Expansion. To Appear, Arch. Rational Mech. Anal., 1999, 150(1):
1–22

[34] Slemrod, M. In the Chapman-Enskog Expansion the Burnett Coefficients Satisfy the Universal Relation
Ω3+Ω4+Θ3=0. Arch. Rat. Mech. Anal., to appear

[35] Strang, G. On the Construction and the Comparison of Difference Schemes. Siam J. Numer. Anal., 1968,
5: 506–517

[36] Truesdell, C., Muncaster, R.G. Fundamentals of Maxwell’S Kinetic Theory of a Simple Monatomic Gas.
Academic Press, New York, 1980

[37] Whitham, G.B. Linear and Nonlinear Waves. Wiley, New York, 1974
[38] Zhong, X. Development and Computation of Continuum Higher-order Constitutive Relations for High

Altitude Hypersonic Flow. Ph.D. Thesis, Stanford University, 1991


