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Abstract. We present the first fourth-order central scheme for two-dimensional hyperbolic sys-
tems of conservation laws. Our new method is based on a central weighted nonoscillatory approach.
The heart of our method is the reconstruction step, in which a genuinely two-dimensional interpolant
is reconstructed from cell averages by taking a convex combination of building blocks in the form of
biquadratic polynomials.

Similarly to other central schemes, our new method enjoys the simplicity of the black-box ap-
proach. All that is required in order to solve a problem is to supply the flux function and an estimate
on the speed of propagation. The high-resolution properties of the scheme as well as its resistance
to mesh orientation, and the effectiveness of the componentwise approach, are demonstrated in a
variety of numerical examples.
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1. Introduction. The integration of hyperbolic systems of conservation laws has
initially been approached in the framework of upwind schemes, generalizing the first-
order upwind Godunov scheme. Effective high-order methods based on the upwind
approach are the essentially nonoscillatory (ENO) schemes [7, 32] and more recently
the weighted ENO (WENO) schemes [26, 8]. For a thorough review of the schemes
obtained with the upwind approach, see [31] and [6].

More recently high-order central schemes have appeared. These schemes can be
viewed as extensions of the first-order Lax–Friedrichs scheme [5]. They are character-
ized by a very simple formulation, which, unlike traditional upwind schemes, requires
neither Riemann solvers (exact or approximate) nor projection of the equations along
characteristic directions.

The first high-order central method obtained following these lines is the second-
order Nessyahu–Tadmor scheme [28]. This scheme was based on a MUSCL-type
interpolant in space (see [17]) and a midpoint quadrature to approximate the time-
integrals of the fluxes. For a related approach see [30]. Motivated by the simplicity and
robustness of the second-order method, various high-order schemes, multidimensional
extensions, and semidiscrete schemes have been suggested in the literature; see, e.g.,
[2, 27, 9, 10, 13, 18, 3, 19, 22, 11, 12, 37] and the references therein. Central schemes
have been used also for hyperbolic systems with source terms. We mention here the
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paper [24], where a second-order central scheme for systems with stiff source has been
derived and applied, for example, to the systems of extended thermodynamics for a
monoatomic gas, and the two papers [1, 29], where central schemes have been applied
to the numerical solution of hydrodynamical models of semiconductors.

In a series of recent papers we have successfully integrated the ENO and WENO
reconstruction techniques into the central framework. First, we introduced in [3]
the one-dimensional central ENO (C-ENO) scheme. The one-dimensional third- and
fourth-order central WENO (CWENO) schemes were then presented in [19]. We also
constructed a third-order scalar two-dimensional CWENO scheme in [21] and a third-
order version based on a compact stencil for one-dimensional and two-dimensional
flows in [22]. Based on numerical evidence, it was conjectured in [20] that the one-
dimensional fourth-order CWENO scheme is total-variation bounded.

The scheme we present in this paper is the first fourth-order central scheme
for two-dimensional hyperbolic conservation laws. The heart of our method is a
new CWENO-type reconstruction in which an interpolant is being reconstructed as a
convex combination of biquadratic polynomials.

The structure of this paper is as follows. We start in section 2 by providing a gen-
eral overview of the reconstruction of two-dimensional central schemes for hyperbolic
conservation laws. In particular, we explain the computation of the intermediate val-
ues required for the prediction step, a computation which we carry out using a natural
continuous extension of Runge–Kutta methods.

We then proceed in section 3 by describing our new fourth-order CWENO-type
reconstruction which is based on a fundamental biquadratic polynomial. First, in
section 3.1 we discuss the reconstruction based on cell averages. We then proceed in
section 3.2 by describing the analogous reconstruction based on point-values. This is
required in order to obtain an accurate approximation of the integrals of the fluxes.
We conclude this section in section 3.4 by presenting the modifications required to
adapt the scheme to systems of equations.

Finally, in section 4 we present several numerical examples that test the different
properties of our new scheme. We verify that the scheme is indeed fourth-order
accurate. We illustrate the behavior of the weights on nonsmooth solutions, study
the effects of mesh orientation, illustrate the robustness of the scheme under changes
in the system of equations by simulating real gas dynamics, show the effectiveness of
the componentwise approach for systems of equations, and end with two-dimensional
Riemann problems for the gas dynamics equations.

2. Two-dimensional central schemes. Consider the two-dimensional system
of conservation laws

vt + f(v)x + g(v)y = 0,(2.1)

subject to the initial values

v(x, y, t=0) = v0(x, y)

and to boundary conditions, which we do not specify at this point. The flux functions
f and g are smooth vector valued functions, f, g : R

m → R
m. The system (2.1) is

assumed to be hyperbolic in the sense that for any unit vector (nx, ny) ∈ R
2, the

matrix nx∇uf + ny∇ug has real eigenvalues and its eigenvectors form a basis of R
m.

In order to integrate numerically (2.1), we introduce a rectangular grid which
for simplicity will be assumed to be uniform with mesh sizes h = ∆x = ∆y in both
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directions. We will denote by Ii,j the cell centered around the grid point (xi, yj) =
(i∆x, j∆y), i.e., Ii,j = [xi − h/2, xi + h/2]× [yj − h/2, yj + h/2]. Let ∆t be the time
step and denote by wn

i,j the point-value of a function w at the (i, j)th grid point at
time tn = n∆t. Finally, let w̄n

i,j denote the cell average of a function w evaluated at
the point (xi, yj),

w̄n
i,j =

1

h2

∫
Ii,j

w(x, y, tn) dx dy.

Now let u denote the numerical solution. Given the cell averages {ūn
i,j} at time

tn, as in Godunov-type methods, central schemes provide the cell averages at the next
time step, tn+1, in the following way: first, a piecewise-polynomial reconstruction is
computed from the data {ūn

i,j} resulting with

un(x, y) =
∑
i,j

Ri,j(x, y)χIi,j (x, y).(2.2)

Here, Ri,j(x, y) is a suitable vector valued polynomial (which has to satisfy conserva-
tion, accuracy, and nonoscillatory requirements), while χIi,j (x, y) is the characteristic
function of the cell Ii,j . Thus, in general, the function un(x, y) will be discontinuous
along the boundaries of each cell Ii,j .

In order to proceed, the reconstruction, un(x, y), is evolved according to (2.1)
for a time step ∆t. In central schemes, un(x, y) is evolved on the staggered control
volume Ii+1/2,j+1/2× [tn, tn+1]. We will use the fact that the solution remains smooth
at the vertical edges of the staggered control volume, provided that the time step ∆t
satisfies the CFL condition

∆t <
h

2

1

max(|σx|, |σy|) .

Here, Ii+1/2,j+1/2 = [xi, xi+1] × [yj , yj+1] (see Figure 2.1; the edges at which the
solution remains smooth are denoted by dotted vertical lines), and σx and σy are the
largest (in modulus) eigenvalues of the Jacobian of f and g, respectively.

An exact integration of the system (2.1) with data un(x, y) over the control volume
Ii+1/2,j+1/2 × [tn, tn+1] results with

ūn+1
i+ 1

2 ,j+
1
2

=
1

h2

∫ ∫
I
i+ 1

2
,j+ 1

2

un(x, y) dx dy(2.3)

− 1

h2

∫ tn+1

τ=tn

{∫ yj+1

y=yj

[f (u(xi+1, y, τ))− f (u(xi, y, τ))] dy

}
dτ

− 1

h2

∫ tn+1

τ=tn

{∫ xi+1

x=xi

[g (u(x, yj+1, τ))− g (u(x, yj , τ))] dx

}
dτ.

The first integral on the right-hand side (RHS) of (2.3) is the cell average of the
function un(x, y) on the staggered cell Ii+1/2,j+1/2. Given the reconstructed function
un(x, y), (2.2), this term can be computed exactly: it will consist of a contribution
of four terms, resulting from averaging Ri+1,j+1(x, y), Ri,j+1(x, y), Ri+1,j(x, y), and
Ri,j(x, y) on the corresponding quarter cells.

The advantage of the central framework appears in the evaluation of the time
integrals appearing in (2.3). Since the solution remains smooth on the segments
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Fig. 2.1. The two-dimensional stencil.

(xi, yj) × [tn, tn+1], we can evaluate the time integrals with a quadrature rule using
only nodes lying in these segments. For example, in order to obtain a fourth-order
method one can use Simpson’s rule for the time integrals

∫ tn+1

tn
f(u(xi, yj , z))dz(2.4)

=
∆t

6

[
f
(
un
i,j

)
+ 4f

(
u
n+1/2
i,j

)
+ f

(
un+1
i,j

)]
+ O

(
(∆t)5

)
and the following centered quadrature rule in space for the integrals in space:∫ xi+1

xi

f(x)dx =
h

24
[−f(xi+2) + 13f(xi+1) + 13f(xi)− f(xi−1)] + O(h5).(2.5)

In this way, the quadrature rule for approximating the integrals of the fluxes involves
only nodes on the segments (xi, yj)× [tn, tn+1].

The quadrature in time, (2.4), requires the prediction of the values of the solution
at later times. In the case of Simpson’s rule, one has to generate the values of ui,j

at times tn+1/2, tn+1. (The point-value un
i,j can be obtained directly from the recon-

struction ui,j(t
n) = un(xi, yj)). Once again we use the smoothness of the numerical

solution along the segments (xi, yj) × [tn, tn+1] to consider the sequence of Cauchy
problems


v′i,j(z) = F (z, vi,j(z)) := −fx(v(xi, yj , t

n + z))− gy(v(xi, yj , t
n + z)),

vi,j(z = 0) = un(xi, yj).
(2.6)

In order to obtain the midvalues at tn+1/2 and tn+1, all that is required is to solve (2.6)
up to these times using a Runge–Kutta scheme. When more than one intermediate
value is required (as in the case of Simpson’s rule), it is possible to solve (2.6) once
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with the largest time required and then reconstruct the other values with the required
accuracy using the natural continuous extension (NCE) [39]. More details will follow
below.

Remarks.
1. The scheme which we just outlined contains no upwind differencing. This is

the main advantage of the central framework. There is no need to project the
system along characteristic directions. Even the evaluation of the Jacobian
of the flux functions f and g is not required. We need only an estimate
of the characteristic speeds to enforce a CFL-like stability condition. This
makes the scheme particularly suitable for complex systems in which little
information on the physical structure of the solution is available. In fact, it is
very easy to adapt the scheme to a new system of equations. An illustration
of this fact can be found in section 4.

2. A quadrature of the type (2.5) widens the stencil of the scheme while preserv-
ing the symmetry of the scheme. In principle, one can use one-sided formulas,
such as ∫ xi+1

xi

f(x)dx =
h

12
[5f(xi) + 8f(xi+1)− f(xi+2)] + O(h4)

or ∫ xi+1

xi

f(x)dx =
h

12
[−f(xi−1) + 8f(xi) + 5f(xi+1)] + O(h4),

and construct a convex combination of the two formulas, choosing the weights
with a WENO-like strategy, to maximize accuracy in smooth regions (with
both weights equal to 1/2 we recover (2.5)), while turning off information
coming from nonsmooth stencils when discontinuities are detected. We have
not implemented this feature because the results obtained in our tests were
already satisfactory, and this extra stabilization effect did not seem to be
necessary.

3. In this work we do not study the issue of boundary conditions. The develop-
ment of high-order, nonoscillatory schemes for boundary value problems is a
difficult task that goes beyond the scope of this paper and is left for future
work.

4. The motivation for the construction of a fourth-order scheme can be effectively
studied in a very popular one-dimensional test; see [32]. In this test a Mach
3 shock interacts with an acoustic wave. The initial condition is u = uL for
x ≤ 0.1, and u = uR for x > 0.1. The computational domain is [0, 1], with
free-flow boundary conditions. The left (L) and right (R) states are given by

 ρ
v
p




L

=


 3.857143

2.629369
10.3333


 ,


 ρ

v
p




R

=


 1 + 0.2 sin(50x)

0
1


 .

The Courant number for this flow is c 
 0.219. The solution is printed
at T = 0.18. We show the results obtained with several central schemes
in Figure 2.2, with the same number of grid points. We note that there is a
definite improvement in resolution passing from the first-order Lax–Friedrichs
scheme, to the second-order Nessyahu–Tadmor [28] scheme, to the third-order
compact WENO [22] scheme, and finally to the fourth-order CWENO scheme
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Fig. 2.2. Solution of Shu–Osher acoustic-shock interaction problem at T = 0.18 for several
central schemes.

of [19], which is the one-dimensional version of the scheme proposed in this
work. This test is particularly suited for illustrating the performance of a
high-order scheme: the presence of a rich structure behind the main shock
can be resolved by the high-order scheme on a relatively small number of grid
points. (The reference solution was obtained running the fourth-order scheme
on a grid with 1600 points.)

2.1. The prediction step. For completeness, we will briefly describe the NCE
of Runge–Kutta (RK) methods for obtaining the intermediate values at times tn+1/2,

tn+1, by (2.6). The use of NCE permits us to compute both intermediate values u
n+1/2
ij

and un+1
ij with only one RK step. This yields a considerable saving in computing time,

since the evaluation of the RK fluxes is the bottleneck of the time marching scheme.
For more details we refer the reader to [39] and [3].

We consider the Cauchy problem


y′ = F (t, y(t)),

y(t0) = y0.

The solution obtained at time tn+1 with a ν-step explicit RK scheme of order p can
be written as

yn+1 = yn + ∆t

ν∑
i=1

biK
(i),(2.7)
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where the K(i)’s are the RK fluxes

K(i) = F


tn + ∆t ci, yn + ∆t

i−1∑
j=1

aijK
(j)


 , ci =

i∑
j=1

aij .(2.8)

We can combine the data yn, yn+1, and the RK fluxes, K(i), to obtain an extension of
the numerical solution of the ODE, namely, there exist ν polynomials bi(θ) of degree
d ≤ p, such that

1. y(tn + θ∆t) = yn + ∆t
∑ν

i=1 bi(θ)K
(i), 0 ≤ θ ≤ 1,

2. y(tn) = yn, y(tn + ∆t) = yn+1,
3. max0≤θ≤1 |y(l)(tn + θ∆t)− w(l)(tn + θ∆t)| = O(∆td+1−l),

where w(t) is the exact solution of the ODE at time tn. For a uniformly fourth-order
accurate scheme in time, we need d + 1 = 4, i.e., d = 3. From the theory of NCE it
follows that in order to obtain fourth-order accurate values, it is necessary to use a
fourth-order RK scheme (in fact, no third-order RK scheme has a d = 3 extension).

The NCE of a fourth-order RK scheme is

b1(θ) = 2(1− 4b1)θ
3 + 3(3b1 − 1)θ2 + θ,

bi(θ) = 4(3ci − 2)biθ
3 + 3(3− 4ci)biθ

2, i = 2, 3, 4.

The standard fourth-order RK method we use reads as

b =




1/6
1/3
1/3
1/6


 , a =




0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0


 , c =




0
1/2
1/2
1


 .

Since we need to predict the values of the solution at time tn+1/2 and tn+1, we have

y

(
tn +

∆t

2

)
= yn + ∆t

4∑
i=1

bi

(
1

2

)
K(i) = yn +

∆t

6

(
5

4
K1 + K2 + K3 − 1

4
K4

)
,

y (tn + ∆t) = yn + ∆t

4∑
i=1

bi(1)K
(i) = yn +

∆t

6

(
K1 + 2K2 + 2K3 + K4

)
.

Remark. The prediction step, (2.6), requires a nonoscillatory evaluation of the
point-values of the derivatives of the fluxes, fx(u) and gy(u), at the grid points (xi, yj).
This issue will be addressed below.

3. The reconstruction step. In this section we will describe in detail our new
reconstruction step. We start with the reconstruction from cell averages, (2.2), which
is needed at the beginning of each time step. We then proceed with the reconstruction
from point-values which is used for evaluating the fluxes in the ODE (2.6). This section
ends with a discussion of the modifications to the algorithm which are required for
solving systems of equations.

3.1. The reconstruction from cell averages. In every cell Ii,j we reconstruct
a biquadratic polynomial, Ri,j(x, y), which is written as a convex combination of nine
biquadratic polynomials, Pi,j(x, y), centered in the cells around Ii,j (see Figure 3.1),

Ri,j(x, y) =

1∑
l,k=−1

wl,k
i,jPi+l,j+k(x, y).(3.1)
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Fig. 3.1. The weight matrix Ωi,j .

The biquadratic polynomials Pi,j(x, y), which serve as the building blocks for the re-
construction (3.1), interpolate the data {ūn} in the sense of cell averages (see below).
They approximate the function u(x, y) whose cell averages are {ūn} with third-order
accuracy. The combination (3.1) is designed to increase accuracy and to prevent

spurious oscillations. The weights wl,k
i,j in (3.1) are computed using a nonlinear al-

gorithm which must satisfy the stability requirement, wl,k
i,j ≥ 0, and a conservation

requirement,
∑1

l,k=−1 wl,k
i,j = 1.

For simplicity of notation, let us introduce the 3× 3 matrices:

(Ωi,j)l,k = wl,k
i,j , l, k = −1, 0, 1.

Thus each matrix Ωi,j contains the nine nonconstant weights needed to compute the
reconstruction on the cell Ii,j . Note that the first index, l, is associated with the
x-variable, while the index k is associated with the y-variable.

Let Imi,j , m = 1, . . . , 4, denote the four quarters of the cell Ii,j , with I1
i,j being

the upper-right quarter, while the other three quarters are numbered clockwise (see
Figure 3.2). In order to obtain a fourth-order computation of the first term on the
RHS of (2.3), the reconstructed polynomial, Ri,j(x, y), must recover the averages over
the four quarter cells with fourth-order accuracy,

R̄
(m)
i,j :=

4

h2

∫
Im
i,j

Ri,j(x, y, t
n)dxdy =

4

h2

∫
Im
i,j

u(x, y, tn) + O(h4), m = 1, . . . , 4,(3.2)

where u(x, y, tn) denotes the exact solution of the equation at time tn. On the other
hand, the derivatives of the fluxes should be recovered with third-order accuracy. In
this case, cancellation occurs, so that one order of accuracy is gained on smooth flows.
We therefore need to accurately evaluate the intermediate values, u(x, y, tn + Ci∆t),
with C1 = 1/2 and C2 = 1 (see (2.7)), and, in particular, we need an accurate
reconstruction of the point-values of the solution at the integer grid points (i, j) at
time tn.

The output of the reconstruction routine from cell averages at the beginning of
the time step must therefore provide a fourth-order approximation of
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i,j
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Fig. 3.2. The quarter cells.

(a) the four quarter-cell averages

R̄
(m)
i,j =

4

h2

1∑
l,k=−1

wl,k
i,j

∫
Im
i,j

Pi+l,j+k(x, y) dxdy, m = 1, . . . , 4;(3.3)

(b) the point-values at the integer grid points

Ri,j(xi, yj) =

1∑
l,k=−1

wl,k
i,jPi+l,j+k(xi, yj).(3.4)

The reconstruction routine from point-values called at each evaluation of the RK
fluxes must provide a third-order approximation of the derivatives of the flux at the
integer grid points

Rx
i,j(xi, yj) =

1∑
l,k=−1

wl,k
i,j ∂xPi+l,j+k(xi, yj),(3.5)

Ry
i,j(xi, yj) =

1∑
l,k=−1

wl,k
i,j ∂yPi+l,j+k(xi, yj),(3.6)

where the polynomials Pi+l,j+k interpolate the data f(u(·, ·)) in (3.5), while in (3.6)

the polynomials Pi+l,j+k interpolate the data g(u(·, ·)). Generally, the weights wl,k
i,j

in (3.3) and in (3.4) will be different from the weights in (3.5) and (3.6) due to the
different accuracy requirements.

We would like to stress that there is no need to explicitly compute all the coef-
ficients of the polynomial Ri,j(x, y). All that is needed are the point-values and the
quarter-cell averages of these polynomials or their derivatives at the grid points.

We are now ready to present the construction of the fundamental biquadratic
polynomials, Pi,j(x, y).

3.1.1. The biquadratic polynomials. In this section we explicitly give the
coefficients of the interpolating polynomials Pi,j(x, y), which serve as the building
blocks for the reconstruction of Ri,j(x, y) in (3.1). In each cell, Ii,j , we write the
polynomial Pi,j(x, y) as

Pi,j(x, y) = b0 + b1(x− xi) + b2(y − yj) + b3(x− xi)(y − yj)(3.7)

+b4(x− xi)
2 + b5(y − yj)

2 + b6(x− xi)
2(y − yj)

+b7(x− xi)(y − yj)
2 + b8(x− xi)

2(y − yj)
2,
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where for simplicity we have omitted the indices (i, j) from the coefficients {bm}. The
nine coefficients bm are uniquely determined by the interpolation conditions

1

h2

∫ xi+
h
2 +lh

xi−h
2 +lh

∫ yj+
h
2 +kh

yj−h
2 +kh

Pi,j(x, y)dydx = ūi+l,j+k, l, k = −1, 0, 1;

i.e., the polynomials Pi,j(x, y) interpolate the data {ūi,j} in the sense of cell averages.
The resulting expressions of the coefficients are

b0 = ū− h2

24 (ûxx + ûyy) + h4

242 ûxxyy, b1 = ûx − h2

24 ûxyy,

b2 = ûy − h2

24 ûxxy, b3 = ûxy,

b4 = 1
2 ûxx − h2

48 ûxxyy, b5 = 1
2 ûyy − h2

48 ûxxyy,

b6 = 1
2 ûxxy, b7 = 1

2 ûxyy,

b8 = 1
4 ûxxyy,

where the following notation for divided differences was used:

ûxi,j =
ūi+1,j − ūi−1,j

2h
, ûyi,j =

ūi,j+1 − ūi,j−1

2h
,

ûxxi,j =
ūi+1,j − 2ūi,j + ūi−1,j

h2
, ûyyi,j =

ūi,j+1 − 2ūi,j + ūi,j−1

h2
,

ûxyi,j =
ūi+1,j+1 − ūi+1,j−1 − ūi−1,j+1 + ūi−1,j−1

4h2
,

ûxyyi,j =
(ūi+1,j+1 − 2ūi+1,j + ūi+1,j−1)− (ūi−1,j+1 − 2ūi−1,j + ūi−1,j−1)

2h3
,

ûxxyi,j =
(ūi+1,j+1 − 2ūi,j+1 + ūi−1,j+1)− (ūi+1,j−1 − 2ūi,j−1 + ūi−1,j−1)

2h3
,

ûxxyyi,j =
1

h4

[
(ūi+1,j+1 − 2ūi+1,j + ūi+1,j−1)− 2(ūi,j+1 − 2ūi,j + ūi,j−1)

+(ūi−1,j+1 − 2ūi−1,j + ūi−1,j−1)
]
.

Remark. We would like to emphasize that the reconstruction Ri,j(x, y) is conser-
vative:

1

h2

∫
Ii,j

Ri,j(x, y)dxdy =
1

h2

∑
l,k

wl,k
i,j

∫
Ii,j

Pi+l,j+k(x, y)dxdy =
1

h2

∑
l,k

wl,k
i,jh

2ūi,j = ūi,j .

The second equality holds because of the interpolation requirements on the Pi,j ’s, and

the third equality holds because the weights wl,k
i,j must add up to one.

3.1.2. The weights. The weights wl,k
i,j in the reconstruction (3.1) are computed

following the WENO/CWENO ideas presented in [26, 8, 19]. The goal is to choose
weights such that

(a) in smooth regions maximum accuracy is obtained;
(b) in nonsmooth regions, information coming from nonsmooth stencils should

be switched off in order to prevent the onset of spurious oscillations.
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Fig. 3.3. The nine weights.

In order to achieve these goals, the weights wl,k
i,j are written as

wl,k
i,j =

αl,k
i,j∑1

l,k=−1 αl,k
i,j

,(3.8)

where

αl,k
i,j =

Cl,k

(ε + Sl,k
i,j )

p
.(3.9)

Here, Cl,k are the constants which are chosen in order to maximize accuracy in smooth
regions, Sl,k

i,j are the “smoothness indicators” (see below), p is a constant, and ε is
introduced in order to prevent division by zero. Following our previous works (e.g.
[19]), in all our numerical experiments we use p = 2 and ε = 10−6.

The “smoothness indicators,” Sl,k
i,j , are designed to measure the smoothness of the

polynomials Pi+l,j+k in the cell Ii,j . This is done by evaluating a suitable function of
the norms of the derivatives of the polynomial on the cell Ii,j , namely

Sl,k
i,j =

∫
Ii,j

(|∂xPi+l,j+k|2 + |∂yPi+l,j+k|2 + h2|∂2
xxPi+l,j+k|2 + h2|∂2

yyPi+l,j+k|2
)
dx dy.

(3.10)

The integrals in (3.10) can be computed exactly, but they involve a large number
of function evaluations. In this work, the integrals were evaluated with a Gaussian
quadrature with four nodes on the rectangle Ii,j .

All that is left is to compute the constants Cl,k in (3.9).

We seek the values of a set of constants, Cl,k, such that the integral of the
reconstruction on each quarter cell is fourth-order accurate.

We start with the upper-right quarter cell and use symmetry considerations to
label Cl,k as q1, . . . q6 such that C1,1 = q1, C1,0 = C0,1 = q2, C−1,1 = C1,−1 = q3,
C−1,0 = C0,−1 = q4, C

−1,−1 = q5, and C0,0 = q6 (see Figure 3.3). Since Cl,k ≥ 0 and∑1
l,k=−1 Cl,k = 1, we have

q6 = 1− q1 − 2q2 − 2q3 − 2q4 − q5, qm ≥ 0.
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Imposing the accuracy requirements (3.2) for the upper-right quarter cell results
in the following system: 


q2 = −q1 + q4 + q5,

q3 = 3
16 − q4 − q5,

while q1, q4, and q5 remain arbitrary. One can use this freedom to set as many as
possible qm = 0. This would make the scheme more efficient but less robust, since
it will cancel out possible stencils whose information might be desirable. We have
preferred to select all the qm’s to be different from zero so that each stencil can be
present in the reconstruction.

One possibility is to choose q1 = q4 = q5 = 1
16 , from which it follows that

q2 = q3 = 1
16 and q6 = 1

2 . This gives a symmetric combination which can therefore be
used for all four quarter-cell averages (and not only for the upper-right quarter cell),

C =


 1/16 1/16 1/16

1/16 1/2 1/16
1/16 1/16 1/16


 .(3.11)

By symmetry, this specific choice of C also gives fourth-order accuracy for the
computation of point-values at the center of the cell.

Finally, we would like to comment that in principle one could compute the smooth-
ness indicators in every step of the RK method. In our numerical examples we com-
pute them only once at the beginning of each time step.

3.2. The reconstruction of flux derivatives. In order to compute each RK
flux in (2.6), it is necessary to evaluate the function

F (u)i,j := −fx(u)− gy(u)
∣∣∣
i,j

,(3.12)

where u is evaluated at each intermediate time ti = tn + ∆t ci of the RK scheme,
(2.7). It is therefore necessary to compute the intermediate values of u:

u
(l)
i,j = un

i,j + ∆t

l−1∑
k=1

al,kK
(k),(3.13)

where the RK fluxes Kk’s were defined in (2.8). Given the intermediate values in

(3.13) we can evaluate f(u
(l)
i,j) and g(u

(l)
i,j), which can then be used to compute the

discrete derivatives of f and g required in (3.12). These derivatives can be calculated
using a procedure which is equivalent to the reconstruction procedure that was used
earlier. This time, however, we require that the point-values of the derivative of the
reconstruction will be third-order accurate. For simplicity, assume that we start with
the function ui,j . As before, we write the final reconstruction as a convex combination
of interpolating polynomials (compare with (3.1)),

Ri,j(x, y) =

1∑
l,k=−1

w̃l,k
i,j P̃i+l,j+k(x, y).(3.14)

This time the polynomials interpolate the data in the sense of point-values

P̃i,j(xi+l, yj+k) = ũi+l,j+k, l, k = −1, 0, 1,
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where ũi+l,j+k denotes either f(ui+l,j+k) or g(ui+l,j+k).
The nonconstant coefficients in (3.14) are (compare with (3.8))

w̃l,k
i,j =

α̃l,k
i,j∑1

l,k=−1 α̃l,k
i,j

,

where for the derivative in the x-direction one has

α̃l,k
i,j =

C̃l,k
x

(ε + Sl,k
i,j )

p
,

and a similar expression holds for the derivative in the y-direction. The smoothness
indicators are the same as those computed at the beginning of the time step. Since we
are interested in an accurate reconstruction of the derivatives in (3.12), the constants
C̃l,k

x must be chosen in order to satisfy

|∂xRi,j − ux(xi, yj)| = O(h3).

A straightforward computation results in the possible choice of C̃l,k
x as

C̃l,k
x =


 0 0 0

1/6 2/3 1/6
0 0 0


 .(3.15)

For the y-derivative one can choose the transpose of (3.15), C̃l,k
y = (C̃l,k

x )t. With this
choice, the mixed terms of the biquadratic polynomials do not play any role and the
differentiation formulas become very simple:

∂Ri,j

∂x

∣∣∣
(xi,yj)

=
∑1

l=−1 w̃l,0
i,j

∂P̃i+l,j

∂x

∣∣∣
(xi,yj)

,

∂Ri,j

∂y

∣∣∣
(xi,yj)

=
∑1

k=−1 w̃0,k
i,j

∂P̃i,j+k

∂x

∣∣∣
(xi,yj)

.
(3.16)

3.3. The algorithm. We would like to summarize the different stages of the al-
gorithm obtained in the previous sections. Given ūn

i,j , compute ūn+1
i+1/2,j+1/2 according

to (2.3), i.e.,

ūn+1
i+1/2,j+1/2 = I1 + I2,

where

I1 =
1

h2

∫ ∫
I
i+ 1

2
,j+ 1

2

un(x, y) dx dy,

and

I2 =− 1

h2

∫ tn+1

τ=tn

{∫ yj+1

y=yj

[f (u(xi+1, y, τ))− f (u(xi, y, τ))] dy

}
dτ

− 1

h2

∫ tn+1

τ=tn

{∫ xi+1

x=xi

[g (u(x, yj+1, τ))− g (u(x, yj , τ))] dx

}
dτ.
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I1 is the sum of the four quarter-cell averages defined in (3.3),

I1 = R̄
(1)
i,j + R̄

(2)
i,j+1 + R̄

(3)
i+1,j+1 + R̄

(4)
i+1,j ,

where the polynomials Pi+l,j+k(x, y) appearing in (3.3) are given by (3.7) and the

weights wl,k
i,j are given by (3.8).

The integrals in I2 are replaced by the quadrature (2.4) and (2.5):

∫ tn+1

tn
f(u(xi, yj , z))dz

=
∆t

6

[
f
(
un
i,j

)
+ 4f

(
u
n+1/2
i,j

)
+ f

(
un+1
i,j

)]
+ O

(
(∆t)5

)
and ∫ xi+1

xi

f(x)dx =
h

24
[−f(xi+2) + 13f(xi+1) + 13f(xi)− f(xi−1)] + O(h5).

The time quadrature requires the prediction of the midvalues, which can be obtained
with the RK scheme, (2.7). This ODE solver requires on the RHS the values of the
derivatives of the fluxes given by (3.16), which are evaluated at the integer grid points
(and therefore utilizes the point-values recovered by (3.4)).

3.4. Systems of equations. There are not that many modifications required
in order to solve systems of equations instead of solving scalar equations. Basically,
one has to extend the algorithm to systems using a straightforward componentwise
approach.

The only delicate point is the computation of the smoothness indicators. A com-
ponentwise evolution of the smoothness indicators where each component may rely
on a different stencil has some disadvantages, as already pointed out in [19]. We
also showed in [19] that the simplest and most robust way to compute the smooth-
ness indicators is to apply global smoothness indicators: all components have the
same indicator, which is computed as an average of the smoothness indicators of each
component,

Sl,k
i,j =

1

d

d∑
m=1

{∫
Ii,j

(
|∂xPm

i+l,j+k|2 + |∂yPm
i+l,j+k|2 + h2|∂2

xxP
m
i+l,j+k|2(3.17)

+h2|∂2
yyP

m
i+l,j+k|2

)
dxdy

}(
‖ū(m)‖2 + ε

)−1

.

Here Pm
i,j denotes the mth component of the vector valued interpolation polynomial,

centered on the cell Ii,j , and

‖ū(m)‖2
2 =

∑
i,j

|ū(m)
i,j |2 h2,

where (m) denotes the mth component of the vector ūi,j . Therefore, the global
smoothness indicator is an average of all componentwise smoothness indicators, each
of which is normalized with respect to the norm of the corresponding field.
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4. Numerical examples. The numerical tests we include are designed to in-
vestigate the following points:

1. Evaluate the accuracy of the scheme.
2. Illustrate the behavior of the weights on nonsmooth solutions.
3. Show the nonoscillatory properties of the scheme on nonsmooth solutions.
4. Study the effect of mesh orientation with respect to wave fronts on the nu-

merical solution.
5. Show the effectiveness of the black-box approach in the ability to deal with

different systems of equations, with only minor modifications in the code.
6. Show the effectiveness of the componentwise approach in a test problem where

the components of the solution have jumps located at different positions. This
test reveals whether a discontinuity in one of the components induces spurious
oscillations in a different component.

7. Show the behavior of the scheme in gas dynamics test problems resulting in
flows with a complex structure.

We wish to observe that we chose our test problems in order to illustrate the
behavior of the scheme by itself.

We avoided some of the classical test problems of gas dynamics (as those in
[38]) because the solution in those problems depends very strongly on an accurate
discretization of boundary conditions. Since at present it is still not known how to
implement nonoscillatory high-order accurate boundary conditions, we preferred test
problems for which a conflict with boundary conditions could be prevented.

4.1. Accuracy tests. We start with the accuracy tests by considering the initial
data

u0(x, y) = sin2(πx) sin2(πy)

with periodic boundary conditions on the square [0, 1] × [0, 1]. We solve a two-
dimensional linear advection equation with the fluxes taken as f(u) = g(u) = u.
The solution is sampled after one complete cycle (T = 1). The mesh ratio is λ =
∆t/h = 0.45. We compute the error in the discrete L∞ and L1 norms, defined,
respectively, as

||u||∞ = maxi,j |ui,j |,

||u||1 =
∑

i,j |ui,j | h2.

We first compute the accuracy using constant weights in the reconstruction. These
weights are given by (3.11). The results are shown in Table 4.1 and are verified to be
fourth-order accurate both in the L∞ and in the L1 norms.

In Table 4.2 we show the results obtained with the fully nonlinear scheme, with the
weights defined in (3.8) and (3.9). Once again, we observe the fourth-order accuracy
of the scheme. Moreover, even for very coarse grids, the errors obtained with the
nonlinear weights are comparable to the errors resulting from the linear scheme, which
is the scheme that maximizes accuracy on smooth solutions.

4.2. The nonlinear weights. We consider an initial square patch

u0(x, y) =

{
1, |x− 1

2 | < 1
2 and |y − 1

2 | < 1
2 ,

0 otherwise
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Table 4.1
Linear advection; constant weights. T = 1, λ = 0.45, u0(x) = sin2(πx) sin2(πy).

N L1 error L1 order L∞ error L∞ order
10 6.687E-03 - 1.646E-02 -
20 4.562E-04 3.87 1.106E-03 3.90
40 2.905E-05 3.97 6.811E-05 4.02
80 1.812E-06 4.00 4.197E-06 4.02
160 1.133E-07 4.00 2.601E-07 4.01

Table 4.2
Linear advection; nonlinear weights. T = 1, λ = 0.45, u0(x) = sin2(πx) sin2(πy).

N L1 error L1 order L∞ error L∞ order
10 8.763E-03 - 2.464E-02 -
20 5.092E-04 4.10 1.632E-03 3.92
40 3.001E-05 4.08 8.747E-05 4.22
80 1.828E-06 4.04 4.836E-06 4.18
160 1.135E-07 4.01 2.802E-07 4.11

on the square [0, 1]× [0, 1]. We rotate the patch with a linear flow yielding a constant
angular velocity, namely

f(u, x, y) = −
(
y − 1

2

)
π

2
u, g(u, x, y) =

(
x− 1

2

)
π

2
u.

Figure 4.1 shows the solution at T = .5 and T = 1 together with corresponding
plots of the central weight. It is clear that the central weight drops almost to zero
where the central stencil contains nonsmooth regions. On the other hand, the central
weight is larger than its equilibrium value 1/2 in the middle of the transition regions,
where the central stencil carries smooth information, while some of the one-sided
stencils could contribute oscillations. Where the solution is smooth, the central weight
is close to its optimal value, 1/2. The number of grid points in each direction is
N = 40, while λ = 0.425.

4.3. Nonoscillatory properties. We have already seen in Figure 4.1 that the
numerical solution of the linear rotation problem has no spurious oscillations. We
now consider the initial condition taken from [9]:

0.8 0.5

-1 -0.2

The configuration is centered at (1/2, 1/2), and the computational region is [0, 1]×
[0, 1]. The boundary conditions are ∂u/∂n = 0. Such conditions are perfectly justified
until the signal reaches the boundary. The flux is Burgers’ flux, f(u) = g(u) = −u2/2.
The number of grid points in each direction is N = 80, and λ = .25.

The solution at T = .5 is shown in Figure 4.2. The figure shows the control of
spurious oscillations in a problem involving shock interaction. There are some small
amplitude wiggles, which are better visible in the contour plot on the right of the
figure, but the features of the solution are well resolved. The present scheme in fact
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Fig. 4.1. Linear rotation. Solution and central weight at T = .5 and T = 1. N = 40; λ = .425.
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Fig. 4.2. Burgers’ equation. Solution at T = .5. N = 80; λ = .25. The contour plot has 21
level lines.

implements ENO-like ideas: the presence of spurious oscillations is possible, especially
close to the interaction of discontinuities, where the scheme does not degenerate to
first-order accuracy. However, such wiggles have small amplitude. All discontinuities
are very sharp. This can be compared to the resolution of discontinuities in Figure 4.1.
In the latter case all discontinuities are contacts: with no artificial compression these
discontinuities are naturally less resolved than shock waves.
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Fig. 4.3. Linear advection of a step skew to the grid. N = 40; λ = 0.25.

4.4. Mesh orientation. A common problem encountered when working with
rectangular grids is that the solution has a natural bias in the directions of the co-
ordinates. In our case, we find a very weak dependence of the solution on the mesh
orientation. Moreover, this bias improves dramatically under mesh refinement. We
first show a test in which an initial step, making an angle θ with the x-direction, is
linearly advected. The initial condition is

u0(x, y) = arctan

[
s

(
x− 1

tan(θ)

(
y − 1− h

2

)
− 1

2

)]
,

with s = 1000. The flux is linear, with f(u) = g(u) = −u, and boundary conditions
are imposed in order to ensure that the flow is constant on lines parallel to the wave
front. In Figure 4.3 we show the results obtained with a 40× 40 grid, with λ = 0.25,
for several values of θ.

It is apparent from the figure that there are no spurious oscillations, regardless
of the orientation of the wave front with respect to the grid. Moreover, the resolution
seems to be the same in all directions considered. In other words, it seems that, in
this case, the orientation of the grid has no effect on the numerical solution.

We also show a nonlinear test. Figure 4.4 shows the numerical solution computed
on a two-dimensional gas dynamics problem. Here a one-dimensional shock tube
initial value problem is considered, with the initial discontinuity making an angle
θ = 60◦ with the x-axis. The two-dimensional gas dynamics equations are specified
in the next section. The initial data for the shock tube problem are the classical ones
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Fig. 4.4. Oblique Sod’s shock tube problem, θ = π/3. Comparison with the exact solution and
contour plot. The grid is 200 × 50. λ = .2.

proposed by Sod [35]:
 ρ

u
p




L

=


 1

0
1


 ,


 ρ

u
p




R

=


 0.125

0
0.1


 .

The computational region is the rectangle [0, 1] × [0, 0.25], with 200 points in the
x-direction and 50 points in the y-direction. The solution is sampled at y = 0.125
at T = 0.1386 and compared with the exact one-dimensional solution at T = 0.16 =
0.1386/ sin(θ) (left side of Figure 4.4). The right side of the figure shows the con-
tour plot of the two-dimensional solution. Clearly, the flow is still perfectly one-
dimensional; i.e., no perturbations deriving from the grid orientation are apparent.
There are a few small amplitude wiggles around the contact discontinuity. This phe-
nomenon was already present in the one-dimensional case [19].

Finally, we show the results obtained on a problem with radial symmetry. Fol-
lowing [23], we consider a shock tube initial condition with radial symmetry, namely

u(x, y, t = 0) =

{
uL, (x− 0.5)2 + (y − 0.5)2 ≤ R2,
uR otherwise,

with R = 0.2 and where uL and uR are again the left and right states, respectively, of
Sod’s shock tube problem. The computational region is [0, 1]2. The results in T = 0.1
appear in Figure 4.5 for N = 100 and N = 200 grid points in each direction.

The scatter plots appearing at the top of Figure 4.5 are computed rewriting
the solution u(x, y) as a function of r =

√
(x− 0.5)2 + (y − 0.5)2. Several profiles

are obtained in this fashion. Here they have all been superposed. If the solution
had perfect radial symmetry, all profiles would lie on the same curve. Thus the
thickness of the curve one obtains gives a measure of the lack of symmetry of the
solution. In Figure 4.5, we note that the solution obtained with the C-WENO scheme
does not have perfect radial symmetry. We note, however, that the results improve
dramatically under grid refinement: on the right of Figure 4.5 approximately 200
profiles are superposed, while only approximately 100 are superposed on the left.
However, the thickness of the curve is now reduced. Moreover, it is important to note
that the main features of the flow (i.e., the wave fronts and tails) have an almost
perfect radial symmetry, as can be readily seen in the contour plots at the bottom of
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Fig. 4.5. Solution with circular symmetry. Scatter plots (top) and contour plots (bottom) for
the density, for N = 100 (left) and for N = 200 (right) grid points, λ = 0.2. The contour plots have
30 equally spaced contour lines.

Figure 4.5. The deviations from symmetry concern only the fluctuations around the
states between the main wave fronts.

These results would probably improve by modifying the quadrature rule for the
fluxes, as suggested in [23]. It is noteworthy that the results we obtain with the
fourth-order scheme seem to have a better resolution than those shown in [23], which
were obtained with the second-order Nessyahu–Tadmor scheme.

4.5. Black-box approach. We now consider the Euler equations with the Van
der Waals equation of state (EOS) for a real gas. The purpose of this section is to
show that the scheme is able to deal with different problems, with very few changes
in the code. The EOS we are considering is

p(ρ, e) = (γ − 1)
ρe + aρ2

1− ρb
− aρ2.(4.1)

Upwind schemes based on Riemann solvers require in-depth modifications to deal
with a change in the EOS. Even upwind schemes based on projection along charac-
teristic directions require a considerable amount of extra work to deal with such a
simple change; see, for instance, [36]. Here we need only to change one line in the
function that computes the fluxes. Namely, we just need to update the instruction
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Fig. 4.6. Oblique Sod’s shock tube problem, with Van der Waals gas; θ = π/3. Comparison
with the ideal gas solution and contour plot. The grid is 200 × 50. λ = .2.

that computes the pressure, starting from the conserved variables.
To illustrate this fact, we run our scheme on the oblique shock tube problem

we have described in the previous subsection, with Sod’s initial data, on a Van der
Waals gas. As in [36], we pick γ = 1.4, a = 0.03412, and b = 0.23 for the parameters
appearing in (4.1). We compute the solution up to T = 0.1386, with λ = 0.2 and
N = 200.

Our results are shown in Figure 4.6. The left of the figure shows a comparison
with the solution obtained in the ideal gas case. We note that the two solutions
are similar, as expected, and have an analogous pattern of small amplitude spurious
wiggles; i.e., the numerical solution has not worsened with the change in the EOS.
The resolution is also approximately the same. The right of the figure shows a contour
plot: as in the ideal gas case, no mesh orientation effect is visible.

The results shown in [36] on the same test problem with a second- and a third-
order scheme show no spurious oscillations. Again, it is not surprising that an ad hoc
scheme can exhibit better results on a specific problem than those obtained with our
multipurpose scheme. However, it is noteworthy that the resolution in the results,
published in [36] with the third-order scheme, seems to be comparable with ours.
Actually, the resolution of the CWENO scheme might be even better: the CWENO
solution, in fact, resolves the contact discontinuity in roughly three grid points at T =
0.1386, while the third-order upwind scheme in [36] resolves the contact discontinuity
in three grid points at T = 0.09.

4.6. Componentwise approach. The test shown here has been discussed in
[9] as a one-dimensional test. The test consists of a 2 × 2 linear system, with initial
conditions chosen in order to yield a contact discontinuity in each of the characteristic
fields, traveling at different speeds.

The one-dimensional system we consider is

ut + Aux = 0, A =

(
0 1
1 0

)
,

subject to the initial conditions

u1(x, 0) ≡ 0, u2(x, 0) =

{
1, x < 1/2,
0, x > 1/2.



CENTRAL WENO SCHEMES FOR SYSTEMS 501

0
50

100

0

20

40
0

1

2

0
50

100

0

20

40
0

1

2

0
50

100

0

20

40
0

1

2

0
50

100

0

20

40
0

1

2

Fig. 4.7. Linear advection of a step skew to the grid; 2 × 2 system. Characteristic variables:
v1 = u1 + u2 and v2 = u1 − u2. On the left, θ = π/3; on the right, θ = π/2. The grid is 100 × 40.
λ = .25.

The corresponding two-dimensional system has been chosen as

ut + Aux + Buy = 0, A =

(
0 1
1 0

)
, B = − cot θ

(
0 1
1 0

)
,

with initial conditions

u1(xi, yj , t = 0) ≡ 0, u2(xi, yj , t = 0) =

{
1, xi < (yj − 1/2) cot θ,
0 otherwise.

A purely componentwise approach may result in spurious oscillations in each charac-
teristic variable, located where the other characteristic field undergoes a discontinuity.

Our results are shown in Figure 4.7. The solution is shown in a two-dimensional
setting, in which the initial discontinuity makes an angle θ = 60◦ (left column) and
θ = 90◦ (second column) with the x-axis. The two rows show the two characteristic
variables, v1 = u1 +u2 and v2 = u1−u2. Again, no spurious oscillations are observed.

4.7. Two-dimensional gas dynamics equations. We consider the system of
equations for gas dynamics in two dimensions:

Ut + F (U)x + G(U)y = 0,

where

U =




ρ
ρu
ρv
E


 , F (U) =




ρu
ρu2 + p
ρuv

u(E + p)


 , G(U) =




ρv
ρuv

ρv2 + p
v(E + p)


 .
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Fig. 4.8. Initial condition for Configuration 5.
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Fig. 4.9. Two-dimensional Riemann problem. Solution at time T = 0.23 for the initial data
reported in Figure 4.8. Comparison with two different grids. On the left, the grid is 200 × 200; on
the right, the grid is 400 × 400.

Here, ρ is the density, u and v are the two components of the velocity, E = ρe +
1
2ρ(u

2 + v2) is the total energy per unit volume, and e is the internal energy of the
gas. The system is closed by defining the pressure p through the EOS. For a perfect
gas p = ρe(γ − 1), where the constant γ is the ratio of specific heats. In all tests
considered, γ = 1.4.

For a study of Riemann problems for the two-dimensional gas dynamics equations
we refer the reader to [33, 34]. A numerical study based on a characteristic approach
was performed by Lax and Liu in [16]. A more recent work in which a second-order
semidiscrete central scheme was used for the study of similar problems was presented
by Kurganov and Tadmor in [14].

The test problems shown below are two-dimensional Riemann problems. We
compare our results with those shown in [16]. In particular, following the notation
introduced in [16], we will show the results obtained for Configuration 5 and Config-
uration 16. Configuration 5 corresponds to the initial condition shown in Figure 4.8.
These initial data result in four interacting contact discontinuities.

The results are shown in Figure 4.9 at time T=0.23. On the left we show the
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Fig. 4.10. Initial condition for Configuration 16.
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Fig. 4.11. Wave structure for Configuration 16. The letters C, R, and S denote contact,
rarefaction, and shock waves, respectively.

density obtained with a 200 × 200 grid, while on the right we show the density on
a 400 × 400 grid. The time step is one half the one chosen in [16], due to our more
restrictive CFL, namely λ = 0.5 ∗ 0.2494.

We first note that there is a very strong increase in resolution as the cell dimen-
sions are halved due to the high-order accuracy of the scheme. When we compare
the results obtained on the fine grid with the corresponding ones in Figure 5 of [16],
we find that the two pictures are of comparable resolution. Although the positive
schemes used by Lax and Liu in [16] are only second-order accurate, we believe that
our results are quite striking. In fact, while the positive scheme makes use of the
Jacobian and the matrix of eigenvectors of the system of gas dynamics, our scheme
requires only the definition of the fluxes. Still, the physics of the problem, apparently,
is perfectly caught.

We remark here that suitably tailored upwinding schemes give better resolution
than central schemes on specific problems. For example, they are better able to
resolve contact discontinuities. The main advantage of the central approach is in its
simplicity and robustness.

We end our discussion showing the results obtained for Configuration 16 of [16].
The initial condition can be found in Figure 4.10. The resulting solution is composed
of two contact discontinuities, a rarefaction and a shock wave, and is shown in Fig-
ure 4.11. We show the results for the density at T = 0.2 on a 400 × 400 grid in
Figure 4.12. The CFL number is λ = 0.5 ∗ 0.2494. These results should be compared
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Fig. 4.12. Two-dimensional Riemann problem. 400 × 400 grid. Solution at time T = 0.2 for
the initial data reported in Figure 4.10.

with the corresponding ones in [16, Figure 16]. We note that the shock is sharp, and
the resolution of the two contact discontinuities is also good. Moreover, there are no
spurious oscillations even though the wave pattern is complex.

5. Conclusions. We have presented the first two-dimensional fourth-order cen-
tral scheme for the integration of two-dimensional systems of conservation laws.
First, we would like to comment that this scheme can be easily generalized to three-
dimensional problems.

The main feature of the present scheme is its black-box formulation. Although
the tests shown are gas dynamics problems, the scheme can be easily applied to other
systems of conservation laws with very small changes in the code. In particular, it is
only necessary to supply the flux function and an estimate of the CFL number.

In this perspective, we believe that the fact that we can reproduce the results
obtained by the positive scheme of [16] is quite encouraging. The positive scheme,
in fact, requires a detailed knowledge of the structure of the system of conservation
laws being integrated, and it is not easily generalized to systems of conservation laws,
for which the eigenstructure cannot be written in closed form. Similar results with a
semidiscrete central scheme were recently presented in [14].

Naturally, there is still work to do before our scheme can be easily applied to
problems of practical interest. Here we list the following:

• The CFL stability restriction of the Nessyahu–Tadmor central scheme is λ ≤
1/2. This value ensures that the solution remains smooth on the edges of
the computational cell. Our tests show, however, that this condition is not
sufficient. We believe that a value of λ ≤ 0.25 is a safe estimate. Note that
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in our study of linear stability [4] for the central ENO scheme, we found
for the fourth-order C-ENO one-dimensional scheme a stability restriction
λ < 2/7 
 0.285. It may be that the present scheme is stable under a similar
restriction. However, in some problems, a less restrictive stability condition
seems to be sufficient. Therefore, in sections 4.1 and 4.2 we used a larger
value of λ. In applications in which the value of λ cannot be tuned to the
computation, it is safer to use λ ≤ 0.25 instead. Further work is certainly
needed to clarify this issue.

• The issue of boundary conditions also needs to be addressed. A possibility
is to introduce a layer of cells close to the boundary on which the conserva-
tion laws are integrated with a scheme based on a compact stencil, thereby
furnishing all the boundary data needed by the CWENO scheme.
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