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We present a family of central-upwind schemes on general triangular grids for solving two-dimensional
systems of conservation laws. The new schemes enjoy the main advantages of the Godunov-type central
schemes—simplicity, universality, and robustness and can be applied to problems with complicated
geometries. The “triangular” central-upwind schemes are based on the use of the directional local speeds
of propagation and are a generalization of the central-upwind schemes on rectangular grids, recently
introduced in Kurganov et al. [SIAM J Sci Comput 23 (2001), 707–740]. We test a second-order version
of the proposed scheme on various examples. The main purpose of the numerical experiments is to
demonstrate the potential of our method. The more universal “triangular” central-upwind schemes provide
the same high accuracy and resolution as the original, “rectangular” ones, and at the same time, they can
be used to solve hyperbolic systems of conservation laws on complicated domains, where the implemen-
tation of triangular or mixed grids is advantageous. © 2004 Wiley Periodicals, Inc. Numer Methods Partial
Differential Eq 21: 536–552, 2005
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1. INTRODUCTION

We introduce new central-upwind schemes on general triangular grids for solving the two-
dimensional (2-D) system of conservation laws:

ut � f �u�x � g�u�y � 0, (1.1)
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where u(x, y, t) � (u1(x, y, t), . . . , uN(x, y, t))T and the fluxes are f � ( f1, . . . , fN)T and
g � (g1, . . . , gN)T. The schemes belong to the class of Godunov-type central schemes, whose
increasing popularity is due to their simplicity, universality, and robustness. Their construction
is based on the exact evolution of piecewise polynomial reconstructions of the approximate
solution, achieved by integrating (1.1) over Riemann fans. Thus, solving Riemann problems is
avoided, and this allows central schemes to be implemented as a “black-box-solver” for a variety
of complicated multidimensional systems.

The simplest nonoscillatory central scheme is the first-order (staggered) Lax-Friedrichs
scheme [1, 2]. Its second-order generalization was presented in [3] in the one-dimensional (1-D)
case and in [4, 5] in two space dimensions. Higher-order extensions have been developed in the
past few years in a series of publications: we refer the reader to, for example, [6] and the
references therein.

The aforementioned schemes are staggered central schemes. As such, they do not provide
high resolution when small time steps (�t) are enforced, or when long time integration is to be
performed. This drawback can be eliminated if local speeds of propagation are used in the
estimate of the size of the local Riemann fans. This idea led to the construction of a new family
of central schemes [7–9]. They have much smaller numerical dissipation (proportional to �t)
and admit a particularly simple semi-discrete form. The resolution can be increased even more
if one-sided local speeds of propagation are used, as demonstrated in [10], where the so-called
central-upwind schemes were introduced.

Central-upwind schemes are an excellent tool for solving various complex problems on
regular domains. However, in practice one needs to deal with complicated geometries, where
using triangular meshes could be advantageous or even unavoidable. With such a grid, it is much
easier to adapt cells to the boundary of the domain and to locally perform any adaption strategy
without introducing nonconforming nodes (see, e.g., [11]). Staggered central schemes on
triangular and tetrahedral grids were developed in [12, 13], but their construction is rather
cumbersome, mainly because of staggering.

In contrast to staggered schemes, semi-discrete central schemes can be extended to unstruc-
tured grids in a very natural manner. In this article, we present a family of central-upwind
schemes on general triangulations, which are simpler than their upwind counterparts, have a
genuinely multidimensional structure, and can be used to solve problems on irregular domains.
The derivation follows the approach from [8, 10]: we integrate over nonuniform polygonal
control volumes of different shapes and derive a fully discrete central-upwind scheme. We then
pass to a semi-discrete limit (we let �t3 0, while keeping �x fixed) and obtain an ODE system
for the cell averages of the computed solution of (1.1). The construction of the method is
completed by choosing a (stable) ODE solver and a (nonoscillatory) piecewise polynomial
reconstruction of appropriate orders.

The article is organized as follows. In §2, we develop our new high-order “triangular”
central-upwind schemes. In §3, we test their second-order version on a variety of numerical
examples. The second-order scheme uses a piecewise linear interpolant. We have used the
piecewise linear reconstruction from [11, 14–16], which we briefly describe in §2.1.

2. NEW CENTRAL-UPWIND SCHEMES ON TRIANGULAR GRIDS: DERIVATION

In this section, we describe the derivation of the new family of central-upwind schemes on
triangulations. We assume that a triangulation � :� �Tj of the computational domain,
consisting of triangular cells Tj of size �Tj�, is given. We denote by Tj1, Tj2, and Tj3 the
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neighboring triangles that share a common side with Tj, and by n�jk :� (cos(�jk), sin(�jk))
T the

outer unit normals to the corresponding sides of Tj of length hjk, k � 1, 2, 3 (Fig. 1).
Our new central-upwind schemes are Godunov-type projection-evolution methods. Their one

time step (from t � t n :� n�t to t � t n�1) consists of three consecutive stages: reconstruction,
evolution, and projection. Next, we provide a detailed description of each of them.

Reconstruction

Suppose that at time t � t n the cell averages of the computed solution,

u� j
n �

1

�Tj� �
Tj

u�x, y, tn� dxdy,

are available. We then construct a conservative (possibly discontinuous) piecewise polynomial
interpolant

ũn�x, y� � �
j

pj
n�x, y��j�x, y�,

where pj
n is a 2-D polynomial, and �j is the characteristic function of Tj. Further, we will denote

the value of ũn at a point G � Tj by

uj
n�G� :� pj

n�G�. (2.1)

The possible discontinuities of the interpolant ũn along the sides of Tj propagate with
different inward, {ajk

in}, and outward, {ajk
out}, directional local speeds, k � 1, 2, 3. They can be

estimated, for example, by

ajk
in � �min� min

M�Tj�Tjk

��1�Vjk�uj
n�M ��	
, min

M�Tj�Tjk

��1�Vjk�ujk
n �M �	
, 0
,

FIG. 1. Triangular mesh.
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ajk
out � max� max

M�Tj�Tjk

��N�Vjk�uj
n�M��	
, max

M�Tj�Tjk

��N�Vjk�ujk
n �M �	
, 0
, (2.2)

where �1[Vjk] � . . . � �N[Vjk] are the N eigenvalues of the matrix Vjk, defined by

Vjk�w� � cos��jk�
�f

�u
�w� � sin��jk�

�g

�u
�w�.

In practice, (2.2) can be often replaced with a simpler estimate:

ajk
in � �min��1�Vjk�uj

n�Mj�k���	, �1�Vjk�ujk
n �Mj�k��	, 0
,

ajk
out � max��N�Vjk�uj

n�Mj�k���	, �N�Vjk�ujk
n �Mj�k��	, 0
, (2.3)

where Mj(k) is the midpoint of the kth side of Tj. Note that this estimate may be inaccurate, but
the introduced error is comparable with the errors that occur in the computation of the
corresponding spatial integrals [see (2.11)], especially when a piecewise linear reconstruction ũn

and the second-order midpoint quadrature are used.
The discontinuity along the kth side of Tj can move inward Tj at most by ajk

in�t, and outward
Tj at most by ajk

out�t. Using this information, we construct the following control volumes: three
rectangles Djk, k � 1, 2, 3, along each side of Tj, a triangle Dj inside Tj, and three nonconvex
domains Ejk, k � 1, 2, 3, around each vertex of Tj. We denote by Djk

� and Djk
� the parts of Djk

located inside and outside of Tj, respectively. The part of Ejk inside Tj is denoted by Ejk
�. All these

domains are outlined in Fig. 2.

Evolution

Let Qj be either Dj, Djk, or Ejk, k � 1, 2, 3. We integrate (1.1) over Qj � [t n, t n�1] to obtain the
intermediate cell averages w� n�1(Qj) of the computed solution over Qj at time t � t n�1. The
computation can be carried out for any particular triangulation along the lines of [8, 10]. To this
end, one needs to use appropriate quadratures for the spatial and temporal integrals, which

FIG. 2. Control volumes on a triangulation.
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would only involve those points at the boundary of the control volume, which are located
sufficiently far from the discontinuities. This guarantees the smoothness of the solution at these
points (for sufficiently small �t) and helps to avoid solving Riemann problems.

Projection

The computed cell averages over the Qj’s are used for the construction of an intermediate
piecewise polynomial function w̃n�1 (w̃n�1 is a polynomial over each of the Qj’s), which is then
projected back onto the original triangulation:

u� j
n�1 :�

1

�Tj� �
Tj

w̃n�1�x, y� dxdy.

This completes the construction of a fully discrete central-upwind scheme on a triangular mesh.
The particular details of this scheme are so messy that the resulting fully discrete scheme

becomes impractical. Therefore, we omit these details and proceed within a significantly simpler
semi-discrete framework. To this end, we pass to the semi-discrete limit (as �t3 0) in the fully
discrete central-upwind scheme. Notice that we will be able to do this without having the
explicit form of the fully discrete scheme.

In order to simplify the notation, we now consider the 2-D scalar hyperbolic conservation
law:

ut � �� � F� �u� � 0, F� :� � f, g�T, �� :� � �

�x
,

�

�y�. (2.4)

Systems of conservation laws are treated by complete analogy since no (approximate) Riemann
problem solvers are involved.

We begin the derivation of the “triangular” semi-discrete central-upwind schemes by ob-
serving that

d

dt
u� j�tn� � lim

�t30

u� j
n�1 � u� j

n

�t

� lim
�t30

1

�t � 1

�Tj�
�
k�1

3 �
Djk

�

w̃n�1 dxdy �
1

�Tj�
�
k�1

3 �
Ejk

�

w̃n�1 dxdy �
1

�Tj� �
Dj

w̃n�1 dxdy � u� j
n�. (2.5)

The conservation property of w̃n�1 gives

�
Dj

w̃n�1 dxdy � �Dj�w� n�1�Dj�. (2.6)

We assume that the spatial derivatives of w̃n�1 are bounded independently of �t. Then, since by
construction �Ejk

�� � �((�t)2) (Fig. 2) we have
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�
Ejk

�

w̃n�1 dxdy � ����t�2�, k � 1, 2, 3. (2.7)

We also obtain that

�
Djk

�

w̃n�1 dxdy � �Djk
��w� n�1�Djk� � ����t�2�, k � 1, 2, 3, (2.8)

and therefore from (2.5)–(2.8) we derive

d

dt
u� j�tn� � �

k�1

3 � lim
�t30

�Djk
��

�t�Tj�
w� n�1�Djk�� � lim

�t30

1

�t ��Dj�
�Tj�

w� n�1�Dj� � u� j
n�

�
1

�Tj�
�
k�1

3

ajk
inhjklim

�t30

w� n�1�Djk� � lim
�t30

1

�t ��Dj�
�Tj�

w� n�1�Dj� � u� j
n�. (2.9)

The cell averages w� n�1(Djk) are computed by integrating (2.4) over Djk � [t n, t n�1] and then by
applying Green’s theorem:

w� n�1�Djk� �
1

�Djk� ��
Djk

�

pj
n�x, y� dxdy � �

Djk
�

pjk
n �x, y� dxdy� �

1

�Djk� �
tn

tn�1 �
Djk

div F� dxdydt

�
1

�Djk� ��
Djk

�

pj
n�x, y� dxdy � �

Djk
�

pjk
n �x, y� dxdy� �

1

�Djk� �
tn

tn�1 �
�Djk

F� � 	� dsdt. (2.10)

Here, 	� is the outer normal to �Djk, which is the boundary of Djk. The spatial integrals in (2.10)
are computed using the Gaussian quadrature with m nodes, x1, . . . , xm, and weights, c1, . . . , cm

(2m  n),

�
0

1


�x� dx � �
s�1

m

cs
�xs�, (2.11)

scaled according to the size of the sides of �Djk. Next, from (2.10) and (2.11), and since �Djk�
� �(�t), we obtain

lim
�t30

w� n�1�Djk� �
1

ajk
in � ajk

out �
s�1

m

cs�ajk
inuj�Gjk

s � � ajk
outujk�Gjk

s �	

�
1

ajk
in � ajk

out �
s�1

m

cs��F� �ujk�Gjk
s �� � F� �uj�Gjk

s ��� � n� jk	, (2.12)
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where Gjk
s , s � 1, . . . , m, are the corresponding scaled Gaussian points on the kth side of Tj.

Similarly to (2.10), we have

w� n�1�Dj� �
1

�Dj� �
Dj

pj
n�x, y� dxdy �

1

�Dj� �
tn

tn�1 �
�Dj

F� � n� dsdt,

with �Dj being the boundary of Dj and n� being n�jk, k � 1, 2, 3. Then the last term in (2.9) can
be written as

1

�t � �Dj�
�Tj�

w� n�1�Dj� � u� j
n� � �

1

�t�Tj� �
Tj�Dj

pj
n�x, y� dxdy �

1

�t�Tj� �
tn

tn�1 �
�Dj

F� � n� dsdt. (2.13)

Note that Tj�Dj � Dj1
� � Dj2

� � Dj3
� � Ej1

� � Ej2
� � Ej3

�, and therefore applying the Gaussian
quadrature (2.11) to the spatial integral in (2.13) results in

lim
�t30

1

�t ��Dj�
�Tj�

w� n�1�Dj� � u� j
n� � �

1

�Tj�
�
k�1

3

ajk
inhjk �

s�1

m

cs�uj�Gjk
s �	

�
1

�Tj�
�
k�1

3

hjk �
s�1

m

cs�F� �uj�Gjk
s �� � n� jk	. (2.14)

Finally, substituting (2.12) and (2.14) into (2.9) gives the new “triangular” semi-discrete
central-upwind scheme:

du� j

dt
� �

1

�Tj�
�
k�1

3

hjk �
s�1

m

cs��ajk
inF� �ujk�Gjk

s �� � ajk
outF� �uj�Gjk

s ��

ajk
in � ajk

out � � n� jk�
�

1

�Tj�
�
k�1

3

hjk �
s�1

m

cs

ajk
inajk

out

ajk
in � ajk

out �ujk�Gjk
s � � uj�Gjk

s �	. (2.15)

Here, the directional local speeds ajk
in and ajk

out are defined in (2.3), cs are the coefficients of the
Gaussian quadrature (2.11), Gjk

s are the corresponding scaled Gaussian points on the kth side of
Tj, and the values of the u’s are computed in (2.1), using the piecewise polynomial reconstruc-
tion. The CFL-condition, needed to ensure that Dj � A, is

�t � min
i,k

� �ik

3 max�aik
out, aik

in��,

where �ik, k � 1, 2, 3 are the three corresponding altitudes of triangle Ti � �.

Remarks. 1. The (formal) spatial order of accuracy of the scheme (2.15), (2.1), (2.3) is
determined by the (formal) order of the piecewise polynomial reconstruction ũ and by the
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algebraic degree of precision of the Gaussian quadrature (2.11), that is, by the selection of {cs}
and {Gjk

s }. In particular, if we use a second-order piecewise linear reconstruction and the
midpoint rule, we end up with the second-order semi-discrete central-upwind scheme on a
triangular mesh:

du� j

dt
� �

1

�Tj�
�
k�1

3

hjk�ajk
inF� �ujk�Mj�k�� � ajk

outF� �uj�Mj�k��

ajk
in � ajk

out � � n� jk

�
1

�Tj�
�
k�1

3

hjk

ajk
inajk

out

ajk
in � ajk

out �ujk�Mj�k�� � uj�Mj�k��	. (2.16)

Here, Mj(k) is the midpoint of the kth side of the triangle Tj, k � 1, 2, 3, and uj(Mj(k)) and
ujk(Mj(k)) are the corresponding values at Mj(k) of the linear pieces over the cells Tj and Tjk,
respectively.

2. We would like to point out that no (approximate) Riemann solvers have been used in the
derivation of the schemes (2.15), (2.1), (2.3). They do not require any information about the
eigenstructure of the Jacobians �f/�u and �g/�u beyond the CFL-related local speeds ajk

in and ajk
out

and thus can be applied to systems componentwise.
3. The central-upwind schemes (2.15), (2.1), (2.3) are constructed on a nonuniform grid and

therefore can be implemented for problems with complicated computational domains.
4. The ODE system (2.15) has to be solved numerically by a (stable) ODE solver of an

appropriate order. In the numerical examples, we have used the second-order strong stability-
preserving (SSP) Runge-Kutta method from [17], known also as the Heun method.

2.1. On Admissible Piecewise Linear Reconstructions

In this section, we describe the piecewise linear reconstruction we have used in our numerical
experiments. This reconstruction belongs to the class of so-called admissible piecewise linear
reconstructions [11] and was developed in [11, 14–16] in the context of upwind schemes. Other
piecewise linear reconstructions over triangulations are also available (see, e.g., [11] and the
reference therein), but our experience indicates that in the context of central-upwind schemes,
the one presented here demonstrates the best performance among the reconstructions we tested.

We denote by Vj3 the common vertex for Tj, Tj1, and Tj2 (the notation for Vj1 and Vj2 is
similar), by �jk, k � 1, 2, 3, the set of all triangles in the triangulation � that share Vjk as a
common vertex, by Nj and Njk the centers of mass of Tj and Tjk, respectively, and by Qjk the
intersection of the line segment NjNjk with the kth side of Tj (Fig. 3).

We assign a value vjk to each vertex Vjk of Tj, computed via

vjk :�

�
�:T���jk

u���T��

�
�:T���jk

�T��
, k � 1, 2, 3,

and denote by �Sj the gradient of the plane passing through the three points (Vjk, vjk), k � 1, 2,
3. We start the reconstruction process with a possibly oscillatory piecewise linear conservative
function, which we call a basic reconstruction. Its linear pieces Lj over the triangle Tj are given
by
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Lj�x� � u� j � j�Sj � �x � xj�, x � Tj, Tj � �, (2.17)

where x :� (x, y), xj :� (xj, yj) are the coordinates of Nj, and j � 1.
Next, we reduce the oscillations present in the basic reconstruction [11, 16], by modifying it

to guarantee its admissibility [11, 14] along the line segments NjNjk. The modification is carried
out by changing the coefficients j in (2.17) and is performed in two steps, (i) and (ii), according
to the following algorithm [14].

(i) First, we sweep over all triangles in � and for each triangle Tj � �, we check the
monotonicity of the values Lj(Qjk), k � 1, 2, 3, with respect to the corresponding neighboring
cell averages u� j and u� jk:

● if Lj(Qjk) � u� j � u� jk, we change j so that the plane (2.17) passes through the point with
coordinates (Qjk, max{Lj(Qjk), u� j � ��j}).

● if Lj(Qjk)  u� j  u� jk, j is modified so that the linear function (2.17) passes through (Qjk,
min{Lj(Qjk), u� j � ��j}).

Here, �j is the diameter of Tj, and � is a free parameter, responsible for the size of the
“acceptable” oscillations. Note that the smaller the �, the smaller the oscillations, but at the same
time, only taking reasonably large � leads to a uniformly second-order reconstruction. The
optimal � depends on the problem at hand. However, our experiments indicate that the
numerical solution is not too sensitive to the choice of �. In the numerical examples, presented
in §3, we take � � 0.5.

(ii) Next, we perform a second sweep over all the triangles and modify the ’s only for those
triangles Tj, for which the point values Lj(Qjk) and Ljk(Qjk) are between the cell averages u� j and
u� jk. In this case, we check the monotonicity of the sequence u� j, Lj(Qjk), Ljk(Qjk), u� jk, and if it is
violated, we multiply both j and jk by �j

jk � (0, 1), so that after the modification Lj(Qjk)
� Ljk(Qjk).

Remark. Note that in both steps (i) and (ii), every slope may be modified more than once, but
since after such modifications the linear reconstruction becomes flatter and the sign of ’s never

FIG. 3. Admissible reconstruction: floor plan.
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changes in the process of modification, the local admissibility/monotonicity, once enforced, will
never be revoked.

The final reconstruction is then given by (2.17) with the new, modified j. The formulae for
these j’s are rather messy and we prefer not to include them.

3. NUMERICAL EXAMPLES

In this section, we present a number of numerical experiments that have been performed using
the new second-order “triangular” central-upwind scheme (2.16), (2.1)–(2.3) together with the
piecewise linear reconstruction (2.17).

3.1. Square Domain

In the first set of numerical experiments, the computational domain is the square [0, 1] � [0, 1]
with a mesh, schematically shown in Fig. 4. The goal of this experiments is to demonstrate that
when using the same number of computational cells, the “triangular” central-upwind schemes
provide for problems with a rather complicated wave structures as high resolution as the original
“rectangular” schemes. We compare the solutions obtained by the new “triangular” second-
order semi-discrete central-upwind scheme with the solutions, computed by the “rectangular”
scheme that uses the generalized minmod reconstruction with � � 1.3 [10, 18]. For fair
comparison, we always use the same number of cells—whether triangular or rectangular ones.
We also project the final “rectangular” solution onto the corresponding triangular grid and plot
it using the same MATLAB procedure as used for plotting the “triangular” solution.

3.1.1. Accuracy Test—2-D Linear Advection Equation. The “triangular” second-order
semi-discrete central-upwind scheme (2.16), (2.1), (2.3), (2.17) is applied to the initial-value
problem

	ut � ux � uy � 0,
u�x, y, 0� � sin2��x�sin2��y�, (3.1)

subject to the periodic boundary conditions. We calculate the L1- and L�-errors at time t � 1.
The results, presented in Table I, clearly indicate the second-order convergence rate.

3.1.2. 1-D Riemann Problem. We consider the 2-D compressible Euler equations of gas
dynamics for ideal gases,

FIG. 4. Computational domain: triangular mesh.
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�

�t 

�

�u
�v
E
� �

�

�x 

�u

�u2 � p
�uv

u�E � p�
� �

�

�y 

�v

�uv
�v2 � p

v �E � p�
� � 0, p � �� � 1��E �

�

2
�u2 � v2�� ,

(3.2)

where �, u, v, p, and E are the density, the x- and y-velocities, the pressure, and the energy,
respectively. In this example, we solve the 1-D Riemann problem, proposed in [19], artificially
extended to two space dimensions: the initial data are

�p, �, u, v��x, y, 0� � 	 �1.0, 1.000, 0, 0�, if x � 0.5,
�0.1, 0.125, 0, 0�, if x � 0.5. (3.3)

The initial-value problem (3.2)–(3.3) is numerically solved by our new “triangular” central-
upwind scheme (2.16), (2.1), (2.3), (2.17) and by its “rectangular” counterpart from [10]. Notice
that this 1-D Riemann problem aligns with the rectangular grid, and therefore one expects the
“rectangular” scheme to substantially outperform the “triangular” one. However, the computed
density profiles, shown from different prospectives in Fig. 5, demonstrate that even though the
“triangular” solution is slightly oscillatory, the overall resolution, achieved by both methods, is
comparable.

3.1.3. 2-D Riemann Problem. We numerically solve the 2-D Riemann problem for the Euler
equations (3.2), subject to initial data of the general form

�p, �, u, v��x, y, 0� � �
�p1, �1, u1, v1�, if x � 0.5 and y � 0.5,
�p2, �2, u2, v2�, if x � 0.5 and y � 0.5,
�p3, �3, u3, v3�, if x � 0.5 and y � 0.5,
�p4, �4, u4, v4�, if x � 0.5 and y � 0.5.

(3.4)

It admits 19 genuinely different configurations for polytropic gas [20], distinguished by the three
types of 1-D waves between each two neighboring states, namely rarefaction- (R� ), shock- (S� )
and contact-wave (J� ) (consult [20, 21] for details). Here, we have chosen to test our scheme on
3 of the 19 configurations.

Configuration 7

R21
�

J32
�

R41
�

J34
�

The initial data are as follows:

TABLE I. Accuracy test for the linear advection problem (3.1), t � 1.

No. of triangles L1-error Rate L�-error Rate

4 � 25 � 25 6.8361 � 10�4 — 1.5835 � 10�3 —
4 � 50 � 50 1.6972 � 10�4 2.01 3.8585 � 10�4 2.04
4 � 100 � 100 4.2346 � 10�5 2.00 9.5268 � 10�5 2.02
4 � 200 � 200 1.0580 � 10�5 2.00 2.3676 � 10�5 2.01
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p2 � 0.4 �2 � 0.5197 p1 � 1 �1 � 1
u2 � �0.6259 v2 � 0.1 u1 � 0.1 v1 � 0.1

p3 � 0.4 �3 � 0.8 p4 � 0.4 �4 � 0.5197
u3 � 0.1 v3 � 0.1 u4 � 0.1 v4 � �0.6259

Configuration 11

S21
�

J32
�

S41
�

J34
�

The initial data are as follows:

FIG. 5. Solution of (3.2)–(3.3) by the “triangular” (left) and “rectangular” (right) central-upwind
schemes. Density at t � 0.16. (Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.)
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p2 � 0.4 �2 � 0.5313 p1 � 1 �1 � 1
u2 � 0.8276 v2 � 0 u1 � 0.1 v1 � 0

p3 � 0.4 �3 � 0.8 p4 � 0.4 �4 � 0.5313
u3 � 0.1 v3 � 0 u4 � 0.1 v4 � 0.7276

Configuration 12

S21
�

J32
�

S41
�

J34
�

The initial data are as follows:

p2 � 1 �2 � 1 p1 � 0.4 �1 � 0.5313
u2 � 0.7276 v2 � 0 u1 � 0 v1 � 0

p3 � 1 �3 � 0.8 p4 � 1 �4 � 1
u3 � 0 v3 � 0 u4 � 0 v4 � 0.7276

We compare the solutions, obtained by our “triangular” scheme (2.16)–(2.17), (2.1)–(2.3)
with the ones, obtained by the original “rectangular” central-upwind scheme [18]. The compu-
tations are performed on comparable grid sizes—4 � 200 � 200 triangles for the “triangular”
scheme and 400 � 400 cells for the “rectangular” one. The nonreflecting boundary conditions
are obtained by the ghost cell technique.

As one can see in Figs. 6–8, the solution obtained by the “triangular” scheme is slightly more
oscillatory, but this result is expected since the reconstruction (2.17) is uniformly second-order
and thus more oscillatory then the ( formally first-order) minmod reconstruction. Some of the

FIG. 6. Solution of (3.2), (3.4), Configuration 7, by the “triangular” (left) and “rectangular” (right)
central-upwind schemes. Density contours at t � 0.25. (Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.)
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oscillations can be also interpreted as a natural side effect of the triangular mesh. Notice that the
differences in resolution are minor, and overall performance of both schemes is comparable.

3.2. Trapezoidal Domain

In the second set of numerical tests, we show that the new schemes can be applied to solve
hyperbolic systems of conservation laws on polygonal domains. Every such domain can be
viewed as a union of trapezoids and/or triangles (an example of a polygonal domain split into
10 subdomains is shown in Fig. 9). Thus, for demonstration purposes, we restrict our experi-

FIG. 7. Solution of (3.2), (3.4), Configuration 11, by the “triangular” (left) and “rectangular” (right)
central-upwind schemes. Density contours at t � 0.3. (Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.)

FIG. 8. Solution of (3.2), (3.4), Configuration 12, by the “triangular” (left) and “rectangular” (right)
central-upwind schemes. Density contours at t � 0.25. (Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.)
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ments to the case of the trapezoidal domains with a mesh, schematically shown in Fig. 10, where
we apply simultaneously the “triangular” central-upwind schemes on the triangular part of the
grid and the original “rectangular” schemes on the rectangular cells.

We consider the 2-D Euler equations of gas dynamics, (3.2), for an ideal gas (� � 1.4) and
numerically solve the problems describing the shock reflection by wedges of different angles.
The initial conditions correspond to a right-moving Mach 2 shock, initially positioned at
x � �0.7a, where a, b, c, d are the lengths of the sides of the trapezoidal computational domain
outlined in Fig. 10. The initial shock propagates to the right and then is reflected by the solid
wedge.

Contour plots of the density are presented in Fig. 11. We consider different wedge angles �
that correspond to the following four sets of data:

● Figure 11(a): a � 4, b � 34, c � 10, d � 10�10, final time t � 7;
● Figure 11(b): a � 3, b � 23, c � 10, d � 10�3, final time t � 5;
● Figure 11(c): a � 3, b � 13, c � 10, d � 10�2, final time t � 3;
● Figure 11(d): a � 3, b � 4, c � 10, d � �101, final time t � 1.4.

In all the tests, we have used 400 rectangular computational cells along the lower side of the
trapezoid and 400 triangular cells along its right side. The boundary conditions along the lower
and right parts of the boundary are treated as a solid wall via the ghost cell technique.

FIG. 9. A typical polygonal domain.

FIG. 10. Computational domain: mixed rectangular-triangular mesh.
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Remark. It is well-known that the shock reflection problem, computed in this example, can
be reformulated so that the computational domain will become rectangular. However, this
technique will obviously fail in the case of a more complicated polygonal domain and/or initial
conditions, while our method will still apply.

4. CONCLUDING COMMENTS

The main purpose of this article is to develop semi-discrete central-upwind schemes on general
triangulations and to illustrate their potential. Our numerical experiments suggest that these
schemes have the same resolution (except maybe slight oscillations due to the triangular mesh)
as the central-upwind schemes on rectangular grids. At the same time, they have the essential
advantage that they can be applied to problems with complex geometries, where the use of
triangular or mixed rectangular-triangular grids is favorable.

We thank Dr. Mario Ohlberger for bringing to our attention a modification of the admissible
piecewise linear reconstruction on triangulations.

FIG. 11. Shock reflection by wedges of different angles; density contours. (Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.)
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